JPS58126963A - Powdered high speed steel - Google Patents

Powdered high speed steel

Info

Publication number
JPS58126963A
JPS58126963A JP856882A JP856882A JPS58126963A JP S58126963 A JPS58126963 A JP S58126963A JP 856882 A JP856882 A JP 856882A JP 856882 A JP856882 A JP 856882A JP S58126963 A JPS58126963 A JP S58126963A
Authority
JP
Japan
Prior art keywords
speed steel
type
powder
carbide
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP856882A
Other languages
Japanese (ja)
Other versions
JPH0143017B2 (en
Inventor
Iwao Asai
浅井 「巌」
Kazuyoshi Miyano
宮野 一吉
Mitsuo Kanayama
金山 満男
Takeji Asai
浅井 武二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Original Assignee
Nachi Fujikoshi Corp
Fujikoshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp, Fujikoshi KK filed Critical Nachi Fujikoshi Corp
Priority to JP856882A priority Critical patent/JPS58126963A/en
Publication of JPS58126963A publication Critical patent/JPS58126963A/en
Publication of JPH0143017B2 publication Critical patent/JPH0143017B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a powdered high speed steel with remarkably enhanced wear resistance and strength by rapidly cooling a steel contg. MC type carbide of one or more among V, Nb and Ti by a powder metallurgical means to distribute the carbide at high density. CONSTITUTION:A steel contg. by weight, 1.8-3.3% C, 3.5-5% Cr, 7-11% W, 3-5% Mo, 7-10% Co, 0.1-0.6% Si, 0.1-0.6% Mn and 8-11% one or more among V, Nb and Ti and further contg. MC type carbide of one or more among V, Nb and Ti is melted and rapidly cooled by a powder metallurgical means to form a fine structure contg. the MC type carbide having <=2mum average grain size distributed at high density of <=2mum intervals. The MC type carbide is contained by 30-45% by area.

Description

【発明の詳細な説明】 本発明に、MC型炭化物を高速度鋼中に高密度に分布さ
せることにより、組織の粗大化を防ぎ、高い靭性な保持
すると共に、高硬度を廟するMC型炭化物の高密度化に
より高い耐摩耗性を具備した粉末高速度鋼に関する。
Detailed Description of the Invention The present invention provides an MC type carbide that prevents coarsening of the structure, maintains high toughness, and exhibits high hardness by distributing MC type carbide in high-speed steel at high density. This invention relates to powder high-speed steel that has high wear resistance due to high density.

近時、高速度鋼に要求さ扛る特性は苛酷さを増し、高い
靭性と高い耐摩耗性の相異る性質を具備しなけnばなら
なくなった。このような条件のもとで、粉末冶金的手法
による高速度鋼の製造が多く開発さnている。粉末冶金
的手法によ扛ば、組織が微細且つ均一化し、熱間加工を
容易にすると共に靭性、被研削性あるいは切削性能等も
従来の溶解法による高速度鋼よりも改善される。更に、
粉末冶金的手法を用いることによって、溶解法では製造
不可能な成分の高速度鋼も製造可能となっている。然し
なからとのような状況のもとでも、ホブやピニオンなど
に代表さ扛る断続切削用工具に要求さnる、よジ高い耐
摩耗性と高い靭性とを兼備する高速度鋼を得ることに、
塑性加工上の問題から来る、コスト、あるいiM合金化
による靭性低下の問題などから、その製造が著しく困難
であった口 本発明者等は、このような観点のもとに、合金成分組成
および組織について詳細な研究と実験とを重ねた結果、
高速度鋼中のMC型炭化物の量および分布状況を一定範
囲に調整することにより、組織の粗大化を防ぎ、高い靭
性を保持すると共に高い耐摩耗性を付与しながら、圧粉
成形および熱間塑性加工が可能な高速度鋼を見出し、本
発明を完成するに至った。
In recent years, the properties required of high-speed steel have become more severe, and it has become necessary to have the different properties of high toughness and high wear resistance. Under these conditions, many developments have been made in the production of high-speed steel by powder metallurgy techniques. When processed by powder metallurgy, the structure becomes fine and uniform, making hot working easier, and the toughness, grindability, cutting performance, etc. are also improved compared to high-speed steel made by conventional melting methods. Furthermore,
By using powder metallurgy techniques, it is now possible to produce high-speed steel with components that cannot be produced by melting methods. However, even under such circumstances, it is possible to obtain high-speed steel that has both extremely high wear resistance and high toughness, which are required for tools for interrupted cutting such as hobs and pinions. In particular,
From this perspective, the present inventors have developed an alloy composition that has been extremely difficult to manufacture due to costs arising from plastic working problems and the problem of reduced toughness due to iM alloying. As a result of repeated detailed research and experiments on and tissues,
By adjusting the amount and distribution of MC-type carbides in high-speed steel to a certain range, it is possible to prevent coarsening of the structure, maintain high toughness, and provide high wear resistance. We have discovered a high-speed steel that can be plastically worked, and have completed the present invention.

高速度鋼は、切削工具として使用さ扛る場合、焼入・焼
もどし処理を行ない素地を強化すると共に、残存する炭
化物によって耐摩耗性を得て使用さt’Lるのが普通で
ある。この場合、製品にさnたとき即ち使用状態におけ
る高速度鋼の靭性に、主として組織の粗さ、素地の強化
塵および炭化物の分布状況、つまり炭化物の大きさ、形
状および炭化物間距離によって決足さnることか判った
。高靭性であるためには、組織が微細であって、炭化物
は微細で均一に分布することが必要で、かつてき扛ば丸
い形状であることが好ましい。更にもう一つの条件は、
炭化物の間隔にあるが、こnは一般に知らnているよう
に、間隔がせまい程強度的には好ましい状態が得らnる
0また耐摩耗性に残存する炭化物の量で決定さするが、
この場合炭化物の種類が大きな条件となる。高速度鋼の
場合は製品にさ扛たとき即ち使用状態においてM、Cお
よきい〇一般に高速度鋼中でMC型炭化物を安定的に形
成する元素は、V、Nb、Tiで代表されるが、かかる
V、Nb、Tiを成分とするMC型炭化物は、鋼中にあ
って一般的な熱処理の範囲では熱処理による変化が殆ど
なく、一度MQ型炭化物を生成するとその形状、位置を
保持し続け、鋼中の%C6あるいnMaCMC型炭化物
に、熱処理によって素地への溶込み、析出などを殆ど行
なわず、二次的な粗大化も殆ど行なわないことに着目し
た。更に、急冷さnて著しく微細な組織を持つ粉末を使
用する粉末冶金的手法を用い牡は、MC型炭化物を微細
且つ均一に、そして高密度に分布させることが容易にで
きることが判り、こnらが本発明の根源である。
When high-speed steel is used as a cutting tool, it is usually quenched and tempered to strengthen the base material, and the remaining carbides provide wear resistance. In this case, the toughness of high-speed steel when it is rolled into a product, i.e. in service condition, is determined mainly by the roughness of the structure, the distribution of reinforcing dust and carbides in the matrix, that is, the size and shape of carbides, and the distance between carbides. I knew it was a mistake. In order to have high toughness, the structure must be fine and the carbides must be fine and uniformly distributed, and preferably have a round shape when rolled. Yet another condition is
As is generally known, the narrower the spacing between the carbides, the better the strength will be.Also, wear resistance is determined by the amount of carbide remaining.
In this case, the type of carbide is a major condition. In the case of high-speed steel, when it is exposed to a product, that is, in the state of use, M and C are large. In general, the elements that stably form MC type carbides in high-speed steel are represented by V, Nb, and Ti. However, MC-type carbides containing V, Nb, and Ti are found in steel and hardly change during heat treatment within the range of general heat treatment, and once MQ-type carbides are formed, they retain their shape and position. Next, we focused on the fact that %C6 or nMaCMC type carbides in steel hardly penetrate into the base material or precipitate during heat treatment, and hardly cause secondary coarsening. Furthermore, it was found that MC type carbides can be easily distributed finely, uniformly, and with high density by using a powder metallurgy method that uses a powder with an extremely fine structure by rapid cooling. These are the roots of the present invention.

即ち本発明はV、N’b、Tiの1種類またはこnらの
2棟類月上を成分とするMC型炭化物を含み・前記MC
型炭化物は製品にされたとき平均粒径2μm以丁にさn
ており、かつ前記MC型炭化物相互間の距離は2μm以
下の間隔で高密度に分布するよう粉末冶金的手法により
急速冷却により、微細組織を持った原料高速度鋼粉末を
使用して製造さnたことを特徴とする粉末高速度鋼を提
供するものである。かかる本発明による粉末高速度鋼は
、鋼中で安定なMC型炭化物を高密度で微細且つ均一に
分布させることによる耐摩耗性の向上、炭化物間隔の短
かくなったことによる強度の増力口、および素地の微細
化保持による高靭性の安定維持が得ら扛るものであり、
こnらの効果に従来の溶解法では炭化物の偏析や粗大化
のため製造不可能で得る゛ことのできないものである。
That is, the present invention includes an MC-type carbide containing one of V, N'b, and Ti or two of these types.
When molded carbide is made into a product, it has an average particle size of 2 μm or less.
The MC type carbides are manufactured using raw material high speed steel powder with a fine structure by rapid cooling using a powder metallurgy method so that the distance between the MC type carbides is distributed at high density with an interval of 2 μm or less. The present invention provides a powdered high-speed steel characterized by the following. The powder high speed steel according to the present invention has improved wear resistance due to stable MC type carbides being distributed finely and uniformly in the steel at high density, strength increaser due to shortening of the distance between carbides, And stable maintenance of high toughness is obtained by maintaining fineness of the base material.
These effects cannot be obtained by conventional melting methods because they cannot be manufactured due to the segregation and coarsening of carbides.

本発明で得らnfcMc型炭化物全炭化物つ均一で高密
度化した粉末高速度鋼は、前述のよりな好ましい特性を
示し、切削工具の耐チッピング性と耐摩耗性を飛躍的に
向上させ工具寿命を著しく長いものにした。
The nfcMc-type carbide-all-carbide powder high-speed steel with uniform and high density obtained by the present invention exhibits the above-mentioned more favorable properties, dramatically improves the chipping resistance and wear resistance of cutting tools, and improves the tool life. became significantly longer.

詳説すると、MC型炭化物の粒径および炭化物間隔に、
MC型炭化物が一般の熱処理に殆ど関与しないことに着
目し、微細構造の安定した条件?得るために規定した。
To explain in detail, the particle size and carbide spacing of MC type carbides,
Focusing on the fact that MC-type carbides are hardly involved in general heat treatment, we developed conditions for stable microstructure. stipulated to obtain.

MC型炭化物に、一般に粉末高速度鋼中では径が0,2
〜4μm範囲で分布する力ζ平均粒径が2μmをこえる
と抜研削性が悪くなり、ホブ、ビニオン等の精密工具で
は寸法や形状保持が著しく困難となり、経済的に不利と
なる。1hMe型炭化物の間隔を平均で2μmg下に?
に’fR度化すると、MC型炭化物の存在によりMi織
の粗大化が防止さ扛ると共に、炭化物間隔が知力・〈な
った効果にエフ、高い靭性を保持することが可能である
。然し、MC型炭化物の間隔が平均で2μm’4こえる
と、炭化物の高密度化による靭性保持効果が低下するこ
とから、炭化物間隔を平均で2μm以下とした。次に高
速度鋼中でMC型炭化物を形成する元素で安価に実用化
されるのは、V、Nb、Tiであるが、こn以外の元素
を使用した場合、焼結条件およびそn以降の諸条件が煩
雑となり実用的でない。故に、MC型炭化物は、V、N
l)、Tiの炭化物かあるいはこnらの2種類以上をI
成分とすることに限定したものである。
MC type carbide generally has a diameter of 0.2 in powder high speed steel.
Force ζ distributed in the range of ~4 μm When the average grain size exceeds 2 μm, the extraction and grinding properties deteriorate, and precision tools such as hobs and binions become extremely difficult to maintain dimensions and shape, which is economically disadvantageous. Is the spacing between 1hMe type carbides reduced by 2μmg on average?
When the MC type carbides are present, coarsening of the Mi weave is prevented, and the spacing between the carbides becomes narrower, making it possible to maintain high toughness. However, if the distance between the MC type carbides exceeds 2 μm'4 on average, the effect of maintaining toughness due to increased density of the carbides decreases, so the distance between the carbides was set to 2 μm or less on average. Next, the elements that form MC type carbides in high-speed steel and are commercially available at low cost are V, Nb, and Ti. However, when using elements other than these, the sintering conditions and The various conditions become complicated and impractical. Therefore, MC type carbide is V, N
l), Ti carbide or two or more of these
It is limited to use as a component.

好1しくにMC型炭化物の面積占有率に製品にさf′L
瓦とき30〜45チであるとよ− 即ちMC型炭化物の
平均粒径が2μmJ−1下でその面積占有率が3o%未
満の場合に、切削時に被切削物が素地耐摩耗性を悪化さ
せる。故に、MC型炭化物の高密度化による耐摩耗性向
上の効果を得る17ill:は、MC型炭化物の面積占
有率は30%以上が必要である。
Preferably, the area occupation rate of the MC type carbide is
If the average grain size of the MC type carbide is less than 2 μmJ-1 and the area occupation rate is less than 30%, the material to be cut will deteriorate the wear resistance of the substrate during cutting. . Therefore, in order to obtain the effect of improving wear resistance by increasing the density of MC type carbide, the area occupation rate of MC type carbide must be 30% or more.

面積占有率が45チをこえると、鍛造、圧延などの熱間
塑性加工が不可能となり、充分鍛錬さ扛た粉末高速度鋼
が得らnず利用範囲も限定され、経済的な実用化が困難
となるため、上限を45チとしたものである。なおMC
型炭化物が面積占有率で30%以上となると上述しfc
V、Nb、Ti以外のMC型炭化物を形成する元素を添
加しても上述した3元素を上廻る効果は殆ど得らnず、
意味をもたなさらに好1しくに前記粉末高速度鋼にそn
ぞn重量%で主成分がOl、s 〜3.a%、Ors、
s 〜s、o%、W7.O−1]、o% 。
When the area occupancy exceeds 45 inches, hot plastic working such as forging and rolling becomes impossible, and sufficiently forged powdered high-speed steel cannot be obtained, and the scope of use is limited, making economical practical application impossible. Since this would be difficult, the upper limit was set at 45 inches. Furthermore, MC
As mentioned above, when the area occupation rate of type carbide is 30% or more, fc
Even if elements that form MC type carbides other than V, Nb, and Ti are added, there is almost no effect over the above three elements,
More preferably, the powder high speed steel has a meaning.
The main component is Ol,s~3. a%, Ors,
s ~ s, o%, W7. O-1], o%.

MC3,0〜5.0チ、007.0〜10.0チであっ
て; V、Nb、Tiの1種類あるいはこ扛らの中の2
種類以上の和が80〜11.0%で残部ij Si0.
1〜0.6%、Mno、t 〜0.6%トFeオヨび不
純Th力lらなるものであるとよい。詳説すると、C;
Cは素地中に固溶して強化に寄与すると共に、MC型炭
化物全形成するV、Nb、Tiと結合し、高い耐摩耗性
を有する高硬度炭化物の母体として必要欠くべからざる
元素であるが、その含有量が1・′88チ満でに必要々
硬さを得ることができず、MC型炭化物を高密度に分布
させることが不可能となるので、1.8%以上としなけ
nばならない。また後述するように、MC型炭化物を形
成する合金元素量との関係をみた場合、3.3チが必要
である、然し、3.3%をこえると、熱間加工が不可能
となると共に、焼結条件も処理範囲がせ1くなり、実用
的でなくなるため、C添加量の上限を33チと規定した
O W;wにCと結合してM、0型炭化物を形成し、焼入n
によって一部素地に固溶して素地強化を行い、高温にお
ける硬さや耐熱性を向上させるが、一部は残存してMC
型炭化物の耐摩耗性を補佐する重要な成分である。Wが
7.0−未満では素地に対する強化が満足できず、弊地
の強度および耐熱性に不足が生じる。然し、11.0L
ib’zこえるとそ扛以上の効果を示さカいうえ経済的
に高価なものとなるので、Wば70〜110%に限定し
たO Mo;MoH一般vcWと同じ性質を持ち、その効果は
Wの2倍とさ扛ているが、実際に切削工具として使用し
た場合は、MOの添加は、素地の強化よりも高速度鋼の
焼入性改善の効果が太きく、熱処理硬さ保持に有効であ
る。そn故に、MOの多量添加は必要がなく、その焼入
性改善の効果を示す3.0%を下限とし、経済性を考慮
して上限を5.0チとしたO Co;Coは炭化物形成成分全素地に固溶させる効果′
 *m’h、素地を強化し、耐熱性を付与するか、必要
以上に多いと、高速度鋼を脆化させると共に熱間加工性
も低下させるので、10.0チをこえる添加は好1しく
ない。しかし7.0チ以上深加しないと、JMoやOr
との相乗効果による素地強化が充分でなく、耐摩耗性や
耐熱性などが悪くなるため、本発明鋼のような高音&M
C炭化物型粉末高速度鋼にあっては、7.0.1以上の
添加が必要である。
MC3.0~5.0chi, 007.0~10.0chi; one type of V, Nb, Ti or two of these
The sum of types or more is 80 to 11.0% and the remainder ij Si0.
It is preferable that the content is 1 to 0.6%, Mno, t to 0.6%, Fe, and impurity Th. To explain in detail, C;
C is an indispensable element that not only dissolves in solid solution in the matrix and contributes to strengthening, but also combines with V, Nb, and Ti that form the entire MC type carbide, and serves as a matrix for high hardness carbides with high wear resistance. If the content is less than 1.88%, it will not be possible to obtain the necessary hardness and it will be impossible to distribute the MC type carbide in a high density, so it must be at least 1.8%. No. In addition, as will be described later, when looking at the relationship with the amount of alloying elements that form MC type carbides, 3.3% is necessary. However, if it exceeds 3.3%, hot working becomes impossible and , the sintering conditions also shorten the processing range and become impractical, so the upper limit of the amount of C added was specified as 33. Enter n
Some of it dissolves in the base material and strengthens the base material, improving hardness and heat resistance at high temperatures, but some remains and becomes MC.
It is an important component that supports the wear resistance of type carbides. If W is less than 7.0, the reinforcement of the base material will not be satisfactory and the strength and heat resistance of the base material will be insufficient. However, 11.0L
If it exceeds ib'z, it will have a more effective effect than that of a sore, and it will be economically expensive. However, when actually used as a cutting tool, the addition of MO has a greater effect on improving the hardenability of high-speed steel than strengthening the base material, and is effective in maintaining heat treatment hardness. It is. Therefore, it is not necessary to add a large amount of MO, and the lower limit is set at 3.0%, which shows the effect of improving hardenability, and the upper limit is set at 5.0% in consideration of economic efficiency. Effect of solid solution in all forming components'
*m'h, it is preferable to strengthen the base material and give heat resistance, or if it is added more than necessary, it will make the high speed steel brittle and reduce hot workability, so it is preferable to add more than 10.0 h. It's not right. However, unless it is deeper than 7.0ch, JMo and Or
Because the strength of the substrate due to the synergistic effect with
For C carbide type powder high speed steel, it is necessary to add 7.0.1 or more.

Cr;Crは高速度鋼の焼入性の改善、耐蝕性の向上な
どのために添加さnるが、その効果は35%以下でに少
ない。また、本発明のように高01高MO炭化物型高速
度鋼では、ビ通成分の高速度鋼より焼入性が低下する傾
向を示すため、充分な素地硬さを得るには3.5%以上
の添加が好ましいが、5.0%をこえて添加すると、耐
衝撃性の低下など好筐しくない性能を示すため、上限を
50%とした◇ V、Nb、Ti i M O製炭(1(/!、V、Nb
、Ti (r)炭化物テ代表さnるが、こ扛らの炭化物
が本発明において効果を現わすのは、いすnの成分でも
8.0%以上の添加が必要であり、そt未満では、高い
耐摩耗性を保持するだけの炭化物の面積占有率を保持で
きず、MC型炭化物を高密度にした効果が得られない。
Cr: Cr is added to improve the hardenability and corrosion resistance of high-speed steel, but its effect is minimal at 35% or less. In addition, in the case of high-01 high-MO carbide-type high-speed steel as in the present invention, hardenability tends to be lower than that of high-speed steel with a viscous composition, so in order to obtain sufficient base hardness, 3.5% It is preferable to add more than 5.0%, but since adding more than 5.0% will result in unfavorable performance such as a decrease in impact resistance, the upper limit was set at 50% ◇ V, Nb, Ti MO coal making ( 1(/!, V, Nb
, Ti(r) carbide are representative examples, but for these carbides to be effective in the present invention, it is necessary to add 8.0% or more even as a component of iron, and less than 8.0% is necessary. , it is not possible to maintain the area occupancy of the carbide sufficient to maintain high wear resistance, and the effect of increasing the density of the MC type carbide cannot be obtained.

然し、MC型炭化物を必要以上に多く生成させると、熱
間塑性加工性を著しく悪くシ、更には素地不足による脆
化を生じるようになるので、ut、o%をこえる添加は
好ましくない。そ扛故MO型炭化物生成成分に、そnぞ
nあるいにこnらの2種類以上の混合添力1]状態にお
いても80〜11.0%に限定したO8i、Mn; S
iおよびMnH脱酸剤として一般的に含有する範囲であ
る0、1〜0.6%とした。
However, if MC-type carbide is produced in an unnecessarily large amount, the hot plastic workability will be significantly deteriorated, and furthermore, embrittlement will occur due to insufficient base material, so it is not preferable to add more than ut, o%. Therefore, O8i, Mn, which is limited to 80 to 11.0% even in the mixed addition state of two or more types of sono or nico, to the MO type carbide forming component;
The content was set at 0.1 to 0.6%, which is the range generally included as an i and MnH deoxidizing agent.

本発明高速度鋼に、粉末冶金的手法Vこよジ製造さnる
が、その製造条件は急速冷却にエフ、微細組織を持った
原料高速度鋼粉末を使用することを特徴とし、MC型炭
化物を平均粒径で2μmfこえる状態にしない焼結条件
を選ぶ以外は特別な制約はない。すなわち、アトマイズ
粉末に真空または雰囲気による焼なましを施した後、機
械あるいはOIP (冷間静水圧プレス〕で圧粉成形、
真空あるいは、雰囲気焼結(焼結温度に1200℃以下
で好1しくに1150〜1180℃のMC型炭化物が粗
大化しない温度範囲〕熱間加工を経て要望の寸法形状の
粉末高速度鋼を得る通常の手法および条件1従91製造
す60とが7き6・       1次に実施例を挙げ
て、本発明を具体的に説明する。
The high-speed steel of the present invention is manufactured by a powder metallurgy method, and the manufacturing conditions are characterized by using raw material high-speed steel powder with a microstructure for rapid cooling, and MC type carbide. There are no special restrictions other than selecting sintering conditions that do not cause the average grain size to exceed 2 μmf. That is, after annealing the atomized powder in a vacuum or atmosphere, it is compacted using a machine or OIP (cold isostatic press).
Vacuum or atmosphere sintering (sintering temperature below 1200°C, preferably 1150 to 1180°C, a temperature range in which MC type carbides do not become coarse) hot working to obtain powdered high speed steel with desired dimensions and shape. Conventional Techniques and Conditions 1.91 Manufacturing 60.6.1 Next, the present invention will be specifically explained with reference to Examples.

実施例 水アトマイズ高速度鋼粉末(粒度;60メツシユ工ク細
粒)を出発原料としH2雰囲気中で焼なまし、OIPで
圧粉成形、真空中で焼結後、H2雰囲気で1150〜1
180℃に加熱し、熱間塑性加工の工程を経る通常の粉
末冶金的手法に従って、第1表に示す各成分組成を有す
る供試材を製造したO第1表供試材の化学成分組成(w
t%)こnらの供試材を第2表に示す緒条゛件で熱処理
を行ない、粉末高速度鋼工具を得たb各粉末高速度鋼に
ついて、硬さ、炭化物の分布状況、抗折力、被研削性お
よび断続切削性態などを比較した。なお、供試材A1は
、5KH57,42,は5KHIQに相当する比較材で
あり、煮3.から&9筐では発明材である。
Example Water atomized high-speed steel powder (particle size: 60 mesh fine grains) was used as a starting material, annealed in H2 atmosphere, compacted in OIP, sintered in vacuum, and then 1150-1 in H2 atmosphere.
Table 1: Chemical component composition of the sample materials (Table 1: Chemical composition of the sample materials) lol
(t%) These test materials were heat-treated under the conditions shown in Table 2 to obtain powdered high-speed steel tools. The rupture strength, grindability, interrupted cutting properties, etc. were compared. In addition, sample material A1 is a comparison material corresponding to 5KH57, 42, and 5KHIQ, and 5KH57, 42, and 5KHIQ are comparative materials. Kara & 9 casings are invented materials.

上記各供試材の緒特性測定結果を第3表および第4表に
示す。但し、被研削性は溶解法によるsKugを所定の
条件で研削して得た値7’< 100 ’i+とした場
合の比較を示し、平均炭化物間隔(炭化物から炭化物1
での距離)、平均炭化物粒径および平均炭化物面積占有
率は、5,000倍で5視野測定した値の平均値を示し
た。’E7’c抗切刃、第2表熱処理条件 第3表 諸 特 性(1) 第4表 諸 特 性(2) 耐摩耗性、被研削性および切削性能の測定条件に次ぎの
通っである。
Tables 3 and 4 show the results of measuring the properties of each of the above-mentioned test materials. However, the grindability is the value obtained by grinding sKug by the melting method under specified conditions, and is compared with the value 7'<100'i+, and the average carbide distance (from carbide to carbide 1
The average carbide particle size and average carbide area occupation rate are the average values of values measured in 5 fields at 5,000 times magnification. 'E7'c anti-cutting edge, Table 2 Heat treatment conditions Table 3 Properties (1) Table 4 Properties (2) Measurement conditions for wear resistance, grindability and cutting performance are as follows. .

(1)抗折力 1〕試験片; 5闘X10BX40ゎ 2)支点間距離; 30u 3〕負   荷; 中央一点荷重 (2)耐摩耗性 大越式試験機により、常温の比摩耗量を測定し、比較し
た。
(1) Transverse rupture strength 1] Test piece; 5 to 10 B , compared.

l)相手材;  80M44s(HRf:!40)2〕
摩摩擦度i  2.86 m7BeQ3)最終荷重i 
 12.6’p7 り摩擦距離i  400m (3)被研削性 1)試験片;20mX5+uX20MJI2つ砥  石
i  WA l0K 3〕研削速度i  1170 m/m1n5〕バネ常数
;  0.1776すj’/pm(4)  切削性能 横型フライス盤(aML)y、用い、低速度による高硬
度被剛材の切削試験(低速切削)および高速度による低
硬度被剛材の切削試験(高速切削)の断続切削試験を行
なったが、低速切削の場合は、所足の条件で195m切
削した時点でのフランク摩耗量、高速切削の場合は完全
寿命に至る丑での切削長をもって評価を行なった0箇た
、いずnの場合も、パイ)形状io 、0ilO,8,
6°、 200.O’ テ共通とした口 A)@、速切削        B)高速切削速 度;
 28.1m/min  速 度i 77.4m/mi
n送  0  ;0.09yuI//r8V    送
  り;0.□rxx/r61V切込み: lOga 
    切込み11−0m切削油、H82切削油; H
82 被削材; 5KDIICI(H320)  悸削材i 
550c(HE2oo)上記の結果より、本発明材(I
63〜烹9)に比較材(41,42)と比較すると、断
続切削において低速・高速共に高い性能を示した。すな
わち、低速で高硬度材を用いた耐摩耗性の試験では、現
在最も耐摩耗性のある高速度鋼として知らnている5K
HIQよりも著しく高い耐摩耗性を有し、優f’した高
速度鋼であることを示している。また、耐衝撃性を試験
した高速切削では、高靭性の5KH57に比較して約3
倍以上の寿命を示しており、本発明鋼が著しく高い性能
を断続切削において有していることが明らかに認めらn
る。更に抗折力は、80〜11.0%もMC型炭化物生
成元素が添加さnているにもかかわらず殆ど低下するこ
とがなく、高い靭性保持が示さ扛ている。また、比摩耗
量でにMC型炭化物の高密度化による著しい耐摩耗性の
向上が示さ扛、本発明鋼の断続切削における高性能を裏
付けている0更I/i!:被研削性でに著しいMC型炭
化物の面積占有率にもかかわらず、微細化さnているた
め((わずかの低下に止″1p1ボブ、ピニオン等の精
度切削工具でも経済的に製造可能なことを示している。
l) Mating material; 80M44s (HRf:!40)2]
Friction degree i 2.86 m7BeQ3) Final load i
12.6'p7 Friction distance i 400m (3) Grindability 1) Test piece; 20mX5+uX20MJI two grinding stones i WA l0K 3] Grinding speed i 1170 m/m1n5] Spring constant; 4) Cutting performance Using a horizontal milling machine (aML) y, intermittent cutting tests were conducted on cutting high-hardness materials at low speeds (low-speed cutting) and cutting tests on low-hardness materials at high speeds (high-speed cutting). However, in the case of low-speed cutting, the flank wear amount was evaluated after cutting 195 m under the required conditions, and in the case of high-speed cutting, the evaluation was performed based on the cutting length at the end of the complete life. Also in the case of pi) shape io ,0ilO,8,
6°, 200. O' Te common mouth A) @, fast cutting B) high cutting speed;
28.1m/min Speed i 77.4m/min
n feed 0;0.09yuI//r8V feed;0. □rxx/r61V cutting depth: lOga
Depth of cut 11-0m cutting oil, H82 cutting oil; H
82 Work material; 5KDIICI (H320) Cutting material i
550c (HE2oo) From the above results, the present invention material (I
Comparing the comparative materials (41, 42) to No. 63 to No. 9), they showed high performance in interrupted cutting at both low and high speeds. In other words, in wear resistance tests using high-hardness materials at low speeds, 5K, which is currently known as the most wear-resistant high-speed steel, was tested.
It has significantly higher wear resistance than HIQ, indicating that it is an excellent high speed steel. In addition, in high-speed cutting when testing impact resistance, it was found that about 3
It is clearly recognized that the steel of the present invention has extremely high performance in interrupted cutting.
Ru. Further, the transverse rupture strength hardly decreases even though 80 to 11.0% of MC type carbide forming elements are added, indicating that high toughness is maintained. In addition, the specific wear amount shows a significant improvement in wear resistance due to the high density of MC type carbide, which supports the high performance of the steel of the present invention in interrupted cutting. : Despite the area occupation rate of MC type carbide, which has remarkable grindability, it can be manufactured economically even with precision cutting tools such as 1p1 bob and pinion due to its miniaturization. It is shown that.

(5KH57の溶解材は、約130%の被研削性を下す
)すなわち、本発明鋼に5KH57および5KHIQと
比較して、格段にすぐnでいることが明らかである。
(The melted material of 5KH57 lowers the grindability by about 130%.) In other words, it is clear that the steel of the present invention has a much faster grindability than 5KH57 and 5KHIQ.

第1図および第2図に上述の緒特性の一部を図化し、本
発明の有意義性を明確にしたものである。第1図に示し
た曲線にMO型型化化物面積占有率と■;比摩耗量との
関係、■;高速切削における完全寿命1での切削長との
関係を示したがいずnも本発明範囲では著しい耐摩耗性
の向上や切削長の急増を示すが本発明の上限でにそn以
上発展性の可能性が少ない状態を示している。更に、第
2図は低速切削で195m切削した時のフランク摩耗量
とMO型型化化物面積占有率との関係を図化したもので
あるが、′こ扛も本質的に第1図と同じ意味を示してい
る。
Some of the above-mentioned characteristics are illustrated in FIGS. 1 and 2 to clarify the significance of the present invention. The curves shown in Fig. 1 show the relationship between the area occupation rate of the MO-type compound and (■) the specific wear amount, and (■) the relationship with the cutting length at full life 1 in high-speed cutting. Although this shows a remarkable improvement in wear resistance and a sudden increase in the cutting length, at the upper limit of the present invention, there is little possibility of further development. Furthermore, Fig. 2 plots the relationship between flank wear amount and MO type compound area occupation rate when cutting 195 m at low speed, but this is essentially the same as Fig. 1. shows meaning.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図B M O型炭化物の面積占有率と比摩耗量との
関係を示すグラフ、第2図は低速切削時のフランク摩耗
量とMO型型化化物面積占有率との関係を示すグラフで
ある。 代理人弁理士  河 内 潤 二
Figure 1 B is a graph showing the relationship between the area occupation rate of MO type carbide and specific wear amount. Figure 2 is a graph showing the relationship between the flank wear amount and the area occupation rate of MO type carbide during low speed cutting. be. Representative Patent Attorney Junji Kawauchi

Claims (1)

【特許請求の範囲】 (ll V、Nb、Tiの工種類またばこ扛らの2種類
以上を成分とするMC型炭化物を含み、前記MC型炭化
物は製品にさnたとき平均粒径2μm以下にさnており
、かつ前記MC型炭化物相互間の距離に2μm以下の間
隔で高密度に分布するよう粉末冶金的手法により急速冷
却により、微細組織を持った原料高速度鋼粉末を使用し
て製造さnたことを特徴とする粉末高速度鋼〇 (2)前記MC型炭化物の面積占有率は製品にさtたと
き30〜45チである特許請求の範囲第1項Vこ記載の
粉末高速度鋼。 (力前記粉末高速度@はそnぞ扛重量%で主成分力C1
,8〜3.a%、Or3.5−5.0%、w7.Q+l
 1.09J 、MO3,0−5,0%、Co7.0〜
I Q、Oチであって; V、Nb、Tiの1種類ある
いはこtlらの中の2種類以上の和が8.0〜11.o
チで残部にsi 0.1−0.6%9Mno1〜o6φ
1トFeおヨヒ不紬物からナル特許請求の範囲第1項ま
たに第2項に記載の粉末高速度鋼。 (4)前記粉末高速度鋼は粉末圧粉成形および熱j11
1塑性加工が可能である特許請求の範囲第1.rJ、第
2項またに第3項に記載の粉末高速度鋼。
[Scope of Claims] (II) Contains an MC type carbide containing two or more types of V, Nb, and Ti as components, and the MC type carbide has an average particle size of 2 μm or less when incorporated into a product. using raw material high-speed steel powder that has a fine structure by rapid cooling using a powder metallurgy method so that the MC type carbides are densely distributed at intervals of 2 μm or less between each other. Powdered high-speed steel (2) characterized in that the area occupation rate of the MC type carbide is 30 to 45 cm when added to a product.Claim 1.V. High speed steel.(The power mentioned above is powder high speed@, so the principal component force C1 is the weight% of the powder.
, 8-3. a%, Or3.5-5.0%, w7. Q+l
1.09J, MO3.0-5.0%, Co7.0~
I Q, Ochi; one type of V, Nb, Ti, or the sum of two or more types of these tl is 8.0 to 11. o
Si 0.1-0.6%9Mno1~o6φ
1. Powdered high-speed steel according to claim 1 or 2, which is made from 100% Fe or 100% Fe. (4) The powder high speed steel is powder compacted and heated
1.Claim No. 1 in which plastic working is possible. rJ, the powder high speed steel according to item 2 or 3.
JP856882A 1982-01-22 1982-01-22 Powdered high speed steel Granted JPS58126963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP856882A JPS58126963A (en) 1982-01-22 1982-01-22 Powdered high speed steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP856882A JPS58126963A (en) 1982-01-22 1982-01-22 Powdered high speed steel

Publications (2)

Publication Number Publication Date
JPS58126963A true JPS58126963A (en) 1983-07-28
JPH0143017B2 JPH0143017B2 (en) 1989-09-18

Family

ID=11696656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP856882A Granted JPS58126963A (en) 1982-01-22 1982-01-22 Powdered high speed steel

Country Status (1)

Country Link
JP (1) JPS58126963A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117250A (en) * 1984-06-22 1986-06-04 Nachi Fujikoshi Corp High speed tool steel having superior weldability
JPS63297510A (en) * 1987-05-29 1988-12-05 Kubota Ltd Composite member having excellent resistance to wear, seizure and surface roughening and its production
US4863515A (en) * 1986-12-30 1989-09-05 Uddeholm Tooling Aktiebolag Tool steel
JPH01252704A (en) * 1988-03-31 1989-10-09 Kubota Ltd Complex member and its manufacture
JPH01252703A (en) * 1988-03-31 1989-10-09 Kubota Ltd Roll for rolling shaped steel and manufacture thereof
JPH02125848A (en) * 1988-11-04 1990-05-14 Hitachi Metals Ltd Sintered hard alloy with fine structure and its production

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4978606A (en) * 1972-12-02 1974-07-29
JPS5049156A (en) * 1973-09-01 1975-05-01
JPS5049109A (en) * 1973-09-01 1975-05-01
JPS5049108A (en) * 1973-09-01 1975-05-01
US3936299A (en) * 1969-05-07 1976-02-03 Crucible Inc. Method for producing tool steel articles
JPS5172906A (en) * 1974-12-23 1976-06-24 Hitachi Metals Ltd Tankabutsuo fukashitakosokudokoguko
JPS5428822A (en) * 1977-08-08 1979-03-03 Taishiyou Kk Bacteriocide for agriculture and horticulture
JPS5541980A (en) * 1978-09-20 1980-03-25 Crucible Inc Powder metallurgical steel products containing large amount of vanadium carbide
JPS5550404A (en) * 1978-10-07 1980-04-12 Kobe Steel Ltd Treating method of tool steel powder sintered body
JPS55122801A (en) * 1979-03-15 1980-09-20 Daido Steel Co Ltd High speed steel powder and sintered body thereof
JPS5822359A (en) * 1981-07-30 1983-02-09 Mitsubishi Metal Corp Iron base sintered alloy for structural member of fuel supply apparatus
JPS5873750A (en) * 1981-10-28 1983-05-04 Toyota Motor Corp Wear resistant sintered alloy

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3936299A (en) * 1969-05-07 1976-02-03 Crucible Inc. Method for producing tool steel articles
JPS4978606A (en) * 1972-12-02 1974-07-29
JPS5049156A (en) * 1973-09-01 1975-05-01
JPS5049109A (en) * 1973-09-01 1975-05-01
JPS5049108A (en) * 1973-09-01 1975-05-01
JPS5172906A (en) * 1974-12-23 1976-06-24 Hitachi Metals Ltd Tankabutsuo fukashitakosokudokoguko
JPS5428822A (en) * 1977-08-08 1979-03-03 Taishiyou Kk Bacteriocide for agriculture and horticulture
JPS5541980A (en) * 1978-09-20 1980-03-25 Crucible Inc Powder metallurgical steel products containing large amount of vanadium carbide
JPS5550404A (en) * 1978-10-07 1980-04-12 Kobe Steel Ltd Treating method of tool steel powder sintered body
JPS55122801A (en) * 1979-03-15 1980-09-20 Daido Steel Co Ltd High speed steel powder and sintered body thereof
JPS5822359A (en) * 1981-07-30 1983-02-09 Mitsubishi Metal Corp Iron base sintered alloy for structural member of fuel supply apparatus
JPS5873750A (en) * 1981-10-28 1983-05-04 Toyota Motor Corp Wear resistant sintered alloy

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117250A (en) * 1984-06-22 1986-06-04 Nachi Fujikoshi Corp High speed tool steel having superior weldability
US4863515A (en) * 1986-12-30 1989-09-05 Uddeholm Tooling Aktiebolag Tool steel
JPS63297510A (en) * 1987-05-29 1988-12-05 Kubota Ltd Composite member having excellent resistance to wear, seizure and surface roughening and its production
JPH01252704A (en) * 1988-03-31 1989-10-09 Kubota Ltd Complex member and its manufacture
JPH01252703A (en) * 1988-03-31 1989-10-09 Kubota Ltd Roll for rolling shaped steel and manufacture thereof
JPH02125848A (en) * 1988-11-04 1990-05-14 Hitachi Metals Ltd Sintered hard alloy with fine structure and its production

Also Published As

Publication number Publication date
JPH0143017B2 (en) 1989-09-18

Similar Documents

Publication Publication Date Title
US9127336B2 (en) Hot-working steel excellent in machinability and impact value
JP2016505094A (en) High hardness low alloy wear resistant steel sheet and method for producing the same
JP2004169177A (en) Alloy tool steel, its manufacturing method, and die using it
GB2030175A (en) Powder metallurgy articles with high vanadium-carbide content
US10233793B2 (en) Valve seat of sintered iron-based alloy
KR20170026220A (en) Steel for mold and mold
CN102747282A (en) High-hardness high-tenacity wear-resistant steel plate and production method thereof
KR100836699B1 (en) Die steel
JP3809185B2 (en) High speed steel manufactured by powder metallurgy
JP2020070457A (en) Hot work tool steel having excellent thermal conductivity
KR950005927B1 (en) Wear-resistant steel
JP2006161144A (en) Carburizing rolled steel having excellent high temperature carburizing property and hot forgeability
JPS58126963A (en) Powdered high speed steel
US6258147B1 (en) Cemented carbide with a hardenable binder phase
JP3521190B2 (en) High-strength chromium steel for carburizing and carbonitriding
JPH0512424B2 (en)
US5063116A (en) Wire for dot printer
JP2017203190A (en) Ferritic free cutting stainless steel and production process therefor
JP2005281857A (en) Raw material for nitrided component having excellent broaching workability and method for manufacturing nitrided component using the raw material
JP2019116688A (en) Powder high speed tool steel
KR950005928B1 (en) Wear resistant steel
JP6537342B2 (en) High-speed nitrided powder tool steel with excellent hardness, toughness and wear resistance
JPH05171373A (en) Powder high speed tool steel
JP7214313B2 (en) High toughness cold work tool steel with high wear resistance
JPS5952227B2 (en) high speed tool steel