JPS58135575A - Nonaqueous electrolyte cell - Google Patents

Nonaqueous electrolyte cell

Info

Publication number
JPS58135575A
JPS58135575A JP57016732A JP1673282A JPS58135575A JP S58135575 A JPS58135575 A JP S58135575A JP 57016732 A JP57016732 A JP 57016732A JP 1673282 A JP1673282 A JP 1673282A JP S58135575 A JPS58135575 A JP S58135575A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
cell
manganese dioxide
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57016732A
Other languages
Japanese (ja)
Other versions
JPH0345863B2 (en
Inventor
Tsugio Sakai
次夫 酒井
Yoriaki Nakai
中井 順章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP57016732A priority Critical patent/JPS58135575A/en
Publication of JPS58135575A publication Critical patent/JPS58135575A/en
Publication of JPH0345863B2 publication Critical patent/JPH0345863B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/502Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese for non-aqueous cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a cell extremely excellent in a long shelf life by using manganese dioxide with the X value of MnOx of 1.85-1.95 for a lithium-manganese dioxide cell. CONSTITUTION:85%, by weight, of electrolyzed MnOn (gamma) heated in the atmosphere, 10% of graphite as a dielectric material, and 5% of Teflon powder as a binding agent are mixed and molded into a positive electrode 2. Metal lithium is used for a negative electrode 4, and propylene carbonate of nonaqueous solvent and 1, 2 dimethoxyethane are mixed equally, by volume, and are dissolved with one mole of lithium perchlorate to be used as the electrolyte. The positive and negative electrodes are inserted physically and electrically in contact with a positive electrode can 1 made of SUS434 stainless steel and a negative electrode can 3 made of SUS304 stainless steel respectively, and a separator 5 made of polypropylene nonwoven fabric is inserted between both electrodes. Finally, the cell is assembled by fully bending the edge of the positive electrode can 1 inward through a gasket 6 made of polypropylene.

Description

【発明の詳細な説明】 本発明は、正極活物質に二階化マンガンを用いる非水電
解液電池に係り、特に二酸化マンガンの組成に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a non-aqueous electrolyte battery using manganese dioxide as a positive electrode active material, and particularly to the composition of manganese dioxide.

−Itにこの穆電池に用いられる二酸化マンガンは、M
n01 という化学式で総称されているものであるが、
実際には、Mn01の鉱石や製法の違い、水分除去のた
めの熱処理条件の違いなどにより、Mn01の結晶構造
、付着水や結合水の量。
-The manganese dioxide used in this cell is M
They are collectively known by the chemical formula n01,
In reality, the crystal structure of Mn01 and the amount of attached water and bound water vary due to differences in the ore of Mn01, manufacturing methods, and heat treatment conditions for removing water.

およびMnと0の量比などに相違がみられることが明ら
かKなりつつある。更に、Mn0IKOH基や過剰酸素
が結合している場合もあるとされている。
It is becoming clear that there are differences in the amount ratio of Mn and 0. Furthermore, it is said that Mn0IKOH groups and excess oxygen may be bonded.

このような相違tもつM n O@は、物理的、化学的
、11気化学的にも、性質tsrcするものであり、当
然リチウムと組合わせた電池にも重大な影響を及ぼして
いた。従来、この種の非水電解液電池は、釧電池などの
アルカリ電池と異なり、アルカリ液のはい上りなどにも
とづくような漏液はみられないが、電池を長期に保存し
た場合や、高―に保存した場合には、漏液がしばしば発
生していた。ま穴、漏液が発生しない場合でも、電池の
ツクラミや低連閉路電圧の低下が大きいことが欠点とな
っていた。
M n O@ having such a difference t has physical, chemical, and vapor chemical properties tsrc, and naturally has a significant influence on batteries combined with lithium. Conventionally, this type of non-aqueous electrolyte battery, unlike alkaline batteries such as Senbatsu batteries, does not leak due to alkaline solution seepage, but when the battery is stored for a long time or at high temperatures. When stored at high temperatures, leakage often occurred. Even when holes and leakage do not occur, the drawbacks are blockage of the battery and a large drop in the low closed-circuit voltage.

これらは、電池の封止性も勿論関係するが、本発明者ら
による実験検討の結果、Mn01そのものの差にもとづ
くものに主たる原因があることをつきとめた6本発明は
、これらの調査結果にもとづいてなされたもので、多く
の種類をもつ、いわゆるMn01で総称されるもののう
ち、ある化学l論組成のものを活物質として用いること
により電池の耐漏液性を著しく改善できたものである。
These problems are of course related to the sealing properties of the battery, but as a result of experimental studies conducted by the present inventors, the main cause was found to be based on differences in Mn01 itself.6 The present invention is based on these findings. Among the many types of Mn01, which are collectively referred to as Mn01, it was possible to significantly improve the leakage resistance of batteries by using one with a certain stoichiometric composition as an active material.

以下、実施例により詳述する。The details will be explained below using examples.

実施例(1) 市販の電解MnJ  (γ)1に大気中で、480℃、
24時間加熱しmものを、重量で85W5、これに導電
剤として黒鉛101i%結着剤としてテフロン粉末5s
f混合し酸形して、正極2とした。
Example (1) Commercially available electrolytic MnJ (γ)1 was heated at 480°C in the atmosphere.
Heated for 24 hours, weight 85W5, 101i% graphite as a conductive agent, 5s Teflon powder as a binder.
F was mixed and acidified to obtain positive electrode 2.

負極4に社金属リチウム、電解液には非水溶媒のプロピ
レンカーボネートと1,2ジメトキシエタンを等容積比
で混合し穴ものに、11解質として過塩糖酸リチウムを
1モル溶解し穴ものを用い、正・負極はそれぞれf3U
fj4s4ステンレス鋼からなる正極缶1.8US50
4ステンレス鋼からなる電極缶5に物理約1電気的に接
触して挿入され、極間KHボリブnビレン不織布からな
るセパレータ5を介 して構成された。電池は、最後に
ポリプロピレンからなるガスケット6を介して正極缶1
の端部を内方に充分折曲して組立てられた。これらの構
造は第1図に示される通りである。なおこの場合の電池
サイズは、外径20畷、総厚t6霞である。
Metallic lithium is used as the negative electrode 4, and propylene carbonate as a non-aqueous solvent and 1,2 dimethoxyethane are mixed in an equal volume ratio as the electrolyte, and 1 mole of lithium persalt saccharide is dissolved as the electrolyte. , and the positive and negative poles are f3U, respectively.
Positive electrode can 1.8US50 made of fj4s4 stainless steel
It was inserted into an electrode can 5 made of 4 stainless steel in physical electrical contact with it, with a separator 5 made of a KH volvn birene nonwoven fabric interposed between the electrodes. Finally, the battery is connected to the positive electrode can 1 via a gasket 6 made of polypropylene.
It was assembled by bending the ends inward. Their structures are as shown in FIG. Note that the battery size in this case is an outer diameter of 20 mm and a total thickness of 6 mm.

実施例(2) 実施例(1)と同ロットの市販の電解Mn01(γ)を
大気中で、450℃、24時間加熱したものを用い、以
下実施例(1)と同様の方法で電池を組立てた。
Example (2) Using the same lot of commercially available electrolytic Mn01 (γ) as in Example (1) heated in the atmosphere at 450°C for 24 hours, a battery was made in the same manner as in Example (1). Assembled.

実施例(5) 実施例(1)と同ロットの市販の電解uno雪D)を大
気中で380℃、24時間加熱したものを用い、以下実
施例(1)と同様の方法で、電池を組立てた。
Example (5) Using commercially available electrolytic UNO SNOW D) from the same lot as Example (1) heated in the atmosphere at 380°C for 24 hours, a battery was made in the same manner as Example (1). Assembled.

実施例(4) 実権例(1)と同ロットの市販の電解Mn01(γ)を
大気中で580℃、24時間熱処理しtものを電解液に
用いる非水溶媒であるプロピレンカーボ    □ネー
ト中にii度70℃で8時間浸漬処理し次、その後、真
空乾燥して後、実施例(1)と同様の方法で電池を組立
て穴。
Example (4) Commercially available electrolytic Mn01 (γ) of the same lot as Example (1) was heat-treated in the atmosphere at 580°C for 24 hours, and then added to propylene carbonate, a non-aqueous solvent, used as the electrolyte. After soaking at 70°C for 8 hours, and then vacuum drying, assemble the battery in the same manner as in Example (1).

次に、実棒例(1)〜(4)の加熱処理および、加熱処
理後非水溶媒に浸漬処理を施した粉末1−(こわらの粉
末を以下それぞれABODと呼ぶ)、総Mn量と有効酸
素tを求める通常の分析法により、Mn0xI:r)X
llを調べたところ、第1表の結果を得た。これらの処
理社、実際には、繰返し3回行なわれたので、これらの
平均値と最大・最小値を示した。
Next, powder 1- (stiff powder is hereinafter referred to as ABOD) obtained by heat treatment of actual bar examples (1) to (4) and immersion treatment in a non-aqueous solvent after heat treatment, and the total Mn content. Mn0xI:r)X
When ll was investigated, the results shown in Table 1 were obtained. These treatments were actually repeated three times, so their average values and maximum and minimum values are shown.

第 1 表 次に、これらの1池を各10Llケずつ高湿に保存して
、耐S*性2w池フクラミ量、および低温閉路電圧の経
時変化を調べた。具体的には、60℃、95%RH温度
下で120日まで保存し、40日毎に漏液莞生率、W、
池フクラミ量、および一10℃における500Ω負荷で
5秒後の閉路電圧を制定した。これらの結果は第2表に
示し比。表中の電池ツクラミ量と低温閉路電圧は100
ケの電池の平均値である。
Table 1 Next, 10 liters of each of these ponds were stored in high humidity, and the amount of S* resistant 2W pond flakes and changes over time in the low-temperature closed circuit voltage were examined. Specifically, it was stored at 60°C and 95% RH for up to 120 days, and the leakage rate, W,
The amount of water leakage and the closed circuit voltage after 5 seconds with a 500Ω load at -10°C were established. These results are shown in Table 2. The battery blockage amount and low temperature closing voltage in the table are 100
This is the average value for 5 batteries.

また、これらの%性のうち、特に保存後に変化が着しい
低温閉路電圧値については412図にグラフとして示し
穴、グラフ中の記号a、b、cHそれぞれ、unixの
xllを91表の結果から、X値の低い方から範囲を区
分して整理して示し次ものである。
In addition, among these percentage characteristics, the low-temperature closed circuit voltage value, which changes particularly after storage, is shown as a graph in Figure 412, and the symbols a, b, and cH in the graph, respectively, and xll of UNIX are calculated from the results in Table 91. , the ranges are categorized and organized from the lowest X value.

これらの結果から明らかなように、MnO雪の実際のM
nとOの量比により、保存1%性は著しい影響を受けて
いることがわかる。この理由については、明らかではな
いが、別の実験で、X値の大きい程Mn01t′i化学
的に活性となり、電解液に用いていをプロピレンカーボ
ネートを分解し、炭酸ガスを発生しやすい傾向のあるこ
とが判明した。
As is clear from these results, the actual M of MnO snow
It can be seen that the 1% storage property is significantly affected by the ratio of n and O. The reason for this is not clear, but another experiment showed that the larger the X value, the more Mn01t'i becomes chemically active, and tends to decompose propylene carbonate used in the electrolyte and generate carbon dioxide gas. It has been found.

この結果、活性度が高いために電池製造当初においては
閉路電圧が高いか、高温や長期保存後には雷池内で前記
現象にもとづくガス発生が起こり、電池ツクラミや、漏
液発生を引起こすと考えられる。
As a result, it is thought that due to the high activity, the closed circuit voltage is high at the beginning of battery manufacture, or that gas is generated in the lightning pond due to the above phenomenon at high temperatures or after long-term storage, causing battery blockage and leakage. It will be done.

一方、実施例で示したように、高温でMn01(γ)を
熱処理したり、プロピレンカーボネート中で高温浸漬し
たりすると、前者でijMnolの相葡態が起こること
により、また、後者の場合には、Mn0g上の不安定な
酸素や、過剰な*素、oH基ナトが、プロピレンカーボ
ネートと反応し、除去されることにより、X値は減少し
、活性11H下かって、電池の閉路電圧は当初若干低い
が、高温や長期保存後においては前述のような現象に起
こりにぐいため、安定であると′*見られる。
On the other hand, as shown in the examples, when Mn01(γ) is heat-treated at high temperature or immersed in propylene carbonate at high temperature, phase change of ijMnol occurs in the former case, and in the latter case, , the unstable oxygen on Mn0g, excess * elements, and oH groups react with propylene carbonate and are removed, so the X value decreases, the activity 11H decreases, and the closed circuit voltage of the battery initially decreases slightly. Although the temperature is low, the above-mentioned phenomenon is unlikely to occur at high temperatures or after long-term storage, so it is considered to be stable.

以上、詳述したように、本発明は、MnとOの量比が適
当なる値、すなわちMnOxのX値が、1.85〜1.
95である二酸化1ンガンをリチウム     ′−二
二酸化マンガン電池用いることにより、袷めて長期保存
後に優れ次電池を提供することが可能となったもので、
その工業的価噛は極めて大きい。
As described above in detail, the present invention provides a suitable value for the amount ratio of Mn and O, that is, an X value of MnOx of 1.85 to 1.
By using 1 nganese dioxide, which is 95, in a lithium '-manganese dioxide battery, it has become possible to provide an excellent secondary battery after long-term storage.
Its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明一実施例II池の縦断面図、第2 図
u、M n (!: Oの量比の異なる二酸化マンガン
を用いた電池の保存期間と低潟閉路市圧情の関係を示す
グラフである。 1°″゛正棲缶      2・・・正 極5・・・負
極缶      4・・・負 極5・・・セパレーター
   6・・・ガスケット以上 出願人 株式会社糖二楕玉舎 第1図 第7図
Fig. 1 is a vertical cross-sectional view of a pond according to an embodiment of the present invention, Fig. 2 is a longitudinal cross-sectional view of a pond according to an embodiment of the present invention. It is a graph showing the relationship. 1°''゛Positive can 2...Positive electrode 5...Negative electrode can 4...Negative electrode 5...Separator 6...Gasket Applicant Toji-Elli Co., Ltd. Tamasha Figure 1 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 二酸化マンガンを生活物質とする正極、リチウムからな
る負極、リチウムの金輛塩を電解質としてこれを有磯溶
媒Jl]!解した電解液からなる非水電解液電池におい
て、該二酸化マンガンは、マンガンIK対し酸素が18
5から1,950比からなるものを用いたこと1*敵と
する非水電1解液電池。
A positive electrode made of manganese dioxide as a living material, a negative electrode made of lithium, and a gold salt of lithium used as an electrolyte. In a non-aqueous electrolyte battery consisting of a dissolved electrolyte, the manganese dioxide has an oxygen content of 18% relative to the manganese IK.
Non-aqueous electrolyte batteries with a ratio of 5 to 1,950 were used.
JP57016732A 1982-02-04 1982-02-04 Nonaqueous electrolyte cell Granted JPS58135575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57016732A JPS58135575A (en) 1982-02-04 1982-02-04 Nonaqueous electrolyte cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57016732A JPS58135575A (en) 1982-02-04 1982-02-04 Nonaqueous electrolyte cell

Publications (2)

Publication Number Publication Date
JPS58135575A true JPS58135575A (en) 1983-08-12
JPH0345863B2 JPH0345863B2 (en) 1991-07-12

Family

ID=11924431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57016732A Granted JPS58135575A (en) 1982-02-04 1982-02-04 Nonaqueous electrolyte cell

Country Status (1)

Country Link
JP (1) JPS58135575A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5011752A (en) * 1988-08-31 1991-04-30 Battery Technologies Inc. Rechargeable alkaline manganese dioxide-zinc cell having improved cumulative capacity

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4826890A (en) * 1971-08-12 1973-04-09
JPS512934A (en) * 1974-06-28 1976-01-12 Sanyo Electric Co
JPS515168A (en) * 1974-06-29 1976-01-16 Akira Matsuzaka SASHIKOMIPINTOPINANANOTSUITASHOTSUPINGUBATSUGUNOTSURISAGETE

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4826890A (en) * 1971-08-12 1973-04-09
JPS512934A (en) * 1974-06-28 1976-01-12 Sanyo Electric Co
JPS515168A (en) * 1974-06-29 1976-01-16 Akira Matsuzaka SASHIKOMIPINTOPINANANOTSUITASHOTSUPINGUBATSUGUNOTSURISAGETE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5011752A (en) * 1988-08-31 1991-04-30 Battery Technologies Inc. Rechargeable alkaline manganese dioxide-zinc cell having improved cumulative capacity

Also Published As

Publication number Publication date
JPH0345863B2 (en) 1991-07-12

Similar Documents

Publication Publication Date Title
JP2021510904A (en) Rechargeable metal halide battery
JPS61158667A (en) Nickel electrode for alkaline battery
JP2001102086A (en) Water system of lithium ion cell
WO2017081834A1 (en) Nonaqueous electrolyte battery and member for nonaqueous electrolyte battery
JPS58135575A (en) Nonaqueous electrolyte cell
JP4462022B2 (en) Flat type non-aqueous electrolyte battery
JPH06267542A (en) Nonaqueous electrolyte battery
JPS61135056A (en) Manufacture of organic electrolyte cell
JPH0426075A (en) Organicelectrolyte battery
CN115280574A (en) Dual-electrolyte method for improving energy density of metal-based battery
JPH0462764A (en) Nonaqueous electrolyte cell
JP3891188B2 (en) Non-aqueous electrolyte battery and battery case material
JPS61264682A (en) Organic electrolyte battery
JPS5853159A (en) Air cell
JPH0935716A (en) Lithium battery
JPS62262371A (en) Organic electrolyte cell
JPS6362069B2 (en)
JPH01169872A (en) Organic electrolyte cell
JPS63307662A (en) Organic electrolyte battery
JPH0316744B2 (en)
JP2766018B2 (en) Non-aqueous electrolyte battery
JPH04324258A (en) Lithium battery
JPS5866263A (en) Battery
JPS634313B2 (en)
JPS6348393B2 (en)