JPH02291188A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPH02291188A
JPH02291188A JP10917389A JP10917389A JPH02291188A JP H02291188 A JPH02291188 A JP H02291188A JP 10917389 A JP10917389 A JP 10917389A JP 10917389 A JP10917389 A JP 10917389A JP H02291188 A JPH02291188 A JP H02291188A
Authority
JP
Japan
Prior art keywords
layer
film
active layer
semiconductor laser
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10917389A
Other languages
Japanese (ja)
Inventor
Hiroyuki Nishimoto
浩之 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP10917389A priority Critical patent/JPH02291188A/en
Publication of JPH02291188A publication Critical patent/JPH02291188A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the high-frequency characteristics of a semiconductor laser by a method wherein the part other than the vicinity of the luminous region of the laser is covered with a high-resistance semiconductor layer and at the same time, an active layer is formed into a buried structure. CONSTITUTION:Almost half of an N-type InP semi-insulative substrate 1 with an InP high-resistance layer 9 laminated on it is etched using a silicon nitride film 11 as a mask. Then, an n-type InP buffer layer 2, an InGaAsP active layer 3, a p-type InP clad layer 4 and a p-type InGaAsP contact layer 5 are formed in order on the stepped base of the surface of an inverse mesa using the film 11 as a mask by an MOCVD device. Then, after the film 11 is removed using a buffered hydrofluoric acid, a silicon nitride film 12 is anew formed and a switching is performed until the layer 2 is exposed using this film 12 as a mask. Then, after the layer 3 is selectively etched using a sulfuric acid etchant, an n-type InP mass transport buried layer 20 is formed. After the film 12 is removed using a buffered hydrofluoric acid, a p side electrode 7 is deposited. Moreover, an n side electrode 8 is formed on the side of the substrate 1. Thereby, a signal current is almost all fed to the layer 3 up to its high-frequency band and a semiconductor laser having superior high-frequency characteristics is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体レーザ装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a semiconductor laser device.

〔従来の技術〕[Conventional technology]

111−V族化合物を用いた発光ダイオード,フォトダ
イオード等の光半導体素子が光ファイバ通信,光情報処
理等のキーデバイスとして用いられている。特に,半導
体レーザは長距離・大容量光ファイバ通信システムの開
発,実用化全実現する上で最も重要な素子であシ,近年
高速化の検討が進められている。
Optical semiconductor devices such as light emitting diodes and photodiodes using 111-V group compounds are used as key devices in optical fiber communications, optical information processing, and the like. In particular, semiconductor lasers are the most important element in the development and practical implementation of long-distance, high-capacity optical fiber communication systems, and efforts have been made in recent years to improve their speed.

半導体レーザの高速化を図るには,発光領域である活性
層領域以外に存在する余分な容量(寄生容量)を小さく
することが高周波信号の漏れの低減に重要である。この
ことは,「昭58年春季電子通信学会総合全国大会講演
論文集」の論文番号918において,小林等によって指
摘されている。つまシ,この寄生容量全低減さ?るには
,活性層の直上の半導体表面層以外の領域に比較的誘電
率の大きなSiO■等の絶縁膜を形成すれば良《,この
ように絶縁膜を形成することによって半導体レーザは2
 G b / s程度の高速での変調が可能となる。
In order to increase the speed of semiconductor lasers, it is important to reduce the extra capacitance (parasitic capacitance) that exists outside the active layer region, which is the light emitting region, in order to reduce leakage of high-frequency signals. This is pointed out by Kobayashi et al. in paper number 918 of the ``Collection of Lectures at the 1980 Spring National Conference of the Institute of Electronics and Communication Engineers.'' Tsumashi, is this parasitic capacitance completely reduced? In order to achieve
Modulation at high speeds on the order of Gb/s becomes possible.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで,光通信用の光源として使用されている高性能
な埋め込み型半導体レーザの場合,電流狭窄機構として
p−n逆バイアス接合を用いているため,p−n接合容
量が大きく高周波の信号電流はこのp−n接合と半導体
層の抵抗を介して活性層以外の領域に漏れてしまう。こ
のため半導体層表面にSi02等の絶縁膜を形成するだ
けでは超高速半導体レーザを得ることができない。また
,Si02自体も容量を持っており,例えば通常の半導
体レーザ素子の寸法程度の面積(300X250ノ1?
?+2)に,厚さ6000人程度のSiO。膜を形成し
た場合,Si02白身の持つ容量は10pF程度とな9
,5GHz以上の高周波変調に対しては小さな容量とは
言えない。
By the way, in the case of high-performance embedded semiconductor lasers used as light sources for optical communications, a p-n reverse bias junction is used as a current confinement mechanism, so the p-n junction capacitance is large and high-frequency signal current is It leaks to regions other than the active layer via this pn junction and the resistance of the semiconductor layer. Therefore, it is not possible to obtain an ultrahigh-speed semiconductor laser simply by forming an insulating film such as Si02 on the surface of the semiconductor layer. In addition, Si02 itself has a capacitance, and for example, the area is about the size of a normal semiconductor laser element (300 x 250 x 1?
? +2), SiO with a thickness of about 6000. When a film is formed, the capacitance of Si02 white is about 10 pF9.
, it cannot be said that the capacity is small for high frequency modulation of 5 GHz or higher.

?らに,S10■と半導体との熱膨脹率は一桁程度違う
のでSin,,形成後に半導体内部に歪が残り,半導体
レーザの信頼性に悪影響を与えてしまう。
? Furthermore, since the thermal expansion coefficients of S10 and the semiconductor differ by about one order of magnitude, strain remains inside the semiconductor after the S10 is formed, which adversely affects the reliability of the semiconductor laser.

本発明の目的は高周波電流を効果的に活性層に集中し,
超高速変調可能でかつ高信頼な半導体レーザ装置を提供
することにある。
The purpose of the present invention is to effectively concentrate high frequency current in the active layer,
An object of the present invention is to provide a highly reliable semiconductor laser device that is capable of ultra-high-speed modulation.

〔問題点全解決するための手段〕[Means to solve all problems]

本発明の半導体レーザ装置は高抵抗半導体層が積層され
た第1導電型半導体基板に前記第1導電型半導基板の一
部が露出するように段差を設け,活性層が段差を規定す
る高抵抗半導体層と接するように第1導電型半導体層,
活性層,第2導電型半導体層,及びコンタク1・層を含
む半導体層を積層して,前記コンタクト層,第2導電型
半導体層,活性層がストライプ状にエッチングされて,
該活性層の端部に前記活性層よりも屈折率の小さな第1
もしくは第2の導電型の半導体層を埋め込むことを特徴
としている。
In the semiconductor laser device of the present invention, a step is provided on a first conductivity type semiconductor substrate on which a high resistance semiconductor layer is laminated so that a part of the first conductivity type semiconductor substrate is exposed, and the active layer is provided with a step that defines the step. a first conductivity type semiconductor layer in contact with the resistive semiconductor layer;
Semiconductor layers including an active layer, a second conductivity type semiconductor layer, and a contact 1 layer are stacked, and the contact layer, the second conductivity type semiconductor layer, and the active layer are etched in a stripe shape,
A first layer having a refractive index smaller than that of the active layer is provided at the end of the active layer.
Alternatively, it is characterized by embedding a semiconductor layer of the second conductivity type.

以下余白 〔作 用〕 本発明は上記の工うに構成することにより,発光領域で
ある活性層の周囲は高抵抗半導体層と僅かな体積のIn
P層(第1の導電型半導体層)であるため,いわゆる寄
生容量の存在が極めて少ない。従って,半導体内部を流
れる信号電流は高周波域まで殆ど全て活性層に供給され
,高周波特性の優れた半導体レーザ装置が得られる。
The following margins [Function] By configuring the present invention as described above, the active layer, which is the light emitting region, is surrounded by a high resistance semiconductor layer and a small volume of In.
Since it is a P layer (first conductivity type semiconductor layer), there is extremely little so-called parasitic capacitance. Therefore, almost all of the signal current flowing inside the semiconductor up to the high frequency range is supplied to the active layer, resulting in a semiconductor laser device with excellent high frequency characteristics.

〔実施例〕〔Example〕

次に,本発明について実施例によって説明する。 Next, the present invention will be explained using examples.

まず,第1図を参照して,n−InP基板1にInP高
抵抗層9が積層され,その一部がn工nP基板1に達し
て除去されて逆メサ形状の(逆メサ面を有する)段差が
形成される。この段差の右側にある平坦面(第2の面,
段差の底面という)にはn一工nPバッファ層2, I
nGaAsP活性層3,  p一工nPクラッド層4,
及びp一工n[}aAsPコンタクト層5が順次形成さ
れている。ここで工n(}aAsP活性層3,p−工n
Pクラッド層4,p−1nGaAePコンタクト層5は
その右側面が逆メサ面状となるようにエッチングされて
いる。これは電極形成の際に,段差の底面と段差の左側
にある平坦面(第1の面,段差の上面という)(P側電
極)を電気的に分離する必要があるためで,この逆ノザ
面の影を利用すれば後述するように蒸着工程のみで分離
形成できる。この構造では,■nGaAsP活性層乙の
周囲は高抵抗半導体層もし《は僅かな体積のInP層で
あるのでp側電極7から注入された信号電流は殆ど全て
InGaAsP活性層乙に流れるため,高周波応答特性
に優れる構造となる。
First, referring to FIG. 1, an InP high resistance layer 9 is laminated on an n-InP substrate 1, and a part of it reaches the n-InP substrate 1 and is removed to form an inverted mesa shape (having an inverted mesa surface). ) A step is formed. The flat surface on the right side of this step (second surface,
nP buffer layer 2, I
nGaAsP active layer 3, p-nP cladding layer 4,
and p-n[}aAsP contact layers 5 are sequentially formed. Here, n(}aAsP active layer 3, p- n
The P cladding layer 4 and the p-1nGaAeP contact layer 5 are etched so that their right side surfaces have an inverted mesa shape. This is because when forming the electrode, it is necessary to electrically separate the bottom surface of the step and the flat surface on the left side of the step (referred to as the first surface, the top surface of the step) (P-side electrode). If the shadow of the surface is used, separation can be formed only by a vapor deposition process, as described later. In this structure, the nGaAsP active layer B is surrounded by a high-resistance semiconductor layer, which is an InP layer with a small volume, so that almost all the signal current injected from the p-side electrode 7 flows to the InGaAsP active layer B, so that high frequency The structure has excellent response characteristics.

第2図(a)〜(e)に本実施例の製作工程を示す。FIGS. 2(a) to 2(e) show the manufacturing process of this embodiment.

まず第2図(a)に示すように,窒化シリコン膜11を
マスクとしてInP高抵抗層9が約5μm積層されたn
−工nP基板1のほぼ半分全約6μmの深さまでエッチ
ングする。この時エッチングは<ioo>方向であり,
エッチング液としてプロムメチル心液(ブロム0,2c
cとメチルアルコール100ccの混合浴液)を用いる
First, as shown in FIG. 2(a), an InP high resistance layer 9 of approximately 5 μm thickness is laminated using a silicon nitride film 11 as a mask.
-Etch almost half of the nP substrate 1 to a depth of about 6 μm. At this time, the etching is in the <ioo> direction,
Prom methyl heart fluid (brom 0,2c) was used as an etching solution.
A mixed bath solution of c and 100 cc of methyl alcohol is used.

この結果,第2図(a)に示すように逆メサの段差面(
エッチング面)が形成できる。
As a result, the stepped surface of the inverted mesa (
(etched surface) can be formed.

次に第2図(b)に示すように,窒化シリコン膜11を
マスクとして,逆メサ面の段差の底面にn−InPバッ
ファ層2 k 2 μmr 工nGaAsP活性層3’
k0.1μ縞,p一工nPクラノド層4ヲ2ttm,p
−InGaAsPコンタクト層5全1μm+MO−OV
D装置を用いて順次形成する。ここでは,マスクとして
窒化シリコン膜を用いているのでマスク上にはポリ結晶
が成長されに《<,更に逆メサ面段差が形成されている
ので各層の成長面は比較的平坦に成長できる。
Next, as shown in FIG. 2(b), using the silicon nitride film 11 as a mask, an n-InP buffer layer 2 k 2 μmr and nGaAsP active layer 3' is placed on the bottom surface of the step on the reverse mesa surface.
k0.1μ stripe, p 1 piece nP cranoid layer 4 wo 2ttm, p
-InGaAsP contact layer 5 total 1 μm + MO-OV
Sequential formation using D apparatus. Here, since a silicon nitride film is used as a mask, polycrystals are not grown on the mask.Furthermore, since steps are formed on the reverse mesa surface, the growth surface of each layer can be grown relatively flat.

第2図(C)に示すように,バッンアードフッ酸を用い
て窒化シリコン膜11を除去した後に,新たに窒化シリ
コン膜12を形成しこれをマスクとしてMO−OVD装
置で形成しfcn−工nPバッファ層2,■nGaAs
P活性層3,p−InPクラッド層4,p一工nGaA
sPコンタクト層5ケブロムメチル溶液を用いて,少な
くともnInPバッン1層2が露出するまでエッチング
を行う。ここでマスクである窒化シリコン膜は,エッチ
ング後に工nGaAsP活性層6の幅が約1.5μm程
度になるように形成される。
As shown in FIG. 2(C), after removing the silicon nitride film 11 using Vanguard hydrofluoric acid, a new silicon nitride film 12 is formed, and this is used as a mask to form the fcn-nP buffer. Layer 2, nGaAs
P active layer 3, p-InP cladding layer 4, p-InP nGaA
The sP contact layer 5 is etched using a kebrome methyl solution until at least the nInP layer 1 is exposed. The silicon nitride film serving as a mask is formed so that the width of the nGaAsP active layer 6 is approximately 1.5 μm after etching.

第2図(A)に示すように,工nGaAsPの選択エッ
チング液である硫酸系エッチャント(水1,過酸化水素
1,硫酸乙の割合の混合液)を用いてInGaAsP活
性層6を選択的にエッチングする。この時エッチング後
の工nGaAeP活性層6の幅は約1μmであった。次
に通常の40巻,7号( 1 982年)の568〜5
70頁参照)によpn−InP層20’k形成する。
As shown in FIG. 2(A), the InGaAsP active layer 6 is selectively etched using a sulfuric acid-based etchant (mixture of 1 part water, 1 part hydrogen peroxide, and 2 parts sulfuric acid), which is a selective etching solution for InGaAsP. etching. At this time, the width of the etched nGaAeP active layer 6 was about 1 μm. Next, regular volume 40, issue 7 (1982), 568-5
(See page 70) to form a pn-InP layer 20'k.

最後に第2図(e)に示すように,バッファードフッ酸
を用いて窒化シリコン膜12を除去したあと,p側電極
Zを蒸着する。ここでは蒸着金属としてCrとAu f
抵抗加熱真空蒸着法により順次蒸着した。真空蒸着法で
は高真空中で蒸着を行うために,蒸着する金属は蒸着源
からほぼ直線的に進む。従って蒸着源を第2図(e)の
左斜め上になるようにして蒸着を行えは,段差の上面(
P側電極)と段差の底面に蒸着される部分は分離できる
。更に380℃の水素雰囲気中で5分間熱処理全行った
後n−InP基板1側の鏡面研摩全行い,厚さ約150
μmにした後n側電極8としてTi,Au’in−1n
P基板側に順次形成し,熱処理を行いプロセスを終了す
る。
Finally, as shown in FIG. 2(e), after removing the silicon nitride film 12 using buffered hydrofluoric acid, the p-side electrode Z is deposited. Here, Cr and Au f are used as vapor deposited metals.
The layers were sequentially deposited using a resistance heating vacuum evaporation method. In the vacuum evaporation method, the metal to be evaporated advances almost linearly from the evaporation source because the evaporation is performed in a high vacuum. Therefore, the top surface of the step (
The P-side electrode) and the part deposited on the bottom of the step can be separated. After further heat treatment for 5 minutes in a hydrogen atmosphere at 380°C, the n-InP substrate 1 side was mirror polished to a thickness of approximately 150 mm.
After making it μm, the n-side electrode 8 is made of Ti, Au'in-1n.
They are sequentially formed on the P substrate side and heat treated to complete the process.

本実施例の半導体レーザは,InGaAsP活性層6の
両脇は高抵抗層或いは僅かな体積のInP層で覆われて
いる。従ってp−n接合等による余分な接合容量が殆ど
存在しないために,電極金属から供給された電気信号は
,直流から高周波領域に渡ってその殆どがInGaAs
P活性層6に供給される。このため高周波応答特性に優
れる半導体レーザ装置が供給される。また,この構造に
おいてはIHGaASF活性層乙の周囲が屈折率のわず
かに低いInP層で覆われているため半導体レーザの発
振横モード全基本モ一ドにするモード制御構造が容易に
実現できる。
In the semiconductor laser of this embodiment, both sides of the InGaAsP active layer 6 are covered with high resistance layers or InP layers with a small volume. Therefore, since there is almost no extra junction capacitance due to p-n junctions, etc., the electric signal supplied from the electrode metal is mostly made of InGaAs from direct current to high frequency range.
P is supplied to the active layer 6. Therefore, a semiconductor laser device with excellent high frequency response characteristics is provided. Further, in this structure, since the IHGaASF active layer B is surrounded by an InP layer having a slightly low refractive index, a mode control structure can be easily realized in which the oscillation transverse mode of the semiconductor laser is set to all fundamental modes.

更にマストランスポート領域は僅かであるので,高周波
応答特性の劣化も非常に僅かで済む。そして,工nGa
AsP活性層6が空気にさらされていないので信頼性が
向上する。
Furthermore, since the mass transport region is small, the deterioration of high frequency response characteristics is also very small. And, engineering nGa
Reliability is improved because the AsP active layer 6 is not exposed to air.

この半導体レーザウェ・・一を,共振器長が600μm
となるようにへき開し,ストリップライン上に直接融着
を行い,半導体レーザを組立てて,小信号周波数特性全
測定した。その結果,発振閾値の2倍のバイアス電流値
において3dB帯域として1QGHz以上の値が得られ
た。この3dB帯域は短共振器化による光子密度の増加
,フォトンライフタイムの減少,冷却等を施すことによ
9より高い値となp,この半導体レーザ装置の場合,基
本横モードで発振しかつ3dB帯域として13 GHz
となった。
This semiconductor laser wafer has a cavity length of 600 μm.
The semiconductor laser was cleaved so that the strip line was cleaved and fused directly onto the strip line, a semiconductor laser was assembled, and the small signal frequency characteristics were completely measured. As a result, a value of 1QGHz or more was obtained as a 3dB band at a bias current value twice the oscillation threshold. This 3 dB band can be increased to a value higher than 9p by increasing the photon density by shortening the cavity, decreasing the photon lifetime, cooling, etc. In the case of this semiconductor laser device, it oscillates in the fundamental transverse mode and the 3 dB band 13 GHz as band
It became.

以上本発明を図明を用いて説明したが,ここではInG
 a A s P系半導体レーザを用いたが,その他の
材料,例えば[}aAIAs系等の半導体レーザにも適
用可能である。
The present invention has been explained above using diagrams, but here, InG
Although an aA s P-based semiconductor laser is used, it is also applicable to semiconductor lasers made of other materials, such as [}aAIAs-based semiconductor lasers.

?発明の効果〕 以上説明したように本発明では,発光領域近傍以外の部
分を高抵抗半導体層等で覆うことによシ,半導体レーザ
内部の寄生容量を極力除去することが可能になる。更に
SiO■等の誘電体膜を使用することなく活性層はいわ
ゆる埋め込み構造のため,信頼性,静特性についても大
幅に向上する。従って,  1[]GHZ以上の変調帯
域を有し,かつ信頼性にも優れる超高速半導体レザ装置
全容易に得ることができる。
? [Effects of the Invention] As explained above, in the present invention, by covering the portion other than the vicinity of the light emitting region with a high-resistance semiconductor layer, etc., it is possible to eliminate the parasitic capacitance inside the semiconductor laser as much as possible. Furthermore, since the active layer has a so-called buried structure without using a dielectric film such as SiO2, reliability and static characteristics are greatly improved. Therefore, an ultrahigh-speed semiconductor laser device having a modulation band of 1 [] GHz or more and excellent reliability can be easily obtained.

【図面の簡単な説明】[Brief explanation of drawings]

例の製作工程全説明するための断面図である。 図において1はn−InP基板,9はInP高抵抗層,
2はn−■nPバッフ1層,3はI nC}aAeP活
性層,4はp−■nPクラッド層,  5idp−工H
GaAsPコンタクト層,20け’J−np−qストラ
ンスポート埋め込み層である。
FIG. 3 is a cross-sectional view for explaining the entire manufacturing process of the example. In the figure, 1 is an n-InP substrate, 9 is an InP high resistance layer,
2 is an n-■nP buffer layer, 3 is an I nC}aAeP active layer, 4 is a p-■nP cladding layer, 5 idp-H
GaAsP contact layer, 20'J-np-q transport buried layer.

Claims (1)

【特許請求の範囲】[Claims] 1、第1導電型半導体基板と、該第1導電型半導体基板
上に前記第1導電型半導体基板の一部を露出させて形成
された高抵抗半導体層と、前記第1導電型半導体基板と
前記高抵抗半導体層とによって規定された段差部と、前
記露出した第1導電型半導体基板上に積層され一端が前
記段差部に接触した第1導電型半導体層と、該第1導電
型半導体層上の一部に順次積層され、一端が前記段差部
に接触した活性層、第2導電型半導体層及びコンタクト
層と、前記活性層の他端に埋め込まれ、該活性層よりも
屈折率の小さい導電型半導体層とを有し、前記活性層の
前記一端は前記段差部を規定する前記高抵抗半導体層に
接触していることを特徴とする半導体レーザ装置。
1. A first conductive type semiconductor substrate, a high resistance semiconductor layer formed on the first conductive type semiconductor substrate by exposing a part of the first conductive type semiconductor substrate, and the first conductive type semiconductor substrate. a step portion defined by the high-resistance semiconductor layer; a first conductivity type semiconductor layer laminated on the exposed first conductivity type semiconductor substrate and having one end in contact with the step portion; and the first conductivity type semiconductor layer. An active layer, a second conductivity type semiconductor layer, and a contact layer, which are sequentially laminated on a part of the top and have one end in contact with the stepped portion, and are embedded in the other end of the active layer and have a refractive index smaller than that of the active layer. a conductive type semiconductor layer, wherein the one end of the active layer is in contact with the high-resistance semiconductor layer defining the step portion.
JP10917389A 1989-05-01 1989-05-01 Semiconductor laser device Pending JPH02291188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10917389A JPH02291188A (en) 1989-05-01 1989-05-01 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10917389A JPH02291188A (en) 1989-05-01 1989-05-01 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPH02291188A true JPH02291188A (en) 1990-11-30

Family

ID=14503507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10917389A Pending JPH02291188A (en) 1989-05-01 1989-05-01 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPH02291188A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288500A (en) * 2007-05-21 2008-11-27 Mitsubishi Electric Corp Semiconductor optical device, and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288500A (en) * 2007-05-21 2008-11-27 Mitsubishi Electric Corp Semiconductor optical device, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US6539039B2 (en) Optical semiconductor device and method of manufacturing the same
JPH09186400A (en) Fabrication of surface emission semiconductor laser
JPH03256386A (en) Semiconductor laser, its manufacture and optical communication system
JPS61284987A (en) Semiconductor laser element
JPH02291188A (en) Semiconductor laser device
JP2002057409A (en) Semiconductor laser and its fabricating method
JPH0220085A (en) Semiconductor laser device
JPS6331187A (en) Semiconductor laser
JPH01220493A (en) Semiconductor laser device and manufacture thereof
JPS6255990A (en) Semiconductor laser
JPS63211788A (en) Semiconductor laser and manufacture thereof
JPS6356983A (en) Semiconductor laser device
JPH0437598B2 (en)
JPS61242091A (en) Semiconductor light-emitting element
JPH0529703A (en) Semiconductor laser device
JPH07297497A (en) Semiconductor laser and its manufacturing method
JPH02292884A (en) Semiconductor laser device
JPH05226774A (en) Semiconductor laser element and its production
JPH02130984A (en) Semiconductor laser device
KR0135038B1 (en) Structure and fabrication method of integrated semiconductor optical amplifier
JPS63278288A (en) Semiconductor laser device
JPH04144297A (en) Semiconductor laser device
JPH02253683A (en) Algaas laser
JPH0433387A (en) Semiconductor laser and manufacture thereof
JPS6262583A (en) Semiconductor laser element