JPS58128784A - Semiconductor light-emitting device - Google Patents

Semiconductor light-emitting device

Info

Publication number
JPS58128784A
JPS58128784A JP57011155A JP1115582A JPS58128784A JP S58128784 A JPS58128784 A JP S58128784A JP 57011155 A JP57011155 A JP 57011155A JP 1115582 A JP1115582 A JP 1115582A JP S58128784 A JPS58128784 A JP S58128784A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
semiconductor layer
emitting device
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57011155A
Other languages
Japanese (ja)
Inventor
Osamu Mikami
修 三上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57011155A priority Critical patent/JPS58128784A/en
Publication of JPS58128784A publication Critical patent/JPS58128784A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To operate a LED stably by bringing a semiconductor layer as an active layer to low carrier concentration while forming a semiconductor layer as a buried layer having a refractive index lower than the former semiconductor layer and an energy band gap larger than it. CONSTITUTION:A first semiconductor layer 2 has a first clad layer having first conduction type. The second semiconductor layer 3 as the active layer forming a first hetero-junction in striped shape is formed onto the layer 2. A third semiconductor layer 4 as a second clad layer having second conduction type reverse to the first conduction type shaping a second hetero-junction is formed onto the layer 3. The layer 3 has the low carrier concentration of 10<15>atom/cm<-3> or less while the semiconductor layer 12 as the buried layer having the refractive index lower than the layer 3 and the energy band gap larger than the layer 3 is formed.

Description

【発明の詳細な説明】 本発明は、半導体レーザ、半導体発光ダイオード等の半
導体発光装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to semiconductor light emitting devices such as semiconductor lasers and semiconductor light emitting diodes.

斯種半導体発光装置として、従来、次の構成を有するも
のが提案されている。
As such a semiconductor light emitting device, one having the following configuration has been proposed.

即も、°第1図の示す如く、例えばInPでなるN型の
半導体基板1上に、InPでなるクラッド■としてのN
型の半導体層2と、QainAsP元系でなる活性層と
しての半導体層3と、InPでなる他のクラッド層とし
てのN型の半導体■4と、GajnAspJ元系でなる
電極付用層(ギャップ層)としてのP型の半導体層5と
が、それ等の順に順次積層されている。この場合、半導
体層2が、その半導体層3側の面をしてストライプ状の
パターンを以て延長する(紙面と垂直方向)ように、メ
サ形に形成され、又半導体■3.4及び5による積層体
が、半導体層3をして半導体2の半導体3側の面のスト
ライプ状のパターンと丁度型なるストライプ状のパター
ンを以て延長する様に、逆メリ形に形成されている。
As shown in FIG. 1, for example, on an N-type semiconductor substrate 1 made of InP, a
2, a semiconductor layer 3 as an active layer made of QainAsP element system, an N type semiconductor 4 as another cladding layer made of InP, and an electrode attachment layer (gap layer) made of GajnAspJ element system. ) are sequentially stacked in this order. In this case, the semiconductor layer 2 is formed in a mesa shape so that its surface facing the semiconductor layer 3 extends in a striped pattern (in the direction perpendicular to the plane of the paper), and the semiconductor layer 2 is laminated with semiconductors 3.4 and 5. The body is formed in an inverted meridian shape so that the semiconductor layer 3 extends with a striped pattern that is exactly the same as the striped pattern on the surface of the semiconductor 2 on the semiconductor 3 side.

然して、半導体層2,3.4及び5が埋込み層として半
導体■6にて埋込まれている。この場合半導体■6は、
半導体層2及び3の側面に接する半導体基板1側のIn
PでなるP型の半導体■7と、半導体l!4及び5の側
面の接し且つ半導体基板1側とは反対側の面を半導体層
5の半導体基板1側とは反対側の面と同じ平面上に在ら
しめている半導体基板1側とは反対側の半導体−8とが
積■され又、半導体11に、その半導体層2IIとは反
対側の面上に於て、例えばAu −Ge−Niでなる電
極9が附され、又半導体層6の半導体基板1側とは反対
側の面上に例えばシリコン酸化物10が形成され、更に
半導体層5に、その半導体層4側とは反対側の面上に於
て、電極9と同様の電極が酎されている。
Thus, the semiconductor layers 2, 3, 4, and 5 are buried with the semiconductor layer 6 as a buried layer. In this case, semiconductor ■6 is
In on the semiconductor substrate 1 side in contact with the side surfaces of the semiconductor layers 2 and 3
A P-type semiconductor ■7 consisting of P and a semiconductor l! The side opposite to the semiconductor substrate 1 side where the side surfaces of 4 and 5 are in contact and the surface opposite to the semiconductor substrate 1 side is on the same plane as the surface of the semiconductor layer 5 on the opposite side to the semiconductor substrate 1 side. An electrode 9 made of, for example, Au-Ge-Ni is attached to the semiconductor 11 on the surface opposite to the semiconductor layer 2II, and the semiconductor of the semiconductor layer 6 is For example, silicon oxide 10 is formed on the surface opposite to the substrate 1 side, and an electrode similar to the electrode 9 is formed on the semiconductor layer 5 on the surface opposite to the semiconductor layer 4 side. has been done.

更に少くとも活性層としての半導体層3のストライプ状
パターンの延長方向の両端に、ストライプ状のパターン
の延長方向と直交する、互に平行なファプリペO−の反
射面(図示せず)が形成されている。
Further, at least at both ends of the striped pattern of the semiconductor layer 3 serving as the active layer in the extending direction, reflective surfaces (not shown) of Faprepe O-, which are parallel to each other and perpendicular to the extending direction of the striped pattern, are formed. ing.

以上が、従寧掟案されている半導体発光装置の構成であ
るが、斯る構成の半導体発光装置の場合、電極9及び1
1闇に電極11側を正とするバイアス電源を接続すれば
、電極11側より電極9側に向つ−て半導体II3と半
導体112.4及び5、及び半導体基板1を介して通る
電流が流れ、これに基ずき半導体113にて発光が得ら
れる。この場合半導体層6には、それが半導体層7及び
8閤のバイアス電源に対して逆極性のPN接合を有する
ので、電流は流れない。又斯く半導体層3にて発光が得
られれば、半導体層3.4及び6が半導体層3に比し低
い屈折率を有するので、その発光に基ずく光が、半導体
■3内に閉じ込められて伝ばんし、そしてその半導体層
3の7アブリベローの反射面にて反射し、以下同様のこ
とを繰返す。その結果、レーザ発振が得られ、そしてそ
のレーザ発振に基ずき、レーザ光がファプリベローの反
射面を介して外部に出射する。
The above is the configuration of the semiconductor light emitting device according to the conventional rules.
1. If a bias power supply with the electrode 11 side positive is connected to the dark side, a current flows from the electrode 11 side to the electrode 9 side via the semiconductor II3, the semiconductors 112.4 and 5, and the semiconductor substrate 1. Based on this, light emission is obtained in the semiconductor 113. In this case, no current flows through the semiconductor layer 6 since it has a PN junction of opposite polarity to the bias power supply of the semiconductor layers 7 and 8. Furthermore, if light emission is obtained in the semiconductor layer 3, since the semiconductor layers 3, 4 and 6 have a lower refractive index than the semiconductor layer 3, the light based on the light emission will be confined within the semiconductor layer 3. The light propagates, is reflected at the reflective surface of the 7th abbellum of the semiconductor layer 3, and the same process is repeated. As a result, laser oscillation is obtained, and based on the laser oscillation, laser light is emitted to the outside via the reflective surface of the fiber bellows.

従って第1図に示す半導体発光装置は、半導体レーザと
しての機能を呈するものである。
Therefore, the semiconductor light emitting device shown in FIG. 1 functions as a semiconductor laser.

所で斯る半導体レーザとしての機能を呈する第1図に示
す半導体発光装置は、活性−としての半導体■3がスト
ライプ状パターンを有するので、電流が訳窄して流れ、
従って電1に9型半導体発光装置と称されるものである
。又ストライプ状パターンを有する活性層としての半導
体層3が、半導体層6にて埋込まれてなる態様を有する
ので、埋込み・電1#?型と称されるものである。
However, in the semiconductor light emitting device shown in FIG. 1 which functions as such a semiconductor laser, since the active semiconductor 3 has a striped pattern, current flows in a constricted manner.
Therefore, it is called a type 9 semiconductor light emitting device. Further, since the semiconductor layer 3 as an active layer having a striped pattern is buried in the semiconductor layer 6, the buried/electrode 1#? This is called a type.

この為、第11!lに示す半導体発光装置は、比較的小
なる値の電流でレーザ発振を得ることができ、従って低
い発振閾値を有する等の特徴を有するものである。
For this reason, the 11th! The semiconductor light emitting device shown in FIG. 1 is characterized in that it can obtain laser oscillation with a relatively small current value and therefore has a low oscillation threshold.

黙しながら、第1図に示す従来の半導体発光装置の場合
、履込み■としての半導体■6を、互に逆の導電型を有
する2つの半導体117及び8を以て構成するを要し、
しかもその半導体■7を、それがそれと同じ導電型を有
するクラッド■としての半導体■4の側面に接しないよ
うに厚さを制御して形成するを要し、従って半導体発光
装置を容易に歩留り良く得ることが困−であるという欠
点を有していた。
However, in the case of the conventional semiconductor light emitting device shown in FIG.
Moreover, it is necessary to control the thickness of the semiconductor (7) so that it does not come into contact with the side surface of the semiconductor (4) serving as the cladding (4) having the same conductivity type as that of the semiconductor (7). It has the disadvantage that it is difficult to obtain.

又埋込11Iとしての半導体層6を構成せる半導体■7
及び8が、互に逆の導電型を有して比較的高いキャリア
濃度を有しているを要するので、それ等半導体層7及び
8が半導体層3の形成後液層成長法によって形成される
ことになり、この為、半導体層7の形成時、半導体11
3がメルトバックし、よって半導体lI3が所期の幅を
有しないものとして得られることになったりして、所期
の特性が得られないという、欠点を有していた。
Also, the semiconductor 7 which constitutes the semiconductor layer 6 as the buried 11I
Since semiconductor layers 7 and 8 are required to have opposite conductivity types and a relatively high carrier concentration, these semiconductor layers 7 and 8 are formed by a liquid layer growth method after the formation of semiconductor layer 3. Therefore, when forming the semiconductor layer 7, the semiconductor 11
3 melts back, resulting in a semiconductor lI3 that does not have the expected width, resulting in a disadvantage that the desired characteristics cannot be obtained.

更に半導体層6が半導体層3の側面に接している半導体
層7を有し、そしてその半導体−7が比較的高いキャリ
ア濃度を有するのでその半導体■7を通るリーク電流が
比較的大であると共に、発振しきい値に温度依存性を与
えて安定な動作が得られない等の欠点を有していた。
Further, since the semiconductor layer 6 has a semiconductor layer 7 in contact with the side surface of the semiconductor layer 3, and the semiconductor layer 7 has a relatively high carrier concentration, the leakage current passing through the semiconductor layer 7 is relatively large. However, the oscillation threshold has temperature dependence, and stable operation cannot be obtained.

依って、本発明は上述せる欠点のない断層な半導体発光
ii*tii案ぜんとするもので、以下詳述する所より
明らかとなるであろう。
Therefore, the present invention is a complete plan for semiconductor light emission ii*tiii without the above-mentioned drawbacks, which will become clear from the detailed description below.

’l82WIIu本発明による半導体発光装置の一例を
示し、11111との対応部分には同一符号を酎t、B
H*uこae省略tiも、misgcr上述せる構成に
於て、その層込み磨としての半導体■6が、1d’at
omicila下、品しくは1(f’ato■/C♂以
下の低いキャリア濃度を有すると共に半導体■3に比し
低い屈折率を有し且つ半導体層3に比し大なるエネルギ
バンドギャップを有する1nPでなる半導体■12に置
き換えられ、従ってこの橡な半導体−12にて半導体■
3が埋込まれてなることを除いては第11Iの場合と同
様の構成を有する。
'l82WIIu Shows an example of a semiconductor light emitting device according to the present invention, and the same reference numerals are used for parts corresponding to 11111.
H*ukoae omittedti is also misgcrIn the above-mentioned configuration, the semiconductor ■6 as the layer polishing is 1d'at
omicila, which has a low carrier concentration of 1 (f'ato ■/C♂ or less), a lower refractive index than the semiconductor layer 3, and a larger energy band gap than the semiconductor layer 3. Therefore, with this stupid semiconductor -12, the semiconductor ■
It has the same configuration as the 11th I except that 3 is embedded.

以上が本発明による半導体発光装置の一例構成であるが
斯る構成(よれば、それが上述せる事項を除いて111
Ilの場合と同様のII虞を有し、一方慶込み層として
の半導体112は、それが16’atomZctrx下
の低いキャリア濃度を有するので第1II前通せると同
様に、電極9及び11−にバイアスIll源が接続され
て半導体■3に電流が流れる時、第1図の場合の半導体
■6の場合と同様に、電流は流れないものである。又半
導体層1=2tj活性層としての半導体層3に比し低い
屈折率を有するので、第1図にて上述せると同様に、1
、半導体層3で発光が得られる時、その光を半導体層3
に閉じ込めるものである。
The above is an example of the configuration of the semiconductor light emitting device according to the present invention.
The semiconductor 112 as a dielectric layer has the same potential as in the case of Il, while the semiconductor 112 as a dielectric layer can pass through the first II as it has a low carrier concentration below the 16' atom Zctrx, as well as to the electrodes 9 and 11-. When the bias Ill source is connected and a current flows through the semiconductor 3, no current flows as in the case of the semiconductor 6 shown in FIG. Also, since the semiconductor layer 1=2tj has a lower refractive index than the semiconductor layer 3 as an active layer, 1
, when light emission is obtained in the semiconductor layer 3, the light is transmitted to the semiconductor layer 3.
It is meant to be confined.

従って第2図に示す本発明による半導体発光装置の場合
も第1図に示す半導体発光装置の場合とW4I!に半導
体レーザとしての機能を呈し、そして第1図にて前述せ
る場合と同様の特徴を1するものである。
Therefore, the case of the semiconductor light emitting device according to the present invention shown in FIG. 2 is the same as the case of the semiconductor light emitting device shown in FIG. It functions as a semiconductor laser, and has the same features as the case described above with reference to FIG.

黙しながら第2図に示す本発明による半導体発光装置の
場合、埋込み層としての半導体層12が、1つの半導体
■でなり、又その厚さを半導体層3との関係で制−16
必要がない。
In the case of the semiconductor light emitting device according to the present invention shown in FIG.
There's no need.

又半導体層12が10f5atos/c−以下の低いキ
ャリア濃度を有するので、その半導体層1      
)2を気相成長によって容易に形成し得、そしtこの場
合、半導体層3が損傷を受ける恐れを有しない。
Furthermore, since the semiconductor layer 12 has a low carrier concentration of 10f5atos/c- or less, the semiconductor layer 1
) 2 can be easily formed by vapor phase growth, and in this case there is no risk of damage to the semiconductor layer 3.

尚更に半導体層12が10  atom/c−以下の低
いキャリア濃度を有するので、その半1体■12を通る
■洩電流がほとんどないかあるとしても無視し得る如く
小であり又発振閾値に温度依存性を与えることがない。
Moreover, since the semiconductor layer 12 has a low carrier concentration of 10 atoms/c or less, there is almost no leakage current through the semiconductor layer 12, or even if there is, it is negligible and the temperature is close to the oscillation threshold. No dependencies.

又半導体層12が半導体層3に比し大なるエネルギバン
ドギャップを有するので、半導体−3に伝播する光が半
導体−12によって損失を受けることがない。
Further, since the semiconductor layer 12 has a larger energy band gap than the semiconductor layer 3, the light propagating to the semiconductor 3 will not be lost by the semiconductor 12.

従って半導体発光装置を、安定な動作が効率良く得られ
且つ濶洩電流の無視し得る良好な特性を有するものとし
て得ることができる等の大なる特徴を有するものである
Therefore, it has great features such as being able to obtain a semiconductor light emitting device that can operate stably and efficiently and has good characteristics with negligible leakage current.

尚上述に於ては本発明を半導体レーザに適用した場合に
つき述べたものであるが、要は第1の導電型を有する第
1のクラッド■とじての第1の半導体層と、その第1の
半導体層上にストライプ状に第1のへテロ接合を形成す
べく形成された活性層としての第2の半導体層と、その
I2の半導体−1に第2のへテロ接合を形成すべく形成
された第1の導電型とは逆の第2の導電型を有する第2
のクラッド層としての第3の半導体Iとを具備する種々
の半導体発光装置に、本発明を適用し得ること明らかで
あろう。
Although the above description has been made regarding the case where the present invention is applied to a semiconductor laser, the point is that the first semiconductor layer as the first cladding (1) having the first conductivity type, and the first a second semiconductor layer as an active layer formed to form a first heterojunction in a stripe shape on the semiconductor layer of I2, and a second semiconductor layer formed to form a second heterojunction on the semiconductor-1 of I2; a second conductivity type opposite to the first conductivity type
It will be obvious that the present invention can be applied to various semiconductor light emitting devices comprising a third semiconductor I as a cladding layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半導体発光@置を示す略纏釣断向図であ
る。 第2図は本発明による半導体発光装置の一例を示す路線
的断面図である。 1・・・・・・・・・・・・・・・半導体基板2.4・
・・・・・・・・クラッド層としての半導体■3・・・
・・・・・・・・・・・・活性層としての半導体層5・
・・・・・・・・・・・・・・電極付用層としての半導
体層6.12−・・・・・埋め込み層としての半導体層
9.11・・・・・・電極 10・・・・・・・・・・・・絶縁層 Ss  Cワ %s cQ 手続補正書(方式) %式% 1、事件の表示 昭和57年特許 願第11155号 2、発明の名称 亭導体発光装置 3、 補正をする者 事件との関係  特許出願人 4、代理人
FIG. 1 is a schematic cross-sectional view showing a conventional semiconductor light emitting device. FIG. 2 is a schematic cross-sectional view showing an example of a semiconductor light emitting device according to the present invention. 1... Semiconductor substrate 2.4.
... Semiconductor as cladding layer ■3...
...... Semiconductor layer 5 as an active layer
...... Semiconductor layer 6.12 as an electrode attachment layer - Semiconductor layer 9.11 as a buried layer ... Electrode 10 ...・・・・・・・・・Insulating layer Ss C Wa%s cQ Procedural amendment (method) % formula% 1. Indication of incident 1982 Patent Application No. 11155 2. Name of invention Inner conductor light emitting device 3 , Relationship with the case of the person making the amendment Patent applicant 4, agent

Claims (1)

【特許請求の範囲】[Claims] 第1の導電型を有する第1のクラッド■としての第1の
半導体層と、該第1の半導体層上にストライプ状に第1
のへテロ接合を形成すべく形成された活性層としての第
2の半導体層と、該第2の半導体層上に第2のへテロ接
合を形成すべく形成された第1の導電型とは逆の第2の
導電型を有する第2のクラッド■としての第3の半導体
層とを具備する半導体発光装置に於て、上記第2の半導
体層が1o  atom/c1”以下の低キヤリア濃度
を有すると共に、上記第2の半導体層に比し低い屈折率
を有し且つ上記第2の半導体層に比し大なるエネルギバ
ンドギャップを有する埋込み層としての第4の半導体層
にて埋込まれてなることを特徴とする半導体発光装置の
装置。
a first semiconductor layer as a first cladding (1) having a first conductivity type;
A second semiconductor layer as an active layer formed to form a heterojunction, and a first conductivity type formed to form a second heterojunction on the second semiconductor layer. In a semiconductor light emitting device comprising a third semiconductor layer as a second cladding (1) having an opposite second conductivity type, the second semiconductor layer has a low carrier concentration of 1 o atom/c1'' or less. and embedded with a fourth semiconductor layer as a buried layer having a lower refractive index than the second semiconductor layer and a larger energy band gap than the second semiconductor layer. 1. A semiconductor light emitting device characterized by:
JP57011155A 1982-01-27 1982-01-27 Semiconductor light-emitting device Pending JPS58128784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57011155A JPS58128784A (en) 1982-01-27 1982-01-27 Semiconductor light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57011155A JPS58128784A (en) 1982-01-27 1982-01-27 Semiconductor light-emitting device

Publications (1)

Publication Number Publication Date
JPS58128784A true JPS58128784A (en) 1983-08-01

Family

ID=11770126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57011155A Pending JPS58128784A (en) 1982-01-27 1982-01-27 Semiconductor light-emitting device

Country Status (1)

Country Link
JP (1) JPS58128784A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6080292A (en) * 1983-10-07 1985-05-08 Matsushita Electric Ind Co Ltd Semiconductor laser
JPS6258692A (en) * 1985-09-09 1987-03-14 Furukawa Electric Co Ltd:The Manufacture of semiconductor light emitting device
JPH0232570A (en) * 1988-07-21 1990-02-02 Sharp Corp Compound semiconductor light emitting device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51103783A (en) * 1975-03-08 1976-09-13 Fujitsu Ltd

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51103783A (en) * 1975-03-08 1976-09-13 Fujitsu Ltd

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6080292A (en) * 1983-10-07 1985-05-08 Matsushita Electric Ind Co Ltd Semiconductor laser
JPH0159754B2 (en) * 1983-10-07 1989-12-19 Matsushita Electric Ind Co Ltd
JPS6258692A (en) * 1985-09-09 1987-03-14 Furukawa Electric Co Ltd:The Manufacture of semiconductor light emitting device
JPH0232570A (en) * 1988-07-21 1990-02-02 Sharp Corp Compound semiconductor light emitting device

Similar Documents

Publication Publication Date Title
JPH02177490A (en) Surface emitting type semiconductor laser device
JPH0194689A (en) Optoelectronic semiconductor element
JPS58128784A (en) Semiconductor light-emitting device
JPH01164077A (en) Light-emitting diode and its manufacture
JPS61242091A (en) Semiconductor light-emitting element
JPH05226774A (en) Semiconductor laser element and its production
JPS6142189A (en) Semiconductor laser
JPS6342874B2 (en)
JPS62130583A (en) Semiconductor laser and manufacture thereof
JPS63278288A (en) Semiconductor laser device
JPS5875879A (en) Photointegrated element
JPS5848490A (en) Semiconductor laser element built in light detector for monitoring
JPS6262583A (en) Semiconductor laser element
JPS6261386A (en) Semiconductor laser element
JPH0438880A (en) Semiconductor light emitting element
JPS61220388A (en) Optical semiconductor device
JPS622718B2 (en)
JPS61228693A (en) Semiconductor light emitting device
JPS61182293A (en) Manufacture of semiconductor laser
JPS5864086A (en) Buried hetero semiconductor laser
JPH02291188A (en) Semiconductor laser device
JPS55128894A (en) Semiconductor light emitting device and method of fabricating the same
JPS60126885A (en) Semicondutor light-emitting device
JPH03263890A (en) Semiconductor laser device and manufacture thereof
JPS6260285A (en) Semiconductor laser element