JPH0512424B2 - - Google Patents
Info
- Publication number
- JPH0512424B2 JPH0512424B2 JP58074514A JP7451483A JPH0512424B2 JP H0512424 B2 JPH0512424 B2 JP H0512424B2 JP 58074514 A JP58074514 A JP 58074514A JP 7451483 A JP7451483 A JP 7451483A JP H0512424 B2 JPH0512424 B2 JP H0512424B2
- Authority
- JP
- Japan
- Prior art keywords
- steel
- carbonitride
- powder
- tool steel
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910001315 Tool steel Inorganic materials 0.000 claims description 28
- 239000000843 powder Substances 0.000 claims description 28
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 23
- 229910000851 Alloy steel Inorganic materials 0.000 claims description 13
- 238000005245 sintering Methods 0.000 claims description 9
- 229910052804 chromium Inorganic materials 0.000 claims description 7
- 238000005242 forging Methods 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 7
- 229910052721 tungsten Inorganic materials 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 229910052726 zirconium Inorganic materials 0.000 claims description 6
- 229910052735 hafnium Inorganic materials 0.000 claims description 5
- 229910052748 manganese Inorganic materials 0.000 claims description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 229910052758 niobium Inorganic materials 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 229910052715 tantalum Inorganic materials 0.000 claims description 5
- 229910052720 vanadium Inorganic materials 0.000 claims description 5
- 229910052727 yttrium Inorganic materials 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims 1
- 230000000694 effects Effects 0.000 description 22
- 229910000831 Steel Inorganic materials 0.000 description 20
- 150000001247 metal acetylides Chemical class 0.000 description 20
- 239000010959 steel Substances 0.000 description 20
- 239000000203 mixture Substances 0.000 description 12
- 239000002245 particle Substances 0.000 description 12
- 238000007792 addition Methods 0.000 description 9
- 238000001556 precipitation Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 239000011651 chromium Substances 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 210000001787 dendrite Anatomy 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 238000005275 alloying Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 230000005496 eutectics Effects 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- 229910052706 scandium Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910000822 Cold-work tool steel Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000007723 die pressing method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000009689 gas atomisation Methods 0.000 description 1
- 238000001513 hot isostatic pressing Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000000988 reflection electron microscopy Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Description
本発明は、耐摩耗性と耐熱性にすぐれ、高速度
工具鋼または熱間・冷間工具鋼として好適な焼結
工具鋼に関する。
The present invention relates to a sintered tool steel that has excellent wear resistance and heat resistance and is suitable as a high speed tool steel or a hot/cold work tool steel.
工具鋼に要求される耐摩耗性と耐熱性とを高め
るためには、硬質かつ耐熱性の炭化物、窒化物ま
たは炭窒化物(炭化物と窒化物とは通常複合体と
して存在するので、以下、「炭窒化物」で一括し
てあらわす。)を、できるだけ多量に鋼中に存在
させなければならない。このような工具鋼を溶製
法で製造しようとしても、熱間加工性、被研削性
あるいは靱性の点で、工具への加工および使用に
制約があるので、焼結法が好んで採用される。粉
末治金によれば、溶製法にくらべて微細な炭化物
を均一に分散させ得るという有利さもある。
しかし、粉末鋼においても、炭化物の粒径や分
布状態は、粉末製造における凝固時の冷却速度に
よつて左右され、冷却がおそいと、炭化物の粒子
が成長してしまう。このことは、粉末鋼の製造に
当つて、微細な炭化物を均一に分散させたものを
得ようとすると、粉末も微細なものしか使用でき
ず、粒径の大きいものがふるい分けて除かなけれ
ばならず、収率が低くなることを意味する。炭窒
化物の粒径は添加合金量によつても異なり、高合
金ほど大きくなりやすい。また、一般に炭窒化物
の量が多いほど鍛造加工性は低くなるが、同じ量
であれば鍛造加工性の低下は、その粒径が大きい
程著しい。
このようなわけで、従来製造され使用されてき
た焼結鋼は、合金の程度および炭化物の含有量に
おいて、溶製鋼のそれを大幅に上回ることはでき
なかつた。
In order to increase the wear resistance and heat resistance required for tool steel, hard and heat-resistant carbides, nitrides, or carbonitrides (carbides and nitrides usually exist as a composite, so below) Carbonitrides (hereinafter referred to collectively as "carbonitrides") must be present in as large a quantity as possible in the steel. Even if it is attempted to manufacture such a tool steel by a melting process, there are restrictions on processing and use of the tool steel in terms of hot workability, grindability, or toughness, so a sintering process is preferably employed. Powder metallurgy also has the advantage that fine carbides can be uniformly dispersed compared to melting methods. However, even in powder steel, the particle size and distribution state of carbides are influenced by the cooling rate during solidification during powder production, and if cooling is slow, carbide particles will grow. This means that when manufacturing powdered steel, in order to obtain fine carbides that are uniformly dispersed, only fine powder can be used, and large grains must be sieved out. This means that the yield will be lower. The grain size of carbonitrides also varies depending on the amount of added alloy, and tends to become larger as the alloy becomes higher. In general, the larger the amount of carbonitride, the lower the forging workability, but if the amount is the same, the decrease in forging workability is more significant as the grain size becomes larger. For this reason, the sintered steels that have been produced and used in the past have not been able to significantly exceed that of molten steel in terms of degree of alloying and carbide content.
本発明はこのような問題を解決し、従来より高
合金にすることにより鋼中に多量の炭窒化物を存
在させてもその粒子が大きくならず、しかも均一
に分布した粉末合金鋼を得ること、また、粉末の
粒径による制約が少なく、使用できる粉末の収率
を高くすること、そしてこれを焼結して得た素材
が鍛造加工性にすぐれ、製品工具が高い耐摩耗性
と耐熱性とを示す焼結工具鋼を提供することを目
的とする。
The present invention solves these problems and obtains a powder alloy steel in which the particles do not become large even when a large amount of carbonitrides are present in the steel and are evenly distributed by making the steel higher in alloy than before. In addition, there are fewer restrictions due to the particle size of the powder, increasing the yield of usable powder, and the material obtained by sintering this material has excellent forging workability, and the product tool has high wear resistance and heat resistance. The object of the present invention is to provide a sintered tool steel that exhibits the following properties.
本発明の焼結工具鋼は、基本的組成として、
C:0.35〜10.0%、Si:0.1〜2.0%、Mn:0.1〜
1.5%、Cr:3.0〜20.0%、REM(希土類元素)の
1種または2種以上(2種以上のときは合計
量):0.001〜0.60%を含有し、N:0.30%以下、
O:0.03%以下であつて、炭窒化物:5〜75%が
存在し、残余がFeおよび不純物からなる合金鋼
を対象とし、その粉末を焼結してなるものであ
る。
ここで、「REM」とは、La,Ce,Pr,Nd,
Smを代表とするランタニド系希土類元素を意味
する。
本発明の焼結工具鋼は、上記した基本組成に加
えて種々の合金元素を添加した組成があり得る。
第一の態様は、基本組成に対して、Mo:0.10
〜20.0%、W:0.10〜20.0%、V:0.01〜30.0%、
Co:0.01〜30.0%、Nb:0.01〜30.0%、Ta:0.01
〜10.0%、Zr:0.001〜10.0%、Ti:0.001〜10.0
%、Hf:0.001〜2.0%、Sc:001〜2.0%および
Y:0.001〜2.0%からえらんだ1種または2種以
上を加えたものである。
本発明の焼結工具鋼の第二の変更態様は、前記
の基本組成に対して、Ni:0.25〜2.0%、Cu:
0.25〜2.0%およびB:0.001〜0.050%の1種、2
種または3種を加えたものである。
本発明の焼結工具鋼の第三の変更態様は、上述
した第一および第二の変更態様の組み合わせであ
る。すなわち、前記の基本組成に加えて、Mo:
0.10〜20.0%、W:0.10〜20.0%、V:0.01〜30.0
%、Co:0.01〜30.0%、Nb:0.01〜30.0%、
Ta:0.01〜10.0%、Zr:0.001〜10.0%、Ti:
0.001〜10.0%、Hf:0.001〜2.0%、Sc:0.001〜
2.0%およびY:0.001〜2.0%の1種または2種以
上、ならびに、Ni:0.25〜2.0%、Cu:0.25〜2.0
%およびB:0.001〜0.050%の1種、2種または
3種を含有する合金鋼の粉末を焼結してなる焼結
工具鋼である。
本発明の焼結工具鋼を形成する合金鋼粉末の製
造は、従来確立されているところに従つて、所望
の合金元素を含む溶鋼を、水噴霧、ガス(アルゴ
ン、窒素など)噴霧、あるいは両者の組み合わせ
など、任意の技術をえらんで、アトマイズ処理す
ることにより行なえばよい。
そのようにして得た合金鋼粉末の焼結もまた、
既知の手段により実施できる。好ましい方法は、
粉末を軟鋼製カプセルに充填して脱気後、必要な
らば窒化処理を行ない、圧縮成形して製品形状を
与えることである。圧縮成形は、近年普及が著し
い熱間静水圧プレスが好適であるが、ダイプレス
や鍛造によつてもよい。焼結およびその後の熱処
理は、合金鋼成分に応じて選択すべきであろう。
なお、本発明の焼結工具鋼に快削性をもたせた
い場合にはS,Al,Ca,Mg,Pb,Teなどの快
削元素を1種または2種以上、0.2%以下含有さ
せることができ、このような焼結工具鋼も本発明
の範囲に含まれる。
The basic composition of the sintered tool steel of the present invention is as follows:
C: 0.35~10.0%, Si: 0.1~2.0%, Mn: 0.1~
Contains 1.5%, Cr: 3.0 to 20.0%, one or more REM (rare earth elements) (total amount if two or more): 0.001 to 0.60%, N: 0.30% or less,
The alloy steel is made by sintering the powder of O: 0.03% or less, carbonitride: 5 to 75%, and the balance consisting of Fe and impurities. Here, "REM" means La, Ce, Pr, Nd,
It means a lanthanide rare earth element represented by Sm. The sintered tool steel of the present invention may have a composition in which various alloying elements are added in addition to the basic composition described above. The first embodiment has Mo: 0.10 with respect to the basic composition.
~20.0%, W: 0.10~20.0%, V: 0.01~30.0%,
Co: 0.01~30.0%, Nb: 0.01~30.0%, Ta: 0.01
~10.0%, Zr: 0.001~10.0%, Ti: 0.001~10.0
%, Hf: 0.001 to 2.0%, Sc: 001 to 2.0%, and Y: 0.001 to 2.0%. A second modification of the sintered tool steel of the present invention is that the basic composition is Ni: 0.25 to 2.0% and Cu:
0.25-2.0% and B: 0.001-0.050% type 1, 2
A species or a combination of three species. A third variant of the sintered tool steel of the invention is a combination of the first and second variants described above. That is, in addition to the above basic composition, Mo:
0.10~20.0%, W: 0.10~20.0%, V: 0.01~30.0
%, Co: 0.01-30.0%, Nb: 0.01-30.0%,
Ta: 0.01~10.0%, Zr: 0.001~10.0%, Ti:
0.001~10.0%, Hf: 0.001~2.0%, Sc: 0.001~
2.0% and Y: 0.001~2.0%, one or more types, and Ni: 0.25~2.0%, Cu: 0.25~2.0
% and B: 0.001 to 0.050% of one type, two types, or three types of alloy steel powder is sintered. The production of the alloy steel powder forming the sintered tool steel of the present invention is carried out by spraying molten steel containing the desired alloying elements with water spray, gas (argon, nitrogen, etc.) spray, or both. The atomization process may be carried out by selecting an arbitrary technique such as a combination of the above. Sintering of the alloy steel powder thus obtained also
This can be done by known means. The preferred method is
After filling the powder into a mild steel capsule and deaerating it, it is subjected to nitriding treatment if necessary, and then compression molded to give the product shape. For compression molding, hot isostatic pressing, which has become popular in recent years, is suitable, but die pressing or forging may also be used. Sintering and subsequent heat treatment should be selected depending on the alloy steel composition. In addition, if it is desired to impart free machinability to the sintered tool steel of the present invention, one or more free machining elements such as S, Al, Ca, Mg, Pb, and Te may be contained in an amount of 0.2% or less. and such sintered tool steels are also included within the scope of the present invention.
前記した基本組成の各合金成分の役割とその限
定理由は、つぎのとおりである。
C:0.35〜10.0%
Cは、Cr,Mo,W,V,Ti,Zr,REMなど
の元素と結合して硬い複炭化物を形成し、工具に
必要な耐摩耗性の向上に寄与するとともに、基地
中に固溶して、やはり工具に要求される硬さを与
える。適切な添加量は炭窒化物形成元素との関係
で異なるが、0.35%より低いときは焼入時に基地
中に固溶するC量が不足し、HRC58以上の焼も
どし硬さを得ることが困難になる。一方、多量に
添加するほど耐摩耗性は増大するが、鍛造性およ
び靱性が低下するので、10%までに止める。
Si:0.1〜2.0%
Siは脱酸剤として添加し、通常0.1〜0.5%含有
させるが、さらに多くの量を加えれば炭窒化物の
析出反応を促進させて、その微細化をはかること
ができる。また、焼入時を向上させるとともに固
溶基地を強化して降伏点を高め、高温における表
面酸化を防ぐとともに疲労限界を向上させる効果
をもつ。ただし、過大になると、熱伝導度の低下
と靱性の低下が工具寿命を短くするので、2.0%
を上限とした。
Mn:0.1〜1.5%
これもSi同様に脱酸剤として添加するが、焼入
性の向上にも寄与する。脱酸効果をあげるために
は、少なくとも0.1%の添加を必要とするが、多
量にしすぎると、Mn化合物の析出により靱性や
焼もどし軟化抵抗性が低下し、また加工硬化が著
しくなつて被削性が落ちるので、1.5%以下にし
た。
Cr:3.0〜20.0%
CrはCと結合して複合炭化物を形成し、耐摩
耗性の向上に大い役立つほか、基地中にも多量に
固溶して焼入性を高めるとともに、耐酸化性をも
よくする。これらの効果は、最小3.0%の添加か
ら得られるが、もちろん多量になるほど高い。た
だし、あまり高含有量になると、靱性や焼もどし
軟化抵抗性の増大硬化は頭打ちとなり、かえつて
脆化の傾向がみられる。本発明に従つて、REM
を添加すると、Crが多量であつても脆化は緩和
され、熱間加工性が明瞭に改善される。これは、
REMの存在が、通常は巨大針状結晶となるM7C3
型共晶炭化物をごく微細なものとし、かつ均一に
分散させるためと思われる。この効果が認められ
るCr含有量の上限が、20.0%である。
REM:0.001〜0.60%
REMは、希土類炭窒化物を形成する重要な元
素である。この炭窒化物はきわめて微細かつ均一
に分散し、安定であつて、MC,M6CおよびM23
C6型の炭窒化物の析出反応にも影響を及ぼし、
その析出の核の役目をはたす。その結果、全体の
炭窒化物は微細かつ均一に分散し、耐摩耗性を高
めるとともに、靱性や硬度の低下が防げるのであ
る。この結果は、REMの1種または2種以上
(2種以上の場合は合計で)少なくとも0.005%添
加すれば得られる。多量に添加すると熱間加工性
が劣るから、0.60%を限度と定めた。
REMは、鋼が溶触状態にある1400〜1500℃の
温度域で、溶鋼中から直接に炭窒化物を形成し、
前記したように、きわめて微細に析出する。この
炭窒化物は鋼中の一部分に偏析することがなく、
かつこれが粉末の凝固時に炭窒化物生成反応の核
となつて共晶反応を短時間で終了させる。そのた
め、多量の炭窒化物を含有させた場合でも、その
デンドライトアーム間隔を小さく、また粒状晶の
平均粒間距離を小さくすることができる。これ
が、REM添加の効果が発現する機構と考えられ
る。
また、上記のようにしてできた希土類炭窒化物
を核とした共晶炭窒化物は分解しやすく、後の加
工や熱処理により再度微細化するので、焼結工具
鋼中で多量の炭窒化物は微細かつ均一に分散して
存在する。この事実は、製品のミクロ組織を鏡検
することにより確められた。
溶製工具鋼においてREMの添加が炭窒化物を
微細化する効果をもつことは、出願人が見出し
て、すでに開示したところである(特願昭56−
27611号、56−27612号および56−80062号)。今
回、このREM添加の効果が焼結工具鋼において、
その固有の問題である冷却速度の影響、換言すれ
ば粉末の粒径の制約を免れさせ、粉末製造性を高
めるとともに、より高合金の鋼の使用を可能にし
て、焼結合金工具鋼の限界を打破し、さらに改良
された工具製品を与えることを知つて、本発明を
完成した。
炭窒化物:5〜75%
炭窒化物は工具鋼に要求されると硬さと耐摩耗
性とを担う成分であつて、少なくとも5%の存在
が必要である。一方、75%を超える存在は、靱性
を著しく低下させて工具として使用できない材料
を与える。
不純物としてのNおよびOは、次の理由で、そ
れぞれ前記した限界内に規制する必要がある。
N:0.30%以下
Nは、窒化物を形成し、この限界を超えると巨
大な炭窒化物を鋼中に存在させることになつて、
工具の性能をそこなう。
O:0.03%以下
Oは酸化物を形成し、この限界を超えると焼結
性を劣化させるため、やはり工具の性能をそこな
う。
本発明の焼結工具鋼の第一の変更態様において
添加する元素は、いずれも鋼の基地を強化し、耐
熱性、耐摩耗性、靱性などを向上させるという共
通の効果をもつが、その作用はいくつかのグルー
プに分けて理解することが便宜なので、以下に説
明する。MoおよびW:0.10〜20.0%
MoおよびWはCと結合して微細なM2C型また
はM6C型の複合炭化物を形成し、かつ基地中に
固溶してこれを強化するので、耐摩耗性や高温硬
さを高めるとともに、焼もどし軟化抵抗性の向上
や耐ヒートチエツク性の改善にも寄与する。これ
らの添加により耐摩耗性と焼入性は高炭素高クロ
ム鋼のそれと同等またはそれ以上になる。0.10%
程度の小量でも効果が認められ、一方、20%を超
えて添加してもそれ以上効果が増さないので、上
記の範囲をえらんだ。
V:0.01〜30.0%
Cと結合して硬く固溶しにくいMC型炭化物を
生成するので、耐摩耗性の向上と焼もどし硬さの
増大に寄与し、さらに結晶粒を微細化する結果、
靱性向上にもプラスにはたらく。この効果を得る
には、少なくとも0.01%の添加を必要とする。
MC型炭化物による耐摩耗性の向上に伴いがちな
被削性や靱性の低下は、SiやREMの存在による
MC型炭化物の微細化および均一分散の効果によ
り大いに緩和されるから、Vをかなり多量に、上
記30%程度まで添加することができる。
Co:0.01〜30.0%
基地中に固溶してこれを強化し、炭化物の析出
および凝集をおくらせ、高温における硬さと耐力
とを向上させる。従つて、耐熱性、耐摩耗性の向
上に著しい効果がある。この効果は0.01%という
微量から認められる。多量になると、固溶から
Co単独相の晶出が起つて内部歪を大きくし、靱
性に悪影響があるので、30.0%の上限を設けた。
Nb:0.01〜30.0%、Ta:0.01〜10.0%
ともに高融点の微細な特殊炭化物を形成するた
め、鍛造、圧延、焼入れの際の温度上昇がひき起
す結晶粒の粗大化を防ぐ。REMとの複合添加は、
高融点で微細なNb/REM−炭化物またはTa/
REM−炭化物の生成をもたらす。これらの炭化
物は、M7C3型、MC型、M6C型およびM23C6型
炭化物の析出反応にも関与し、それらの形成核の
役割をたはす結果、炭化物の微細かつ均一な分布
が得られる。0.01%以上のNbまたはTaがこの効
果を与える。
上限は、焼もどし軟化抵抗や靱性の低下にもと
づいて定めた。
ZrおよびTi:0.001〜10.0%、Hf,ScおよびY:
0.001〜2.0%
これらの元素はNを固定してMC型炭化物の微
細析出に間接的に貢献するとともに、結晶粒の微
細化効果をもつので、靱性を向上させる。その効
果は、いずれも0.001%という微量から得られる。
ただし、多量にしすぎるとMC型の炭化物が巨大
になり、またこれら元素の結晶粒界への優先析出
が起つて脆化現象がみられる。上限はこの観点か
ら定めたものである。
本発明の焼結工具鋼の第二の変更態様において
使用する添加元素は、いずれも焼入性を向上させ
て靱性を高めるものであるが、固有の性質を組成
範囲の限定理由とともに示せば、つぎのとおりで
ある。
Ni:0.25〜2.0%
焼入性の向上に加えて結晶粒微細化の作用もあ
るので、靱性を高める効果が大きいが、そのため
には少なくとも0.25%の添加を必要とする。多量
になると残留オーステナイト量の急激な増大によ
り焼もどし軟化抵抗性と靱性の低下をきたすと同
時に、被削性が劣つてくるので、2.0%を限界と
する。
Cu:0.25〜2.0%
焼入性の向上に加えて初期炭化物の析出を抑制
することにより、靱性を高める。この効果は0.25
%以上の含有量で得られる。一方、2.0%を超え
るCuは、材料の表層部に濃偏析して結晶粒界を
脆化させる。
B:0.001〜0.050%
上記の0.001%のような極微量でも、Bは焼入
性を著しく向上させる。これは、焼入れ時の冷却
過程でオーステナイト結晶粒界への初析炭化物の
析出を抑制する作用による。多量のBの添加は、
多量のホウ化物の生成をひき起して鍛造性を損な
うので、0.050%を上限界とする。
The role of each alloy component in the basic composition described above and the reason for its limitation are as follows. C: 0.35-10.0% C combines with elements such as Cr, Mo, W, V, Ti, Zr, and REM to form hard double carbides, contributing to improving the wear resistance required for tools, It forms a solid solution in the base and gives the tool the required hardness. The appropriate amount of addition varies depending on the carbonitride-forming element, but if it is lower than 0.35%, the amount of C dissolved in the matrix during quenching will be insufficient, making it difficult to obtain a tempered hardness of HRC58 or higher. become. On the other hand, the larger the amount added, the higher the wear resistance, but the lower the forgeability and toughness, so it should be limited to 10% or less. Si: 0.1-2.0% Si is added as a deoxidizing agent and is normally contained at 0.1-0.5%, but if a larger amount is added, it can accelerate the precipitation reaction of carbonitrides and make them finer. . In addition, it improves the hardening process, strengthens the solid solution base, increases the yield point, prevents surface oxidation at high temperatures, and improves the fatigue limit. However, if it becomes too large, the decrease in thermal conductivity and toughness will shorten the tool life, so 2.0%
was set as the upper limit. Mn: 0.1-1.5% Like Si, this is also added as a deoxidizing agent, but it also contributes to improving hardenability. In order to achieve a deoxidizing effect, it is necessary to add at least 0.1%, but if the amount is too large, the toughness and temper softening resistance will decrease due to the precipitation of Mn compounds, and the work hardening will become significant, making it difficult to cut the workpiece. Since the quality decreases, it was set to 1.5% or less. Cr: 3.0 to 20.0% Cr combines with C to form composite carbides, which greatly contributes to improving wear resistance, and is also dissolved in large quantities in the base, improving hardenability and improving oxidation resistance. Make things better too. These effects can be obtained with a minimum addition of 3.0%, but of course the higher the amount, the better. However, if the content becomes too high, the increase in toughness and temper softening resistance will reach a plateau, and there will be a tendency for embrittlement. According to the invention, REM
By adding Cr, even if a large amount of Cr is added, embrittlement is alleviated and hot workability is clearly improved. this is,
The presence of REM usually results in giant needle-like crystals M 7 C 3
This seems to be because the type eutectic carbide is made very fine and dispersed uniformly. The upper limit of the Cr content at which this effect is observed is 20.0%. REM: 0.001~0.60% REM is an important element that forms rare earth carbonitrides. This carbonitride is extremely finely and uniformly dispersed and stable, and is highly resistant to MC, M 6 C and M 23
It also affects the precipitation reaction of C6 type carbonitride,
It serves as the nucleus for the precipitation. As a result, the entire carbonitride is finely and uniformly dispersed, improving wear resistance and preventing a decrease in toughness and hardness. This result can be obtained by adding at least 0.005% of one or more REMs (in the case of two or more, in total). Since hot workability deteriorates when added in large amounts, a limit of 0.60% was set. REM forms carbonitrides directly from molten steel in the temperature range of 1400 to 1500℃, where the steel is in a molten state.
As mentioned above, it precipitates extremely finely. This carbonitride does not segregate in a part of the steel,
Moreover, this serves as a nucleus for the carbonitride production reaction when the powder is solidified, and the eutectic reaction is completed in a short period of time. Therefore, even when a large amount of carbonitride is contained, the distance between the dendrite arms and the average intergranular distance of the granular crystals can be reduced. This is considered to be the mechanism by which the effect of REM addition is expressed. In addition, the eutectic carbonitride with rare earth carbonitride as a core formed in the above manner is easily decomposed and becomes finer again through subsequent processing and heat treatment, so a large amount of carbonitride remains in the sintered tool steel. exist finely and uniformly dispersed. This fact was confirmed by microscopic examination of the product's microstructure. The applicant has discovered and already disclosed that the addition of REM has the effect of refining carbonitrides in molten tool steel (Patent Application No. 1983-
27611, 56-27612 and 56-80062). This time, the effect of this REM addition was demonstrated in sintered tool steel.
By avoiding the inherent problem of the influence of cooling rate, in other words, the restriction of powder particle size, we are able to improve powder manufacturability, enable the use of higher alloy steel, and limit the limits of sintered alloy tool steel. The present invention was completed knowing that it would overcome this problem and provide a further improved tool product. Carbonitride: 5-75% Carbonitride is a component responsible for the hardness and wear resistance required for tool steel, and must be present in an amount of at least 5%. On the other hand, the presence of more than 75% significantly reduces toughness and renders the material unusable as a tool. N and O as impurities must be controlled within the limits described above for the following reasons. N: 0.30% or less N forms nitrides, and if this limit is exceeded, huge carbonitrides will be present in the steel.
It will impair the performance of the tool. O: 0.03% or less O forms an oxide, and if this limit is exceeded, the sinterability deteriorates, which also impairs the performance of the tool. The elements added in the first modification of the sintered tool steel of the present invention all have the common effect of strengthening the steel base and improving heat resistance, wear resistance, toughness, etc. It is convenient to understand it by dividing it into several groups, so they will be explained below. Mo and W: 0.10-20.0% Mo and W combine with C to form fine M 2 C-type or M 6 C-type composite carbides, and solidly dissolve in the matrix to strengthen it. In addition to increasing wear resistance and high-temperature hardness, it also contributes to improving resistance to temper softening and heat check resistance. These additions make wear resistance and hardenability equal to or better than that of high carbon, high chromium steel. 0.10%
The above range was chosen because the effect was observed even with a small amount, but the effect did not increase any further when added in excess of 20%. V: 0.01-30.0% Combines with C to form MC type carbides that are hard and difficult to form solid solutions, contributing to improved wear resistance and increased tempering hardness, and further refines crystal grains.
It also has a positive effect on improving toughness. To achieve this effect, an addition of at least 0.01% is required.
The decrease in machinability and toughness that tends to accompany the improvement in wear resistance due to MC type carbides is due to the presence of Si and REM.
Since the effect of fineness and uniform dispersion of MC type carbides greatly alleviates the problem, V can be added in a fairly large amount up to about 30%. Co: 0.01 to 30.0% Co dissolves in the matrix to strengthen it, delay precipitation and aggregation of carbides, and improve hardness and yield strength at high temperatures. Therefore, it has a remarkable effect on improving heat resistance and abrasion resistance. This effect can be seen from as little as 0.01%. When the amount is large, from solid solution
The upper limit of 30.0% was set because crystallization of a single Co phase increases internal strain and adversely affects toughness. Both Nb: 0.01-30.0% and Ta: 0.01-10.0% form fine special carbides with high melting points, thus preventing coarsening of crystal grains caused by temperature increases during forging, rolling, and quenching. Combined addition with REM is
High melting point fine Nb/REM-carbide or Ta/
REM - results in the formation of carbides. These carbides also participate in the precipitation reactions of M 7 C 3 type, MC type, M 6 C type, and M 23 C 6 type carbides, and as a result of playing the role of nuclei for their formation, the carbides are fine and uniform. A distribution is obtained. 0.01% or more of Nb or Ta gives this effect. The upper limit was determined based on temper softening resistance and toughness reduction. Zr and Ti: 0.001-10.0%, Hf, Sc and Y:
0.001 to 2.0% These elements fix N and indirectly contribute to the fine precipitation of MC type carbides, and also have the effect of refining crystal grains, thereby improving toughness. The effects can be obtained from as little as 0.001%.
However, if the amount is too large, the MC type carbide becomes huge and these elements preferentially precipitate at grain boundaries, resulting in embrittlement. The upper limit was determined from this perspective. All of the additive elements used in the second modification of the sintered tool steel of the present invention improve hardenability and toughness, but if the unique properties are shown together with the reason for limiting the composition range, It is as follows. Ni: 0.25-2.0% In addition to improving hardenability, it also has the effect of refining grains, so it has a great effect of increasing toughness, but for this purpose it is necessary to add at least 0.25%. If the amount is too large, the amount of retained austenite will rapidly increase, resulting in a decrease in temper softening resistance and toughness, and at the same time, machinability will deteriorate, so the limit is set at 2.0%. Cu: 0.25-2.0% In addition to improving hardenability, it increases toughness by suppressing the precipitation of initial carbides. This effect is 0.25
% or more. On the other hand, Cu in excess of 2.0% segregates in the surface layer of the material and embrittles grain boundaries. B: 0.001 to 0.050% Even in a very small amount, such as the above 0.001%, B significantly improves hardenability. This is due to the effect of suppressing the precipitation of pro-eutectoid carbides at austenite grain boundaries during the cooling process during quenching. Addition of a large amount of B
Since it causes the formation of a large amount of borides and impairs forgeability, the upper limit is set at 0.050%.
表に示す合金組成(残余はFeおよび不純物)
の鋼を溶解調製し、この溶解をガス噴霧法により
アトマイズ処理して粉末粒径が5×101〜5×103
μの範囲である粉末を含む合金鋼粉末を得た。表
中、No.1〜15は本発明の実施例であり、No.16*お
よび17*は比較例である。
各サンプルについて、その中に含まれている炭
化物を定量するとともに、炭化物の二次デンドラ
イトアーム間隔を測定した。
粉末粒径と二次デンドライトアーム間隔との関
係を第1図に、また粒径103μの粉末における炭
化物量と二次デンドライトアーム間隔との関係を
第2図に、それぞれ示した。本発明に従う組成の
合金鋼は、比較鋼より二次デンドライトアーム間
隔が短く、炭化物の粒子が小さいことがわかる。
炭化物微粒子の分散は、本発明によるものは、い
ずれも高度に均一であつた。
次に、No.15,18*,7,17*,11,16*のサン
プルを軟鋼製カプセルに入れ、温度1170〜1200
℃、圧力1000Kg/cm2の熱間静水圧プレス成形によ
り直径350mmの円柱状に成形すると同時に焼結し
た。続いて熱間で鍛造してから圧延仕上げし、最
終製品の直径28mmの丸棒とした。この製品を抗折
試験にかけて、つぎのような成績を得た。
No. HRC 抵抗力(Kgf/mm2)
15 65 550
18* 60 430
7 69 580
17* 64 380
11 62 410
16* 58 350
Alloy composition shown in table (remainder is Fe and impurities)
of steel is melted and prepared, and this melt is atomized by a gas atomization method to obtain a powder with a particle size of 5×10 1 to 5×10 3
An alloy steel powder was obtained containing powder in the μ range. In the table, Nos. 1 to 15 are examples of the present invention, and Nos. 16* and 17* are comparative examples. For each sample, the amount of carbide contained therein was quantified, and the distance between the secondary dendrite arms of the carbide was measured. The relationship between the powder particle size and the secondary dendrite arm spacing is shown in FIG. 1, and the relationship between the amount of carbide and the secondary dendrite arm spacing in a powder with a particle size of 10 3 μm is shown in FIG. 2, respectively. It can be seen that the alloy steel with the composition according to the invention has a shorter secondary dendrite arm spacing and smaller carbide particles than the comparative steel.
The dispersion of carbide fine particles according to the present invention was highly uniform in all cases. Next, samples No. 15, 18*, 7, 17*, 11, 16* were placed in a mild steel capsule and heated to a temperature of 1170 to 1200.
It was molded into a cylindrical shape with a diameter of 350 mm by hot isostatic press molding at a temperature of 1000 Kg/cm 2 and sintered at the same time. It was then hot forged and rolled to create a final product, a round bar with a diameter of 28 mm. This product was subjected to a bending test and the following results were obtained. No. HRC resistance (Kgf/mm 2 ) 15 65 550 18* 60 430 7 69 580 17* 64 380 11 62 410 16* 58 350
【表】【table】
【表】【table】
本発明の焼結工具鋼を形成する合金鋼粉末は、
高合金組成にして多量の炭窒化物を存在させて
も、その粒子が微細であつて均一に分布している
から、それを焼結して得た素材は鍛造加工性にす
ぐれ、製品工具は高い耐摩耗性と耐熱性を示す。
粉末の製造に当たつて凝固速度を極端に速くする
必要がないから粉末粒径を極微細にしなければな
らないという制約を免れる。このことは、噴霧に
より製造した粉末のうち、使用できるものの歩留
りが高いことを意味する。
The alloy steel powder forming the sintered tool steel of the present invention is
Even if a large amount of carbonitride is present in a high alloy composition, the particles are fine and uniformly distributed, so the material obtained by sintering it has excellent forging workability, and the product tool is Shows high wear resistance and heat resistance.
Since it is not necessary to make the solidification rate extremely high in producing the powder, the restriction that the powder particle size must be made extremely fine can be avoided. This means that the yield of usable powder produced by spraying is high.
第1図は、本発明の焼結工具鋼の製造に用いる
粉末鋼の粒径と、その中の炭窒化物の二次デンド
ライトアーム間隔との関係を、比較鋼のそれとと
もに、一例ずつ示したグラフである。第2図は、
やはり本発明の焼結工具鋼に用いる粉末鋼の炭窒
化物量と二次デンドライトアーム間隔との関係
を、比較鋼のそれとともに示したグラフである。
いずれの図においても、数字は試料番号をあらわ
す。
Figure 1 shows the relationship between the particle size of the powder steel used for manufacturing the sintered tool steel of the present invention and the secondary dendrite arm spacing of carbonitrides therein, along with that of comparative steel, for each example. It is a graph. Figure 2 shows
It is also a graph showing the relationship between the amount of carbonitride and the secondary dendrite arm spacing of the powder steel used in the sintered tool steel of the present invention, together with that of the comparative steel.
In both figures, numbers represent sample numbers.
Claims (1)
〜1.5%、Cr:3.0〜20.0%、REM(希土類元素)
の1種または2種以上(2種以上のときは合計
量):0.001〜0.60%を含有し、N:0.30%以下、
O:0.03%以下であつて、炭窒化物:5〜75%が
存在し、残余がFeおよび不純物である合金鋼の
粉末を焼結してなる焼結工具鋼。 2 C:0.35〜10.0%、Si:0.1〜2.0%、Mn:0.1
〜1.5%、Cr:3.0〜20.0%、REMの1種または2
種以上(2種以上のときは合計量):0.001〜0.60
%に加えて、Mo:0.10〜20.0%、W:0.10〜20.0
%、V:0.01〜30.0%、Co:0.01〜30.0%、Nb:
0.01〜30.0%、Ta:0.01〜10.0%、Zr:0.001〜
10.0%、Ti:0.001〜10.0%、Hf:0.001〜2.0%、
Sc:001〜2.0%およびY:0.001〜2.0%からえら
んだ1種または2種以上を含有し、N:0.30%以
下、O:0.03%以下であつて、炭窒化物:5〜75
%が存在し、残余がFeおよび不純物である合金
鋼の粉末を焼結してなる焼結工具鋼。 3 C:0.35〜10.0%、Si:0.1〜2.0%、Mn:0.1
〜1.5%、Cr:3.0〜20.0%、REMの1種または2
種以上(2種以上のときは合計量):0.001〜0.60
%に加え、Ni:0.25〜2.0%、Cu:0.25〜2.0%お
よびB:0.001〜0.050%の1種、2種または3種
を含有し、N:0.30%以下、O:0.03%以下であ
つて、炭窒化物:5〜75%が存在し、残余がFe
および不純物である合金鋼の粉末を焼結してなる
焼結工具鋼。 4 C:0.35〜10.0%、Si:0.1〜2.0%、Mn:0.1
〜1.5%、Cr:3.0〜20.0%、REMの1種または2
種以上(2種以上のときは合計量):0.001〜0.60
%に加え、Mo:0.10〜20.0%、W:0.10〜20.0
%、V:0.01〜30.0%、Co:0.01〜30.0%、Nb:
0.01〜30.0%、Ta:0.01〜10.0%、Zr:0.001〜
10.0%、Ti:0.001〜10.0%、Hf:0.001〜2.0%、
Sc:0.001〜2.0%およびY:0.001〜2.0%の1種
または2種以上、ならびに、Ni:0.25〜2.0%、
Cu:0.25〜2.0%およびB:0.001〜0.05%の1種、
2種または3種を含有し、N:0.30%以下、0.03
%以下であつて、炭窒化物:5〜75%が存在し、
残余がFeおよび不純物である合金鋼の粉末を焼
結してなる焼結工具鋼。 5 高速度工具鋼、冷間または熱間鍛造用工具鋼
である特許請求の範囲第1項ないし第4項のいず
れかの焼結工具鋼。[Claims] 1 C: 0.35-10.0%, Si: 0.1-2.0%, Mn: 0.1
~1.5%, Cr: 3.0~20.0%, REM (rare earth elements)
Contains one or more of the following (total amount if two or more): 0.001 to 0.60%, N: 0.30% or less,
A sintered tool steel obtained by sintering alloy steel powder containing O: 0.03% or less, carbonitride: 5 to 75%, and the remainder being Fe and impurities. 2 C: 0.35-10.0%, Si: 0.1-2.0%, Mn: 0.1
~1.5%, Cr: 3.0~20.0%, REM type 1 or 2
Species or more (total amount if 2 or more types): 0.001 to 0.60
In addition to %, Mo: 0.10~20.0%, W: 0.10~20.0
%, V: 0.01-30.0%, Co: 0.01-30.0%, Nb:
0.01~30.0%, Ta: 0.01~10.0%, Zr: 0.001~
10.0%, Ti: 0.001~10.0%, Hf: 0.001~2.0%,
Contains one or more selected from Sc: 001-2.0% and Y: 0.001-2.0%, N: 0.30% or less, O: 0.03% or less, and carbonitride: 5-75
%, and the remainder is Fe and impurities. 3 C: 0.35-10.0%, Si: 0.1-2.0%, Mn: 0.1
~1.5%, Cr: 3.0~20.0%, REM type 1 or 2
Species or more (total amount if 2 or more types): 0.001 to 0.60
%, contains one, two or three of Ni: 0.25-2.0%, Cu: 0.25-2.0% and B: 0.001-0.050%, N: 0.30% or less, O: 0.03% or less. Carbonitride: 5 to 75% is present, and the remainder is Fe.
and sintered tool steel made by sintering impurity alloy steel powder. 4 C: 0.35-10.0%, Si: 0.1-2.0%, Mn: 0.1
~1.5%, Cr: 3.0~20.0%, REM type 1 or 2
Species or more (total amount if 2 or more types): 0.001 to 0.60
In addition to %, Mo: 0.10~20.0%, W: 0.10~20.0
%, V: 0.01-30.0%, Co: 0.01-30.0%, Nb:
0.01~30.0%, Ta: 0.01~10.0%, Zr: 0.001~
10.0%, Ti: 0.001~10.0%, Hf: 0.001~2.0%,
One or more of Sc: 0.001 to 2.0% and Y: 0.001 to 2.0%, and Ni: 0.25 to 2.0%,
One type of Cu: 0.25-2.0% and B: 0.001-0.05%,
Contains 2 or 3 types, N: 0.30% or less, 0.03
% or less, carbonitride: 5 to 75% is present,
Sintered tool steel made by sintering alloy steel powder with the remainder being Fe and impurities. 5. The sintered tool steel according to any one of claims 1 to 4, which is a high-speed tool steel or a tool steel for cold or hot forging.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7451483A JPS59200743A (en) | 1983-04-26 | 1983-04-26 | Sintered alloy steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7451483A JPS59200743A (en) | 1983-04-26 | 1983-04-26 | Sintered alloy steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59200743A JPS59200743A (en) | 1984-11-14 |
JPH0512424B2 true JPH0512424B2 (en) | 1993-02-18 |
Family
ID=13549513
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7451483A Granted JPS59200743A (en) | 1983-04-26 | 1983-04-26 | Sintered alloy steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59200743A (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE457356C (en) * | 1986-12-30 | 1990-01-15 | Uddeholm Tooling Ab | TOOL STEEL PROVIDED FOR COLD PROCESSING |
JPH07103451B2 (en) * | 1987-05-02 | 1995-11-08 | 日産自動車株式会社 | Abrasion resistant iron-based sintered alloy |
JP3340614B2 (en) * | 1996-03-28 | 2002-11-05 | 山陽特殊製鋼株式会社 | Fe or Ni-based heat-resistant solidified body with excellent high-temperature strength |
JP5125488B2 (en) | 2007-12-26 | 2013-01-23 | 大同特殊鋼株式会社 | Hard particle powder for sintered body and sintered body |
CN103422031B (en) * | 2013-08-23 | 2015-04-08 | 苏州长盛机电有限公司 | Corrosion-resistant steel materials |
CN104087845A (en) * | 2014-06-24 | 2014-10-08 | 宁国市正兴耐磨材料有限公司 | Low alloy liner plate specialized for mine |
CN104087865B (en) * | 2014-06-26 | 2016-08-17 | 宁国市正兴耐磨材料有限公司 | A kind of service life length high-chromium alloy wear-resistant ball and preparation method thereof |
CN104141098A (en) * | 2014-07-28 | 2014-11-12 | 宁国市开源电力耐磨材料有限公司 | Wear-resistant and heat-resistant steel based on Ti and W |
SE539733C2 (en) * | 2016-03-16 | 2017-11-14 | Erasteel Sas | A steel alloy and a tool |
CN107083514B (en) * | 2017-04-12 | 2019-01-15 | 深圳市我要模材科技有限公司 | A kind of steel alloy |
RU2650942C1 (en) * | 2017-12-19 | 2018-04-18 | Юлия Алексеевна Щепочкина | Steel |
RU2650945C1 (en) * | 2017-12-19 | 2018-04-18 | Юлия Алексеевна Щепочкина | Steel |
CN111647807B (en) * | 2020-05-18 | 2022-03-04 | 樟树市兴隆高新材料有限公司 | High-alloy die steel and preparation process thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5240410A (en) * | 1975-09-27 | 1977-03-29 | Hitachi Ltd | Tool steel |
JPS55122801A (en) * | 1979-03-15 | 1980-09-20 | Daido Steel Co Ltd | High speed steel powder and sintered body thereof |
JPS55128562A (en) * | 1979-03-28 | 1980-10-04 | Amsted Ind Inc | Manufacture of high density iron base alloy |
JPS58213856A (en) * | 1982-06-08 | 1983-12-12 | Kobe Steel Ltd | Tool steel of high toughness and high wear resistance |
-
1983
- 1983-04-26 JP JP7451483A patent/JPS59200743A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5240410A (en) * | 1975-09-27 | 1977-03-29 | Hitachi Ltd | Tool steel |
JPS55122801A (en) * | 1979-03-15 | 1980-09-20 | Daido Steel Co Ltd | High speed steel powder and sintered body thereof |
JPS55128562A (en) * | 1979-03-28 | 1980-10-04 | Amsted Ind Inc | Manufacture of high density iron base alloy |
JPS58213856A (en) * | 1982-06-08 | 1983-12-12 | Kobe Steel Ltd | Tool steel of high toughness and high wear resistance |
Also Published As
Publication number | Publication date |
---|---|
JPS59200743A (en) | 1984-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3257649B2 (en) | High toughness high speed steel member and method of manufacturing the same | |
EP1511873B1 (en) | Cold work steel and cold work tool | |
JP3771254B2 (en) | High speed steel manufactured by powder metallurgy | |
EP1024917B1 (en) | A steel and a heat treated tool thereof manufactured by an integrated powder metallurgical process and use of the steel for tools | |
JPS6121299B2 (en) | ||
JPH0512424B2 (en) | ||
KR100562759B1 (en) | Steel material for cold work tools and for parts having good wear resistance, toughness and heat treatment properties | |
JP6710484B2 (en) | Powder high speed tool steel | |
WO2018056884A1 (en) | Hot work tool steel | |
JP2745646B2 (en) | Method for producing high-temperature wear-resistant Co-based alloy with excellent hot workability | |
JPH04358046A (en) | High speed steel base sintered alloy | |
KR20020012556A (en) | Steel cold work tool, its use and manufacturing | |
JPS5952227B2 (en) | high speed tool steel | |
JPH0143017B2 (en) | ||
JP2021147638A (en) | Powdered high-speed steel | |
JP2926725B2 (en) | Manufacturing method of case hardened steel products | |
JP3870631B2 (en) | Method for short-time spheroidizing annealing of steel and steel by the same method | |
JP2019512595A (en) | Alloy steel and tools | |
KR100316342B1 (en) | high speed steel produced by powder metallurgy | |
JP2003096538A (en) | Die-use steel having excellent wear resistance | |
KR100299463B1 (en) | A method of manufacturing cold work tool steel with superior toughness and wear resistance | |
KR100502193B1 (en) | High speed tool steel having superior hardness and method for manufacturing the same | |
KR100611201B1 (en) | High speed steel compound roll for hot strip milling having excellent roughness-resistance | |
JP3053605B2 (en) | Metal members with excellent toughness and wear resistance | |
US4854978A (en) | Manufacturing method for high hardness member |