JPS58127347A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS58127347A
JPS58127347A JP1030082A JP1030082A JPS58127347A JP S58127347 A JPS58127347 A JP S58127347A JP 1030082 A JP1030082 A JP 1030082A JP 1030082 A JP1030082 A JP 1030082A JP S58127347 A JPS58127347 A JP S58127347A
Authority
JP
Japan
Prior art keywords
output
transistor
transistors
buffer
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1030082A
Other languages
Japanese (ja)
Inventor
Shigehisa Wakamatsu
若松 茂久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP1030082A priority Critical patent/JPS58127347A/en
Publication of JPS58127347A publication Critical patent/JPS58127347A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits
    • H01L27/11898Input and output buffer/driver structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain an output structure conforming to the external connecting conditions and to easily realize design of LSI by the master slice system by sufficiently preparing for transistors with the basic dimensions to an output buffer circuit which is the ground layer of master slice. CONSTITUTION:The ground layer of the master slice has an output buffer structure 21 comprising five basic transistors 22, and this basic transistor 22 has the characteristic similar to that of an output off-buffer transistor and output inverter transistor. In the output buffer structure 21, the transistor 23 is connected with a metal lead as the output off-buffer transistor, while the transistor 24 as the output inverter transistor, while the transistors 25, 26, 27 are not connected. At this time, the outut characteristic similar to the conventional one can be realized easily because the transistors 23, 24 have the characteristic similar to that of transistor 22.

Description

【発明の詳細な説明】 本発明はマスター・スライス方式で設計される半導体装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device designed using a master slice method.

近年、集積回路の規模が増大するに従って、論理回路を
集積化する一手法としてマスター・スライス方式が一般
的になってきた。いわゆるゲート・アレーもマスター・
スライス方式による設計手法の一種で、その設計手法と
は、論理回路設計で要求される機能の集積化を実現する
際に、あらかじめ基本的な論理回路機能たとえばNAN
D機能、NOR機能、7リツプ・フロップ機能、等が設
計されている集合体(これをファンクシ嘗ン・ブロック
=p、Bと呼ぶ)を準備しておき、これらのF、Bを組
み合せ、さらに集積回路として実現する場合はトランジ
スタ、抵抗等の如く基本素子が設計源の基板(これをマ
スター・スライスの下地と呼ぶ)上に上述のF、B間の
結線奄金属配線のみを設計する設計方式である。
In recent years, as the scale of integrated circuits has increased, the master slice method has become common as a method for integrating logic circuits. The so-called gate array is also a master
This is a type of design method using the slicing method. This design method is used to integrate basic logic circuit functions such as NAN in advance when realizing the integration of functions required in logic circuit design.
Prepare a set of designed functions such as D function, NOR function, 7 lip-flop function, etc. (this is called function block = p, B), combine these F and B, and further When realizing an integrated circuit, a design method is used in which basic elements such as transistors, resistors, etc. are designed on a substrate (this is called the master slice base), and only the metal wiring between F and B mentioned above is designed. It is.

マスター・スライス方式による大規模集積回路(以下L
SIと称する)の設計は、従来の設計方式に比較すると
、上述のF、Bは論理回路機能としては、すでに設計済
で他のLSI品種に使用されていたシ、TEG等によ、
9LSIとしては試作済であるため、充分にその性能予
測が可能で論理回路設計の精度を向上できる。
Large-scale integrated circuit (hereinafter referred to as L) using the master slice method
Compared to the conventional design method, the design of F and B (referred to as SI) is based on logic circuit functions such as SI, TEG, etc. that have already been designed and used in other LSI products.
Since the 9LSI has already been prototyped, its performance can be sufficiently predicted and the accuracy of logic circuit design can be improved.

さらにLSI化の際、マスター・スライス方式による設
計は通常の方法としては金属配線のみの設計であるため
、いわゆるレイアウト設計の際のミスは少なくなシ、か
つ設計工数の削減になシ設計期間の短縮を計れる。金属
配線のみの設計による長所は規格化が可能でプリント板
の配線設計手法がLSI設計にも応用でき設計者の熟練
度を必要としなくなる。またさらにLSI設計に関係す
るCAD手法が容易に適応できレイアウト設計の精度を
向上できる。
Furthermore, when designing an LSI, the master slice method usually involves designing only metal wiring, so there are fewer mistakes in layout design, and it also reduces design man-hours and reduces the design period. You can measure the shortening. The advantage of designing only metal wiring is that it can be standardized, and the wiring design method for printed circuit boards can be applied to LSI design, eliminating the need for designer skill. Furthermore, CAD techniques related to LSI design can be easily applied, and the accuracy of layout design can be improved.

一方LSIの製造面からは前述のマスター・スライスの
下地に含まれるトランジスタの如き基本素子の製造は、
LSIの品種に特有なものでなく、いわゆる拡散工程の
みで可能なので、従来のLSIの製法と同一にでき、さ
らに拡散工程まで完了したマスター・スライスの下地を
ストックしておけば、ある種の機能を持ったLSIの製
造は前述のストックされたマスター・スライスの下地に
さらに金属配線工種を施すだけでよいので、専用設計に
よるLSIの製造期間に比較し、その製造工期を大幅に
短縮できる。
On the other hand, from the perspective of LSI manufacturing, the manufacturing of basic elements such as transistors included in the base of the master slice described above is as follows:
It is not unique to the type of LSI and can be done only through the so-called diffusion process, so it can be manufactured using the same method as conventional LSIs.Furthermore, if you stock the base of master slices that have completed the diffusion process, certain functions can be achieved. In order to manufacture an LSI with this, it is only necessary to further perform metal wiring on the base of the above-mentioned stocked master slice, so the manufacturing time can be significantly shortened compared to the manufacturing period of an LSI with a dedicated design.

以上の如くマスター−スライス方式によシ設計されたL
SIは多くの優位性をもっている。
As described above, L designed by the master-slice method
SI has many advantages.

マスター・スライスの下地の構成は、基本素子を数個含
む構成(これを基本セルlと呼ぶ)を第1図の如くアレ
ー状に配列したり又は第2図の如くブロック状配列にし
たセル列5を含み、さらに外部端子3へ接続される入出
力パラフッ部2を含んでいるのが一般的である。電界効
果型トランジスタを基本素子として構成されているマス
ター・スライスの下地の場合、出力パラフッ部はTTL
レベル−コンパチブルで第3図の出力インバータ・トラ
ンジスタ12および出力オフ・バッファ・トランジスタ
11のプッシュプル回路構成で設計されることが多い。
The structure of the base of the master slice is a cell row in which several basic elements (called basic cells) are arranged in an array as shown in Fig. 1 or in a block arrangement as shown in Fig. 2. 5 and further includes an input/output terminal 2 connected to an external terminal 3. In the case of the base of the master slice, which is composed of field-effect transistors as the basic elements, the output parallel part is TTL.
It is level-compatible and is often designed with a push-pull circuit configuration of output inverter transistor 12 and output off buffer transistor 11 as shown in FIG.

さらに出力インバータ・トランジスタ12をエンハンス
メント屋電界効果トランジスタとし出力オフ・バッファ
・トランジスタ11もエンハンスメント屋電界効果トラ
ンジスタを使用したNチャンネルMO8回路構成をとれ
る。
Further, the output inverter transistor 12 can be an enhancement field effect transistor, and the output off buffer transistor 11 can also be configured as an N-channel MO8 circuit using an enhancement field effect transistor.

マスター・スライスの下地設計が完了すれば出力インバ
ータートランジスタ12あるいは出力オフ・バッファ・
トランジスタ11の幾何学的寸法は一義的に決まるため
出力バッファ回路の負荷電流特性および出力電圧レベル
は一義的に決まってしまう。
Once the basic design of the master slice is completed, the output inverter transistor 12 or the output off buffer
Since the geometric dimensions of the transistor 11 are uniquely determined, the load current characteristics and output voltage level of the output buffer circuit are uniquely determined.

マスター・スライス方式によるL8Iの個別品種の設計
の際は、それぞれのLSI品種の外部接続端子の入力部
および出力部は一定には決まらないのが通常である。さ
らに出力部の電気的特性はLSIの品種によシ、負荷特
性が異なるため一様にはならない。たとえば標準TTL
とロー・パワー拳シ冒ットキTTLとも駆動する場合そ
の負荷電流特性は異なる。従来のマスタースライスの下
地は前述の如く出力バッファ回路の特性は一義的に決ま
ってしまうため各々のLSI品種の負荷特性に適さない
欠点があった。
When designing individual types of L8I using the master slice method, the input and output parts of the external connection terminals of each LSI type are usually not fixed. Furthermore, the electrical characteristics of the output section are not uniform because the load characteristics vary depending on the type of LSI. For example standard TTL
The load current characteristics are different when driving both the low-power punch kit TTL and the low-power punch kit TTL. As mentioned above, the characteristics of the output buffer circuit in the base of the conventional master slice are uniquely determined, which has the disadvantage that it is not suitable for the load characteristics of each type of LSI.

本発明の目的は以上の問題を解決したマスタ−スライス
方式による半導体装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a master-slice type semiconductor device that solves the above problems.

本発明は1MID)?ンジスタで構成された出力バッフ
ァ回路並びにマスター・スライス方式にて製造される内
部セル1アレーを備える半導体装置において、前記出力
バッファ回路をあらかじめ形成された複数個のMI8)
?ンジスタを選択配線して構成し所望の負荷特性を持た
しめたことを特徴とするものである。
The present invention is 1MID)? In a semiconductor device including an output buffer circuit formed of a transistor and an internal cell array manufactured by a master slice method, the output buffer circuit is formed in advance in a plurality of MI8).
? The device is characterized in that it is constructed by selectively wiring transistors to provide desired load characteristics.

以下本発明をよシ詳しく通解するため、従来例として第
3図に示した出力バッファ部と第7図(a)、第8図(
a)に示したその負荷特性と、第4図(b)、第5図(
a) 、 (b)に示した本発明による実施例の出カバ
、ファ部と第7図(a)〜(c)およびjlIB図(a
l 、 (b)に示すその負荷特性とを参照し、それら
の特性を比較しながら説明する。
Below, in order to understand the present invention in more detail, the output buffer section shown in FIG. 3 as a conventional example, FIG. 7(a), and FIG.
The load characteristics shown in a), Fig. 4(b) and Fig. 5(
The exit cover and fa part of the embodiment according to the present invention shown in a) and (b), and FIGS. 7(a) to (c) and FIG.
1 and its load characteristics shown in (b), and will be explained while comparing these characteristics.

第3図における出力オフ豐バッファ・トランジスタ11
および出力インバータートランジスタ12は第6図の特
性を有している。実施例のマスター・スライスの下地は
第4図(a)に示すよりに基本トランジスタ22を5個
含む出力バッファ構成21を有し、基本トランジスタ2
2は第3図の出力オフ−バッファ・トランジスタ11お
よび出力インバータ・トランジスタ12と同機9I¥f
性を有するものとする。さらにトランジスタ23〜37
までもトランジスタ22と同一特性を有する。従来の出
力バッファ回路の出力特性のうち出力低レベル電圧と負
荷電流特性の関係は第7図(alの如く負荷電流2mA
のとき出力低レベルは0.3Vである。負荷・−流2m
AはLSIから標準TTL 1個あるいはロー・パワー
・シ璽ットキTTLを4個駆動ス石場合に和尚する。一
方、・出力高レベル電圧と負荷電流特性の関係は第8図
(a)の如く平均のインピーダンスは6000程度であ
る。
Output off buffer transistor 11 in FIG.
The output inverter transistor 12 has the characteristics shown in FIG. The base of the master slice of the embodiment has an output buffer structure 21 including five basic transistors 22 as shown in FIG.
2 is the output off-buffer transistor 11 and output inverter transistor 12 in FIG. 3 and the same machine 9I¥f
shall have a gender. Furthermore, transistors 23 to 37
Even the transistor 22 has the same characteristics as the transistor 22. Among the output characteristics of a conventional output buffer circuit, the relationship between the output low level voltage and the load current characteristics is shown in Figure 7 (at a load current of 2 mA as shown in al.
When , the output low level is 0.3V. Load/flow 2m
A is suitable for driving one standard TTL or four low power shuttling TTLs from LSI. On the other hand, the relationship between the output high level voltage and the load current characteristics is as shown in FIG. 8(a), and the average impedance is about 6000.

本発明による第1の実施例として、出力バッ7ア構成2
1において第4図(b) K示す如く、トランジスタ2
3を出力オフ・バッファ・トランジスタとしてトランジ
スタ24を出力インバータ・トランジスタとして金属配
線で接続し、トランジスタ25.26.27は接続しな
い。このときの出力特性はトランジスタ23.24がト
ランジスタ11.12と同様の特性を有していることか
ら、従来の出力特性と同一の特性を容易に実現できる。
As a first embodiment of the present invention, the output buffer configuration 2
1, as shown in FIG. 4(b) K, the transistor 2
3 as an output-off buffer transistor, transistor 24 as an output inverter transistor, and connected by metal wiring, and transistors 25, 26, and 27 are not connected. Since the transistors 23 and 24 have the same characteristics as the transistors 11 and 11, the output characteristics at this time can easily be the same as the conventional output characteristics.

その特性は第7図(mlおよび第8図(−に示す。Its properties are shown in Figure 7 (ml) and Figure 8 (-).

第2の実施例として、第5図(a)の如くトランジスタ
28.29とをさらにトランジスタ30,31゜32と
を金属配線で並列接続し、トランジスタ28゜29を出
力オフ・バッファ・トランジスタとしてトランジスタ3
0,31.32を出力インバータ・トランジスタとして
出力バッ7アを構成する。本実施例の出力低レベル電圧
と負荷電流特性は第7図(b)に、出力高レベル電圧と
負荷電流特性は第8図(blにそれぞれ示す。これらの
特性から明らか方様に駆動電流は従来のバッフ7回路に
比較し、低レベル電圧領域では0.3vのとき2mAで
あったのが5.8mAKもなり大きく出来る。さらに高
レベル電圧領域ではその出力特性は第8図(b)から出
力インピーダンスは390Ω穆度となシ従来のバッファ
回路に比較し低く出来る。第2の実施例はLSIの駆動
能力が要求されるパス系の駆動に適用すればその効果は
大である。
As a second embodiment, as shown in FIG. 5(a), transistors 28, 29 and transistors 30, 31, 32 are connected in parallel with metal wiring, and transistors 28, 29 are used as output-off buffer transistors. 3
0, 31, and 32 are used as output inverter transistors to form an output buffer. The output low level voltage and load current characteristics of this example are shown in Figure 7(b), and the output high level voltage and load current characteristics are shown in Figure 8 (bl).It is clear from these characteristics that the drive current is Compared to the conventional 7-buffer circuit, in the low-level voltage region, the 2 mA at 0.3 V can be increased to 5.8 mAK.Furthermore, in the high-level voltage region, the output characteristics are shown in Figure 8 (b). The output impedance is 390Ω, which can be lower than that of the conventional buffer circuit.The second embodiment is highly effective when applied to drive a path system that requires LSI drive capability.

第3の実施例として第5図(b)の如くトランジスタ3
3を出力オフ・バッファψトランジスタとして、トラン
ジスタ34,35,36.37を金属配線で並列接続し
出力インバータ・トランジスタとして出力バッファを構
成する。本実施例の出力低レベル電圧と負荷電流特性は
第7図(C) K、出力高レベル電圧と負荷電流特性は
第8図(m)にそれぞれ示す。
As a third embodiment, a transistor 3 as shown in FIG.
3 is an output off buffer ψ transistor, and transistors 34, 35, 36, and 37 are connected in parallel with metal wiring to form an output buffer as an output inverter transistor. The output low level voltage and load current characteristics of this embodiment are shown in FIG. 7(C), and the output high level voltage and load current characteristics are shown in FIG. 8(m).

出力低レベル電圧に注目すれば、従来の出力バッフ7回
路に比較し、同一負荷電流では出力低レベル電圧をよシ
小さく出来る。負荷電流2mAのとき従来の出力バッフ
ァ回路は0.3Vであるが0.04Vとカリ出力低レベ
ルの!−ジンを確保できる。
Focusing on the output low level voltage, compared to the conventional output buffer 7 circuit, the output low level voltage can be made much smaller with the same load current. When the load current is 2mA, the conventional output buffer circuit outputs 0.3V, but the output is 0.04V, which is a low level! -You can secure gin.

前述の実施例からも明らかな様に、マスター・スライス
の下地の出力バッフ7回路に基本寸法のトランジスタを
十分に準備すれば、トランジスタの設計変更なしに、外
部接続条件による出力構成が得られ、容易にマスター・
スライス方式にょゐLSIの設計が可能となる。
As is clear from the above embodiment, if enough transistors of basic dimensions are prepared in the output buffer 7 circuit under the master slice, an output configuration according to external connection conditions can be obtained without changing the transistor design. Easy to master
It becomes possible to design LSI using the slice method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はマスター・スライスの下地の概要を示す平面図
、第2図は基本セルをブロック状に構成した平面図、第
3図は従来の出力バッファ構成を示す回路図、第4図r
a> 、 (b)および第5 図(al 、 Cbal
d本発明の実施例による出力バッファ構成を説明するた
めの回路図、第6図はトランジスタ特性例を示す特性図
、第7図および第8図は出力バッファの負荷特性例を示
す特性図である。 !・・・・・・基本セル、2・・・・・・入出力セル、
3・・川・外部接続端子、4・・・・・・内部セル・ア
レー、5・・・・・・ブロック・アレー、6・・団・内
部セル・アレー、11・・・・・・出力オ7・バ、yフ
ァートランジスタ、12・・・・・・出力インバーター
ト2ンジスタ、21・・川・出力バッファ構成、22〜
37・・・・・・基本トランジスタ。 第 1 図 躬 2 図 第 3 図 αυ               C閃第 4 区 (’(1)              (レノ躬 5
 図 絡 I!l)  閃 l6t(領A) 8 q 凶
Fig. 1 is a plan view showing the outline of the base of the master slice, Fig. 2 is a plan view showing basic cells arranged in blocks, Fig. 3 is a circuit diagram showing the conventional output buffer configuration, Fig. 4
a>, (b) and FIG. 5 (al, Cbal
dA circuit diagram for explaining an output buffer configuration according to an embodiment of the present invention, FIG. 6 is a characteristic diagram showing an example of transistor characteristics, and FIGS. 7 and 8 are characteristic diagrams showing examples of load characteristics of the output buffer. . ! ...Basic cell, 2...Input/output cell,
3... External connection terminal, 4... Internal cell array, 5... Block array, 6... Group internal cell array, 11... Output 7, y far transistor, 12...output inverter 2 transistor, 21...output buffer configuration, 22~
37...Basic transistor. Fig. 1 Fig. 2 Fig. 3 αυ C Sen Section 4 ('(1)
Diagram I! l) Flash l6t (territory A) 8 q evil

Claims (1)

【特許請求の範囲】 fl1MI8トランジスタで構成された出力バッファ回
路並びにマスター・スライス方式にて製造される内部セ
ル−アレーを備える半導体装置にお1いて、前記出力バ
ッファ回路をあらかじめ形成された複数個のMID)?
ンジスタを選択配線して構成し所望の負荷特性を持たし
めたことを特徴とする半導体装置。 。 (2)  前記出力バッファ回路はプッシュプル回路を
含み、前記プツシ具プル回路は出方インバータ・トラン
ジスタと出方オフ・バッファ・トランジスタとで構成さ
れていることを特徴とする特許請求の範囲第1項記載の
半導体装置。 (3)  前記出力インバータ・トランジスタまタハ前
記出力オ7−バッ7ア・トランジスタは複数個の基本寸
法にて設計されたMI8 ) ?ンジスタの並列接続に
より構成されていることを特徴とする特許請求の範囲第
2項記載の半導体装置。
[Claims] In a semiconductor device including an output buffer circuit composed of fl1MI8 transistors and an internal cell array manufactured by a master slice method, the output buffer circuit is formed by forming a plurality of pre-formed cells. MID)?
1. A semiconductor device characterized in that it is configured by selectively wiring transistors to have desired load characteristics. . (2) The output buffer circuit includes a push-pull circuit, and the push-pull circuit is composed of an output inverter transistor and an output off-buffer transistor. 1. Semiconductor device described in Section 1. (3) Is the output inverter transistor or output inverter transistor designed with multiple basic dimensions? 3. The semiconductor device according to claim 2, wherein the semiconductor device is constructed by connecting transistors in parallel.
JP1030082A 1982-01-26 1982-01-26 Semiconductor device Pending JPS58127347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1030082A JPS58127347A (en) 1982-01-26 1982-01-26 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1030082A JPS58127347A (en) 1982-01-26 1982-01-26 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS58127347A true JPS58127347A (en) 1983-07-29

Family

ID=11746405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1030082A Pending JPS58127347A (en) 1982-01-26 1982-01-26 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS58127347A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0150423A2 (en) * 1983-12-17 1985-08-07 Kabushiki Kaisha Toshiba C-MOS basic cells arrangement
US5162893A (en) * 1988-05-23 1992-11-10 Fujitsu Limited Semiconductor integrated circuit device with an enlarged internal logic circuit area

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5352386A (en) * 1976-10-22 1978-05-12 Mitsubishi Electric Corp Semiconductor integrated circuit
JPS53123684A (en) * 1977-04-04 1978-10-28 Mitsubishi Electric Corp Semiconductor integrated circuit device
JPS5710533A (en) * 1980-06-23 1982-01-20 Nec Corp Logical circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5352386A (en) * 1976-10-22 1978-05-12 Mitsubishi Electric Corp Semiconductor integrated circuit
JPS53123684A (en) * 1977-04-04 1978-10-28 Mitsubishi Electric Corp Semiconductor integrated circuit device
JPS5710533A (en) * 1980-06-23 1982-01-20 Nec Corp Logical circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0150423A2 (en) * 1983-12-17 1985-08-07 Kabushiki Kaisha Toshiba C-MOS basic cells arrangement
US5162893A (en) * 1988-05-23 1992-11-10 Fujitsu Limited Semiconductor integrated circuit device with an enlarged internal logic circuit area

Similar Documents

Publication Publication Date Title
JP3420694B2 (en) Standard cell integrated circuit
JPS6124250A (en) Semiconductor integrated circuit device
JPH0282552A (en) Semiconductor integrated circuit
JPH0434309B2 (en)
JPH0480538B2 (en)
US5348902A (en) Method of designing cells applicable to different design automation systems
JPS58127347A (en) Semiconductor device
JPH07106521A (en) Cell base designed semiconductor integrated circuit device
JP2505918B2 (en) Semiconductor circuit manufacturing apparatus, semiconductor circuit manufacturing method, and semiconductor circuit manufactured by the method
JP2005197428A (en) Semiconductor integrated circuit
US6720214B2 (en) Method for manufacturing semiconductor integrated circuit
US6281529B1 (en) Semiconductor device having optimized input/output cells
EP0113828A2 (en) Master slice semiconductor chip having a new multi-function FET cell
JPH02280353A (en) Semiconductor integrated circuit
JPH0563944B2 (en)
JP2006054780A (en) Semiconductor device and method of manufacturing the same
JPS62263653A (en) Manufacture of semiconductor integrated circuit device
JPH01152642A (en) Semiconductor integrated circuit
JP2001035922A (en) Semiconductor integrated circuit
JPH04152567A (en) Master slice lsi
JPH058576B2 (en)
JPH0282647A (en) Semiconductor integrated circuit and manufacture thereof
JPS61123153A (en) Gate-array lsi device
JPS6223618A (en) Logic integrated circuit
JPH06112448A (en) Manufacture of semiconductor device