JPS5873750A - Wear resistant sintered alloy - Google Patents
Wear resistant sintered alloyInfo
- Publication number
- JPS5873750A JPS5873750A JP17335681A JP17335681A JPS5873750A JP S5873750 A JPS5873750 A JP S5873750A JP 17335681 A JP17335681 A JP 17335681A JP 17335681 A JP17335681 A JP 17335681A JP S5873750 A JPS5873750 A JP S5873750A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- alloy
- alloy powder
- sintered
- sintering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は内燃機関のロッカアームノ4 g l’の如
く比較的高面臣下で使用される摺動部材料に適した、耐
摩耗性に優れた硬質かつ緻密な焼結合金に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION This invention is a hard and dense sintered bond with excellent wear resistance suitable for sliding part materials used in relatively high-grade applications such as rocker arms of internal combustion engines. It's about money.
一般に高圧面下の摺動状態においては潤滑油膜による潤
滑が木充分となる九め、高圧面下で使用される摺動部材
には高い耐摩耗性(耐スカッフィング性、耐♂ツチンダ
性を含む)がI!求される・そとでこのようなロッカー
アーム/母、ドの如き摺動部材には、F・をペースとし
、Cr * Me 、 W aV 、 Nb等の合金元
素を多量に含むいわゆゐ高速度等の炭化物生成元素を多
量に含むため、適切な熱処理により微細な炭化物を均一
に析出させて1.優れた耐摩耗性を1する仁とがで龜る
。In general, in sliding conditions under high-pressure surfaces, the lubricating oil film is sufficient for wood, and sliding members used under high-pressure surfaces have high wear resistance (including scuffing resistance and ♂ scuffing resistance). I! Sliding members such as rocker arms/bases, etc., are required to have so-called high-grade metal alloys containing a large amount of alloying elements such as Cr*Me, W aV, Nb, etc., which are based on F. Since it contains a large amount of carbide-forming elements such as carbon dioxide, it is possible to uniformly precipitate fine carbides through appropriate heat treatment.1. It has a hard core that provides excellent abrasion resistance.
とζろでこのような高速度鋼系の材料を粉末冶金法によ
りて製造する場合、従来はF@tペースとし前述のよう
な合金元素およびCを含む目標組成の合金粉末を用いる
のが通常であっ九、しかしながらこのような合金粉末は
極めて硬質であるため圧縮性、成形性が低く、その丸め
通常のプレス機等の圧縮成形手段で圧粉成形した場合、
緻密な圧粉成形体が得られず、ひいては緻密な焼結体が
得られないため、耐摩耗性に優れた焼結体を得ることが
困難であった。そこで圧縮成形手段とルてホットプレス
や高温静水圧圧扁、熱間鍛造等の特殊な技術を用いざる
を得す、そのため製造コストが高くなる問題が生じてい
る。また工業的に汎用されている噴霧法によって前述の
ような合金粉末を製造した場合、Cr、V、Nb等の酸
素と結合し1い合金元素を多量に含む丸め、粉末の表面
が著しく酸化され、その粉末をそのまま使用した場合に
は焼結時において粉末粒子′相互間の焼結が充分に進行
せず、そのため硬質から高密度の焼結体が得られない問
題がある。te−霧法によ・て得られた合金粉末を圧粉
成形前に予備還元処理することも考えられるが、斯くす
れば製造コストが著しく嵩む問題が生じる・
上述のような問題を解決するための方策としてa、pを
含む特殊組成の合金粉末にCt黒鉛粉末として別に添加
混合する方法を既に提案しているが、合金粉末にPを含
有させた場合、よ)高密度化するために焼結温度を高め
たシ焼結時間を長くしたりすれば、F・−P−c共晶組
織が急激に成長して合金を脆化さ゛せるとともに、均一
で微細な炭化物組織を得るのが困難となる勢の問題があ
る。When producing such high-speed steel materials by powder metallurgy, it is conventional to use F@t pace alloy powder with a target composition containing the alloying elements and C as described above. However, since such alloy powder is extremely hard, it has low compressibility and formability, and when it is rounded and compacted using compression molding means such as a normal press,
It has been difficult to obtain a sintered body with excellent wear resistance because a dense powder compact and, in turn, a dense sintered body cannot be obtained. Therefore, special techniques such as hot pressing, high-temperature isostatic pressing, and hot forging must be used as compression molding means, resulting in the problem of increased manufacturing costs. Furthermore, when the above-mentioned alloy powder is manufactured by the industrially widely used spraying method, the surface of the rounded powder containing a large amount of alloying elements such as Cr, V, and Nb that cannot be combined with oxygen is significantly oxidized. If the powder is used as it is, the sintering between the powder particles' does not progress sufficiently during sintering, and therefore a hard to high-density sintered body cannot be obtained. It may be possible to pre-reduce the alloy powder obtained by the TE-fog method before compacting, but this would result in a significant increase in manufacturing costs.In order to solve the above-mentioned problems, As a measure, we have already proposed a method of separately adding and mixing Ct graphite powder to an alloy powder with a special composition containing a and p. If the sintering time is increased at a higher sintering temperature, the F-P-c eutectic structure will grow rapidly, making the alloy brittle and making it difficult to obtain a uniform and fine carbide structure. There is a problem of force.
この発明は以上の事情に鑑みてなされたもので、Pを含
ま逐い高速度鋼系の噴霧製造された合金粉末を用い1′
シかもホットプレス勢の特殊圧縮手段を使用することな
く、緻密かつ高硬度でしかも微細な炭化物が均一に分散
され九耐摩耗性に優れた焼結合金を提供することを目的
とするものである。This invention was made in view of the above circumstances, and uses a spray-produced alloy powder of high-speed steel to eliminate P.
The purpose of the present invention is to provide a sintered alloy that is dense, highly hard, has fine carbides uniformly dispersed, and has excellent wear resistance without using any special compression means such as a hot press. .
すなわち仁のli!l1llIの焼結合金は、高速度鋼
系材料O成分”t’ h b Cr 、 No/W 、
V/Nb 、 C0゜ハユ、溶湯脱酸元素で声□・る
SiもしくはM・を加えて、酸素量t−O,S*以下に
抑え先台金粉末を噴霧製造し、かつ合金粉末と別にCを
黒鉛粉末として添加混合し、圧粉成形および焼結して得
たもめである・具体的にはこの発明の焼結合金は、Cr
を3.0〜10.0憾、Mo、WOI種または2種を合
計量で3.0〜20.01%V 、 Nb(DIaま丸
線2種を合計量で0.5〜10.(1、Co f 15
.0 係以下、0を0.54以下それぞれ含有し、か2
810.5〜3.0憾、Mal 0.1〜3.0嘔の1
種または2−を含有し、残部F・および211以下の不
純物からなる噴霧製造された合金粉末を用い、その合金
粉末に黒鉛粉末0.8〜2.0参を添加混合して圧粉成
形および焼結してなることを特徴とするものである・
以下この発明の焼結合金をさらに詳細に説明する。In other words, Jin's li! The sintered alloy of l1llI is a high-speed steel material O component "t' h b Cr, No/W,
V/Nb, C0゜hayu, add Si or M with a molten metal deoxidizing element to suppress the oxygen content to below t-O,S*, and produce the base metal powder by spraying, and separately from the alloy powder. The sintered alloy of this invention is a mixture obtained by adding and mixing C as graphite powder, compacting and sintering.Specifically, the sintered alloy of this invention
3.0 to 10.0%, Mo, WOI type or 2 types in total amount 3.0 to 20.01% V, Nb (DIa ma round wire 2 types in total amount 0.5 to 10.0%) 1, Co f 15
.. Contains 0 or less, 0 is 0.54 or less, and 2
810.5-3.0, Mal 0.1-3.0, 1
Using a spray-produced alloy powder containing F. or 2-, the balance being F. and impurities of 211 or less, graphite powder of 0.8 to 2.0 mm is added and mixed to the alloy powder, and the powder is compacted and The sintered alloy of the present invention will be described in more detail below.
この発明の焼結合金め製造にあたっては、前述のように
Cを除く各合金元素を目標成分だけ含有する噴霧製造さ
れた全金粉末を使用する。すなわちCrを3.0〜10
.01G、Mo a Wの1種t7’ha2種を合計量
−1”3.0〜20.01i、v、Ntolmtたは2
種を合計量で0.5〜10.0憾、Co 1に15.0
畳以下、Oto、5憾以下含有するとともに、SiG、
5〜3.0 ’II、Mu 0.1〜3.011の1
種!友は2種を含有し、残部F・および不純物2.0参
以下からなる合金粉末を使用する。In producing the sintered alloy fitting of the present invention, spray-produced all-gold powder containing targeted amounts of each alloying element except C is used as described above. That is, Cr is 3.0 to 10
.. 01G, Mo a W 1 type t7'ha 2 types total amount -1"3.0~20.01i, v, Ntolmt or 2
The total amount of seeds is 0.5 to 10.0, and the total amount of Co is 15.0.
Contains less than tatami, Oto, less than 5, SiG,
5-3.0'II, Mu 0.1-3.011 of 1
seed! An alloy powder is used which contains two types of aluminum, the balance being F and impurities of 2.0 or less.
上記各成分範囲の限定理由を説明すると、先ずCr #
MOa w e v e Nl)は90種の高速度鋼
系材料の基本的成分元素であシ、いずれも炭化物形成元
素であって、基地中に固溶して基地を強化させるだけで
な(、硬質微細炭化物を生ぜしめて耐摩耗性を向上さぜ
る・但しそれぞれ前述O範囲よ〕も少なけ゛れi顕著な
効果が得られず、また前述の範囲本〕も多過ぎてもそれ
以上効果が増大しないばかシでな°(、逆に粉末が硬く
なって圧縮性、成形性を低下させ、その結果緻密な焼結
体を得ることが困難になるとともに、圧縮成形に特殊な
圧縮法が必要となって製造コストが高くなシ1また原料
コストも高くなる。これらの理由からCr 、 M・。To explain the reasons for limiting the ranges of each component above, first, Cr #
MOa w e v e Nl) is a basic component element of 90 types of high-speed steel materials, and all of them are carbide-forming elements, and they do not only solidly dissolve in the base and strengthen the base (, It produces hard fine carbides and improves wear resistance.However, if the O range is too low, no noticeable effect will be obtained, and if the O range is too high, no further effect will be obtained. (On the contrary, the powder becomes hard and its compressibility and formability decrease. As a result, it becomes difficult to obtain a dense sintered body, and a special compression method is required for compression molding.) Therefore, the manufacturing cost is high, and the raw material cost is also high.For these reasons, Cr, M.
W e V = Nbを前述O範囲に限定し良、なおヒ
れらの合金元素のうちでもV 、 Nbは結晶粒微細化
および炭化物微細化効果も併せ持つ、なおまた、Cr。W e V = Nb can be limited to the above-mentioned O range, and among these alloying elements, V and Nb also have the effect of grain refinement and carbide refinement, and Cr.
Mo79 、 V/Nkについての前述の成分範囲のう
ちでも、特にCrは3.0〜8.0憾が最適であ〕、ま
たMe/%’は合計量で5.0〜15.0憾が最適であ
り、さらにV/Nbは合計量で1.0〜5.0係が最適
である。Among the above-mentioned component ranges for Mo79 and V/Nk, the optimum range for Cr is 3.0 to 8.0, and the total amount of Me/%' is 5.0 to 15.0. The optimum ratio is 1.0 to 5.0 in total for V/Nb.
Coは基地中に固溶して基地を強化させるとともに、生
成された炭化物とマトリ、クスとの結合性を向上させて
耐摩耗性向上に寄与するが、15.0憾を越えて添加し
てもそれ以上効果が増大しないばか9でなく、逆にマト
リックスの硬さを低下させ、かつ;スト高となるので1
5憾以下、さらに好ましくは10.01以下と゛する・
81は溶製材の場合には鍛造性、圧延性を低下させ、炭
化物を粗大化し焼入性を低下させる有書元素として0.
4憾以下に抑制するのが通常であるが、焼結合金の場合
鍛造や圧延を行なわないのでその悪影響状なく、−逆に
Stの添加によって合金粉末製造時O溶湯の脱am!に
効果的でああ。すなわちこの発明においてはCr 、
V 、 Nb等の酸素と結合し易い成分を多量に含む合
金粉末を噴霧法(アト1イ″″1
ズ法)Kよって製造するの!:、あ・シ、この場合得ら
れた合金粉末は表面が酸化され易いが、前述のように8
1を添加しておくことに、より酸素と結合しやすい合金
成分を含む合金粉の製造時にお′ける酸化が防止され、
その結果焼結時における合金粉末同士の結合(焼結)が
酸化皮膜によって阻害される仲とが少なくな〉、焼結性
が良好となって、硬さ、密度が高り焼結体を容AK得る
ことが可能となる。Co dissolves in the base and strengthens the base, and also improves the bonding between the generated carbide and the matrix and cox, contributing to improved wear resistance. However, if it is added in excess of 15.0 It is not a stupid 9 that does not increase the effect any further, but on the contrary it reduces the hardness of the matrix and increases the strike height, so 1
5 or less, more preferably 10.01 or less.81 is a written element that reduces forgeability and rollability in the case of ingot material, coarsens carbides, and reduces hardenability.
Normally, it is suppressed to 4 or less, but in the case of sintered alloys, since forging and rolling are not performed, there is no adverse effect, and on the contrary, by adding St, O molten metal is deamed during production of alloy powder! Effective and ah. That is, in this invention, Cr,
An alloy powder containing a large amount of components that easily combine with oxygen, such as V and Nb, is manufactured by the spray method (Atomize method). :, A/C, the surface of the alloy powder obtained in this case is easily oxidized, but as mentioned above, 8
By adding 1, oxidation is prevented during the production of alloy powder containing alloy components that are more likely to combine with oxygen.
As a result, the bonding (sintering) between the alloy powders during sintering is less likely to be inhibited by the oxide film, and the sintering properties are good, increasing the hardness and density, and making the sintered body more durable. It becomes possible to obtain AK.
但し8i量がO,S*未満では上述の効果かはとんど得
られず、逆に3,0憾を越えればそれ以上前述の効果が
増大し゛ないばか)でなく、粘ル強さを低下させる勢の
i害が大きkなるから、0.5〜3.0参に限定した・
そしてこの範囲内で%特に810.5〜2.0優の範s
が好オしい。However, if the amount of 8i is less than O,S*, the above-mentioned effect will hardly be obtained, and if it exceeds 3,0, the above-mentioned effect will not increase any further. Since the harm caused by the lowering force is large, it is limited to 0.5 to 3.0 cm.
And within this range, especially the range of 810.5 to 2.0
I like it.
Muは8量と同様に溶湯C0JIG!駿に効果があり、
したがって合金粉の製造時における粉末0酸化を防止し
て、焼結性を向上させるに有効であ〕、またとのtXか
マトリ゛ツ、クスの焼入性を向上させる効果 ・%ある
。但しMo量が0.111未満で祉これら0効果が得ら
れず、逆に・3.011 l越えて添加してもこれらの
効果が増大tないばか9でなく、粉末が硬化して成形が
困難となる尋の弊害が大きくなるから0.1〜3.0憾
に限定する。この範囲のうちでも0.5〜2.0−が好
ましい・
・0はそのほとんどが合金粉末表面に酸化物の形□□□
□
7・ソ存在するものであ〕、この表面酸化動線前述のよ
うに焼結時におりて合金粉末同士の焼結を阻害し、焼結
の進行を遅らせ、高硬度高密度の焼結体を得−くする、
41にこの発明ではOr e V a Nb等の酸化し
謳い元素を多量に含みしかも粉末の酸化が生じ易いアト
マイズ法で合一金粉末を得るた峠、0の影響が無視でき
ない。そとでこの発明では前述のように溶湯脱酸元素で
あるsiおよび/lたはMsを一適当量加えてott抑
制しているのである。Mu is molten metal C0JIG like 8 quantity! It has an effect on Shun;
Therefore, it is effective in preventing powder oxidation during production of alloy powder and improving sinterability], and is also effective in improving the hardenability of tX, matrix, and steel. However, if the amount of Mo is less than 0.111L, these 0 effects cannot be obtained, and conversely, even if more than 3.011L is added, these effects will not increase, but the powder will harden and molding will be difficult. It is limited to 0.1 to 3.0 because the negative effects of thicken become more difficult. Within this range, 0.5 to 2.0- is preferable. ・0 means that most of it is in the form of oxides on the surface of the alloy powder □□□
As mentioned above, this surface oxidation flow line occurs during sintering, inhibits the sintering of the alloy powder, slows down the progress of sintering, and creates a sintered body with high hardness and high density. gain more,
41. In this invention, the alloy powder is obtained by the atomization method, which contains a large amount of oxidizing elements such as Ore Va Nb, and which easily causes oxidation of the powder.The influence of the above cannot be ignored. Therefore, in this invention, as mentioned above, an appropriate amount of molten metal deoxidizing elements si, /l, or Ms is added to suppress ott.
前述のような0による悪影善は0含有量が0.5憾を越
えれば急激に顕著となるから通常は0.5嘔以下、望ま
しくり、o、a憾以下に一抑制する。The above-mentioned negative effects caused by 0 become sharply noticeable when the 0 content exceeds 0.5, so it is usually suppressed to below 0.5, preferably below 0 and a.
この発明においては水アトマイズ法もしく拡がスアトマ
イズ法等の噴霧製造法によって製造された前述のような
成分範囲の合金粉末に対してCを黒鉛粉末として混合す
る。このCは焼結時におiて合金粉末表面の酸化物を還
元して合金粉末粒子同士の焼結を促進させる#1か、基
地中に固溶してこれを強化し、またCr 、 Mo 、
W 、 V 、 Nbと炭化物を形成して耐摩耗性の
向上に寄与する。Cが合金粉末中に含まれている場合に
は上述のように合金粉末表面の酸化物を還元する効果が
得られず、また合金粉を著しく硬質にして合金粉の圧縮
性、成形性を劣化させる。ま九Cの添加量が0.8−未
・満では上述のような効果がほとんど得られず、一方
Cが260憾゛を越えれば炭化物が粗大化して逆に耐摩
耗性i悪くなるから、Cの添加量Ho、s〜2.、O嘔
、好ましくは1.′O〜1.8憾とする。In this invention, C is mixed as graphite powder into an alloy powder having the above-mentioned composition range, which is produced by a spray production method such as a water atomization method or a spread atomization method. This C reduces oxides on the surface of the alloy powder during sintering and promotes sintering between the alloy powder particles, or dissolves solidly in the matrix to strengthen it, and also contains Cr, Mo,
It forms carbides with W, V, and Nb and contributes to improving wear resistance. If C is included in the alloy powder, as mentioned above, it will not be effective in reducing oxides on the surface of the alloy powder, and it will also make the alloy powder extremely hard and deteriorate the compressibility and formability of the alloy powder. let If the amount of C added is less than 0.8, the above-mentioned effects will hardly be obtained, while if the amount of C exceeds 260, the carbide will become coarse and the wear resistance will deteriorate. Addition amount of C Ho, s~2. , O vomit, preferably 1. 'O ~ 1.8 regret.
なお使用される合金粉末の粒径は好ましく唸−100メ
ッシ、程度、よ〕最適には一200メツシ、程度とし、
またCとして別に混合される黒鉛粉末の粒径は平均粒!
! 10 am以下程度が好ましい、tた粉末混合時に
は、必要に応じてステアリン酸亜鉛等の潤滑剤を混合す
るのが通常である。The particle size of the alloy powder used is preferably about -100 mesh, and optimally about -200 mesh.
Also, the particle size of the graphite powder that is mixed separately as C is an average particle!
! When mixing the powder, which is preferably about 10 am or less, a lubricant such as zinc stearate is usually mixed as necessary.
上述のように合金粉末、黒鉛および必要に応じて添加さ
れる潤滑剤からなる混合粉末はこれを適宜の圧縮手段に
よって所望O形状に圧縮成形する。As described above, the mixed powder consisting of alloy powder, graphite, and a lubricant added as necessary is compression-molded into a desired O-shape by an appropriate compression means.
この圧縮手段としては従来の場合の如く高温静水圧圧a
t (HIP )等04I殊な手段を適用する必要はな
い、すなわち前述のように合金粉末とは別にCを黒鉛粉
末として添加するから、合金元素としてはCを実質的に
含有しないかまたはCが極小量である軟質なものが用い
られ、そのため圧−性−成形性が良好であるから圧粉成
形時の圧縮力は比較的小さくて良く、さらには合金粉末
に脱酸元素であるSiAmが添加されてその表面酸化物
が小量に抑えられしかも合金粉末と別に添加された黒鉛
粉末によp焼結時に前記酸化物が還元される等の理由に
よシ焼結性が著しく良好となりているため、充分に緻密
かつ硬質な焼結体を得ることができる。As for this compression means, as in the conventional case, high temperature hydrostatic pressure a
There is no need to apply special measures such as 04I (HIP). In other words, since C is added as graphite powder separately from the alloy powder as described above, the alloying element either does not substantially contain C or contains C. A soft material with a very small amount is used, and therefore has good pressure and formability, so the compression force during compaction can be relatively small.Furthermore, SiAm, a deoxidizing element, is added to the alloy powder. The surface oxides are suppressed to a small amount, and the sinterability is significantly improved because the oxides are reduced during p-sintering by the graphite powder added separately from the alloy powder. Therefore, a sufficiently dense and hard sintered body can be obtained.
上i圧粉成形体に対する焼結はN2がス勢の非酸化性雰
囲気中において好ま°しくは1150〜1250゛
℃、さらに好ましくは1180〜1230℃程度に30
〜180分程度加熱し七行えば良い、tた焼結後は8〜
b
て基地をベイナイトまたは”1゛シルテンサイドとする
。The compacted compact is preferably sintered at a temperature of 1150 to 1250° in a non-oxidizing atmosphere containing N2.
℃, more preferably 30℃ to about 1180 to 1230℃
It is enough to heat it for about 180 minutes and perform 7 steps, and after sintering it is 8 to 180 minutes.
b Set the base to Bainite or "1" Siltenside.
もちろん必要に応じて焼結後に焼入れ焼もどし等の熱処
理を加えて所定の材質に調整することも可能である。Of course, if necessary, it is also possible to add heat treatment such as quenching and tempering after sintering to adjust the material to a predetermined quality.
以下にこの発明の実施例および比較例を記す。Examples and comparative examples of this invention are described below.
実施例l
Cr3.011.Mo2.0%、Wl、OIG、Vo、
51G。Example l Cr3.011. Mo2.0%, Wl, OIG, Vo,
51G.
810.5優、 Mwa Q、 1暢、残部実質的にF
・および酸素量0.211なる合金粉末を水アトマイズ
法によりて製造し、−200メ、シ、に篩分けした後、
黒鉛粉末1.4 ’3gおよび潤滑剤1.0憾を添加混
合し、−42メッシ、に造粒し、6.5 ton/s+
” O圧縮力で圧粉成形した後、N2がス気流中にて1
150℃で60′分焼結し、Fa−3% Cr−2鳴M
o−1嗟W−0,5*V−0,5’A Si−0,1l
lMn −1,2憾Cの焼結合金を得た。810.5 excellent, Mwa Q, 1 fluent, remainder practically F
・An alloy powder with an oxygen content of 0.211 was produced by a water atomization method, and after being sieved into -200 sieves and sieves,
1.4'3 g of graphite powder and 1.0 g of lubricant were added and mixed, and granulated to -42 mesh, 6.5 ton/s+
” After compacting with O compression force, N2 is
Sintered at 150°C for 60 minutes, Fa-3% Cr-2
o-1嗟W-0,5*V-0,5'A Si-0,1l
A sintered alloy of lMn-1,2C was obtained.
実施例2
Cr 4. O鳴−Mo 5.04 e W 6. O
% −V 2.0 憾eCo 5.01 、811.0
m 、残部実質的にFaおよび酸素量0.2 憾4る合
金粉末を水ア)マイーズ法によって製造し、★施例1と
同様にして黒鉛粉末および潤滑剤の混合1造粒および圧
粉成形を行り先後。Example 2 Cr 4. O ring-Mo 5.04 e W 6. O
% -V 2.0 Sorry eCo 5.01, 811.0
m, the balance being essentially Fa and oxygen content of 0.2 4. Produce the alloy powder by water a) Maize method, ★ mixing graphite powder and lubricant 1 granulating and compacting in the same manner as in Example 1. After the destination.
N2fス気流中で1220℃で60分焼結し、F・−4
*Cr−51!1Mo−611W−21GV−511C
Cr−51j1−1.2嗟Cなる焼結合金を得た。Sintered at 1220℃ for 60 minutes in a N2f gas flow to obtain F・-4
*Cr-51!1Mo-611W-21GV-511C
A sintered alloy named Cr-51j1-1.2C was obtained.
実施例3
Cr 4.09b 、 Mo 5.01 *ws、o*
、 N2.091 。Example 3 Cr 4.09b, Mo 5.01 *ws, o*
, N2.091.
Co10.0優、811.0係、 Nb 0.5憾、残
部実質的にF・および酸素量0.2tlIなる合金粉末
を水アトマイズ法によって製造し、−200メッシ、に
篩分けした後、黒鉛粉末1.2係および潤滑剤1.0優
を添加混合し、実施例1と同様に造祿および圧粉成形し
た後、Nがス気流中にて1230℃で焼結して、Fs−
41Cr−51Mo−61W−21V−1091Co−
1僑5i−o、s嘔Nb −1,0憾Cなる組成の焼結
合金を得た・
実施例4
Cr 6.0% 、 Mo 8.0m 、 w’to*
、 Vl o、o参。An alloy powder containing 10.0% Co, 811.0%, 0.5% Nb, and the remainder substantially F and 0.2tlI oxygen was produced by a water atomization method, and after sieving to -200 mesh, graphite was added. After adding and mixing 1.2% of the powder and 1.0% of the lubricant and forming and compacting in the same manner as in Example 1, N was sintered at 1230°C in a gas flow to form Fs-
41Cr-51Mo-61W-21V-1091Co-
A sintered alloy with the following composition was obtained: 1.5i-o, so-Nb-1,0C. Example 4 Cr 6.0%, Mo 8.0m, w'to*
, Vl o, o.
813.0% 、 Mn2.0%、残部実質的にF・お
よび酸素量0.31なる合金粉末を水アトマイズ法によ
って製造し、−200メツシユに篩分は九後1黒鉛粉末
1.7憾および潤滑剤1.0優を添加混合し、実施例1
と同様にして造粒および圧粉成形した後、Nがス気流中
にて1230℃で焼結して、Fa−61Cr−ss″M
o−4’1kW−101V−3’1G81−2憾Mn−
1,511Cなる組成の焼結合金を得た。An alloy powder containing 813.0% Mn, 2.0% Mn, the balance substantially F and an oxygen content of 0.31 was produced by a water atomization method, and the sieve content on a -200 mesh was 1.7% graphite powder and 1.7% Mn. Example 1 by adding and mixing lubricant 1.0 or more
After granulation and compaction in the same manner as above, N was sintered at 1230°C in a gas stream to form Fa-61Cr-ss''M
o-4'1kW-101V-3'1G81-2 Sorry Mn-
A sintered alloy having a composition of 1,511C was obtained.
実施例5
Cr 10.OIG 、 Me 8.011 、N4.
01G 、 N2.O憾。Example 5 Cr 10. OIG, Me 8.011, N4.
01G, N2. O I regret it.
Co15.0%、Mn3.011.Nb10.01!、
残部実質的にF・および酸素量0.3憾なる合金粉末を
水アトマイズ法によって製造し、−200メッシ、に篩
分けした後、°黒鉛粉末2.O*および潤滑剤1.0憾
を混合し、実施例1と同様にして造粒、圧粉成形後N、
がス気流中で1250℃で焼結して、F・−1011C
r−8憾Mo−4憾W−21V−15繋Co−31Co
−3l1憾Nb−1,8憾Cなる組成の無燐合金を得た
・実施例6
Cr4.0*、Mo12.01.N8.011−N6.
O憾。Co15.0%, Mn3.011. Nb10.01! ,
An alloy powder with the remainder substantially F and an oxygen content of 0.3 was produced by a water atomization method, sieved to -200 mesh, and then mixed with graphite powder 2. O* and lubricant 1.0 ml were mixed, granulated and compacted in the same manner as in Example 1, and then N,
is sintered at 1250℃ in a gas flow to produce F・-1011C.
r-8 Mo-4 W-21V-15 Co-31Co
A phosphorus-free alloy with a composition of -3l1Nb-1,8C was obtained.Example 6 Cr4.0*, Mo12.01. N8.011-N6.
O I regret it.
8(2,0’A * Mn 1.0 参、 Nb 4.
01G−残部実質的にF・および酸素量0.3憾なる合
金粉末を水アトマイズ法によって製造し、−200メッ
シ、に篩分は後黒鉛粉末2.2嗟および潤滑剤1G参を
添加混合し、実施例1と同様に造粒、圧粉成形した後、
N、がス気流中にて1250℃で60分焼結し、F・−
4憾Cr −121GMo −s慢w−6mV−248
1−111M!l−41! Nbなる焼結合金を得た。8 (2,0'A * Mn 1.0 reference, Nb 4.
01G - An alloy powder with a balance of substantially F and an oxygen content of 0.3 was produced by a water atomization method, and -200 mesh was sieved with 2.2 g of graphite powder and 1 G of lubricant added and mixed. , After granulation and compaction in the same manner as in Example 1,
Sintered at 1250°C for 60 minutes in a N gas flow to obtain
4 Cr -121GMo -sarrogancew-6mV-248
1-111M! l-41! A sintered alloy called Nb was obtained.
比較例I
Stを抜いた点以外は実施例2と同一組成となるように
鉄粉、F・−Cr合金粉、F・−Mo合金粉、F・−W
合金粉、F・−7合金粉111、Co粉末および黒鉛粉
末を混合するとともtc#滑jll−1,OIGを添加
−合し、以下実施例2と同様にしてF・−4優Cr−5
憾Ml −6優W−21V−591Co −1,29I
Clkる焼結合金を得た・比較例2
実施−2の合金粉末か゛らSlを抜いた組成の酸素量0
.3−の合金粉末、すなわちCr 4.0 鴫、 Mo
5.0憾’ −’ W 6.0 * e V 2.O’
4− Co 5.04 e Ci−44−残部実質的に
F働および酸素量−0,391な1合金粉末−を水アト
マイズ法によって製造し、黒鉛粉末を添加しない点以外
は実施例2と同様にしてF・−41ICr−5,憾Mo
−61W−21V−5憾(q−1,0ICなる組成の焼
結合金を得た・ 、:□・比較例3 、
’ ””””’実施例2の合金粉末から引
を抜いた組成(Dllll量0.6憾の合金粉末、すな
わちCr 4.0 憾a Me 5.04−W 6.0
憾a V 2.0 嗟−Co 5.0 慢a残部実質
的ニF・および酸素量06%なる合金粉末を水アトマイ
ズ法によりて製造し、以下実施例2と同様にしてFs−
41Cr−!S1’Mo−61!W−211V−511
Co−1,01ICなる組成の焼結合金を得た。Comparative Example I Iron powder, F・-Cr alloy powder, F・-Mo alloy powder, F・-W were used to have the same composition as Example 2 except that St was omitted.
Alloy powder, F・-7 alloy powder 111, Co powder, and graphite powder were mixed together, and tc# lubricant jll-1 and OIG were added.
Sorry Ml -6 Yu W-21V-591Co -1,29I
Comparative Example 2 A sintered alloy was obtained with a composition in which Sl was removed from the alloy powder of Example 2, and the oxygen content was 0.
.. 3- alloy powder, namely Cr4.0, Mo
5.0 regret'-' W 6.0 * e V 2. O'
Same as Example 2 except that 4-Co 5.04 e Ci-44-1 alloy powder with substantially F function and oxygen content of 0,391 was produced by water atomization method, and graphite powder was not added. F・-41ICr-5, Sorry Mo
-61W-21V-5 (A sintered alloy with a composition of q-1,0IC was obtained. :□・Comparative Example 3.
``''''''''Composition extracted from the alloy powder of Example 2 (alloy powder with a Dllll amount of 0.6, that is, Cr 4.0 Me 5.04-W 6.0
An alloy powder containing substantially 2 F and an oxygen content of 06% was produced by a water atomization method, and then Fs- was produced in the same manner as in Example 2.
41Cr-! S1'Mo-61! W-211V-511
A sintered alloy having a composition of Co-1,01IC was obtained.
比較例4
実施例50合金粉末からMuを抜いた組成の酸素量0.
81e)合金粉末、すなわちCr 10.0 % a
Mo8.01 、W4.01G 、、V2.01 、
Co 15.011 、 Nb10.01.残部実質的
にF・および酸素量0.8鴫の合金粉末を水アトマイズ
法によって製造し、以下実施例5と同様にしてF@−1
(NICr−811Ma−41W−2*V−1511C
o −101Nb −1,611Cなる組成の焼結合金
を得た。Comparative Example 4 The oxygen content of the composition obtained by removing Mu from the alloy powder of Example 50 is 0.
81e) Alloy powder, i.e. Cr 10.0% a
Mo8.01, W4.01G,, V2.01,
Co15.011, Nb10.01. An alloy powder containing substantially F and an oxygen content of 0.8 was produced by the water atomization method, and F@-1 was prepared in the same manner as in Example 5.
(NICr-811Ma-41W-2*V-1511C
A sintered alloy having a composition of o -101Nb -1,611C was obtained.
以上の各実施例1〜6、比較例1〜4の焼結合金の焼結
体特性、すなわち見掛は硬さ、密度比、1゛。The sintered body properties of the sintered alloys of Examples 1 to 6 and Comparative Examples 1 to 4, that is, the apparent hardness, density ratio, and 1.
(真密度との比)、・炭化物の最大粒子径、炭化物の面
積率について一測定結果を第1表に示す・さらにこれら
の焼結合金によりて第1図に示すようナティーゼルエン
ジンのayカーア;−ムノッr1を試作し、低合金チル
カムと組合せかっノ譬ルノスプリング荷重を通常の荷重
よりも5096大きくして、2000rpm 、 30
0時間の加速条件耐久評価試験を行ない、口、カアーム
パ、ドの最大摩耗探さおよびカム長径の最大摩耗tt−
測定し九結果を第1表に併せて示す。なお第1図におい
て2はロッカーアーム、3は相手方のカムを示す・第1
表から明らかなようにこの発明の各実施例1〜6による
焼結合金はいずれも見掛硬さHマ(10時)が500以
上、密度比90参以上であり、ま7j15μm以下の炭
化物粒子が面積率5〜25優の範囲でマトリックスに均
一に分散され九ものとなりている。tた耐久試験結果も
・臂ツド摩耗量20μm以下、カム摩耗蓋100μm以
下と極めて少な、く、耐摩耗性が著しく良好となってい
ることが明らかである。(ratio to true density), ・Table 1 shows the measurement results for the maximum particle diameter of carbides and the area ratio of carbides.・Furthermore, with these sintered alloys, the ay car -Muno R1 was prototyped and combined with a low-alloy chill cam, the spring load was increased by 5096 than the normal load, and the speed was 2000 rpm, 30
A 0-hour acceleration condition durability evaluation test was conducted to find the maximum wear on the mouth, cam arm pad, and do, and the maximum wear on the cam major diameter (tt-).
The results were also shown in Table 1. In Fig. 1, 2 indicates the rocker arm and 3 indicates the other party's cam.
As is clear from the table, all of the sintered alloys according to Examples 1 to 6 of the present invention have an apparent hardness Hma (10 o'clock) of 500 or more, a density ratio of 90 or more, and carbide particles of 15 μm or less. are uniformly dispersed in the matrix with an area ratio of 5 to 25. The durability test results also show that the amount of wear on the elbow was less than 20 μm and the amount of wear on the cam cover was less than 100 μm, which was extremely low, and it is clear that the wear resistance was extremely good.
一方比較例1は、8iを抜いた点以外は実施例2と同じ
組成であるが、各合金元Xt−フェロアロイ粉末尋によ
って添加した几め、各元素の鉄基地中への拡散が不光分
となって焼゛結が充分に進行せず、そのため硬さ、密度
が低(な)、それに加えて圧粉成形体中において炭化物
、生成元素が偏在するた6゛″EC,b″″1′′″′
″′−・・、、o 4 (2)″”−゛ゞ。On the other hand, Comparative Example 1 has the same composition as Example 2 except that 8i is omitted, but due to the addition of each alloying element Xt-ferroalloy powder, the diffusion of each element into the iron base is different from the opaque component. As a result, sintering does not proceed sufficiently, resulting in low hardness and density, and in addition, carbides and formed elements are unevenly distributed in the compact, resulting in 6゛''EC, b''''1' ′″′
"'-...,, o 4 (2)""-゛ゞ.
結果耐摩耗性が低く、シ 相手材も摩耗させてしま
う。As a result, wear resistance is low and the mating material is also worn out.
比較例2はSiミラいた点以外は実施例2とほとんど同
一組成の合金粉末を用いたものである一11g、0%合
金粉末に含ませたため、粉末自体の酸素量は低いが粉末
が著しく硬化して圧粉成形工程における圧縮性、成形性
が悪くなること、tた焼結時における黒鉛粉末による還
元作用が生じないこと等に起因して焼結が充分に進行せ
ず、そ今結果硬さ、密度ともこの発明の実施例よりも低
くなっている。但し比゛着倒1と比べれば、合金粉末の
使用により各成分元素の拡散が不充分となることがない
ため、炭化物は均一かつ微細に分散してお9、耐摩耗性
は比較例1!′りも良好となっている・なお比較例1お
よび2において、充分く焼結させるためには1250℃
以上の高温において相当長時間焼結しなければならない
ヒとが本発明者等の実験により確認されている。Comparative Example 2 used an alloy powder with almost the same composition as Example 2, except that Si mirror was included. Since it was included in the 0% alloy powder, the amount of oxygen in the powder itself was low, but the powder was significantly hardened. As a result, sintering does not progress sufficiently due to factors such as poor compressibility and formability in the powder compaction process, and lack of reducing action by graphite powder during sintering, resulting in hardness. Both the thickness and density are lower than those of the embodiments of the present invention. However, compared to Comparative Example 1, the use of alloy powder does not cause insufficient diffusion of each component element, so the carbides are uniformly and finely dispersed9, and the wear resistance is the same as Comparative Example 1!・In addition, in Comparative Examples 1 and 2, the temperature was 1250°C in order to sinter sufficiently.
Experiments conducted by the present inventors have confirmed that there is a need for sintering at higher temperatures for a considerable length of time.
比較例3はstt抜いた点以外は実施例と同一組成の合
金粉末;□を用い、tqcも別に添加混合した・:、:
ものであるが、・、上述のように81を含まないため溶
湯の脱酸が不充分で合金粉末の酸素量が0.6憾と高(
なりて訃り、その結果焼結の進行が不充分となシ、実施
例2と比較して硬さ、密度が低い。しかも炭化物は、焼
結時において粉末表面の酸化物が還元された部分に集中
して形成され、その結果大径の炭化物が偏在し、耐摩耗
性も実施例2より低くなっている。Comparative Example 3 used alloy powder with the same composition as the example except that stt was omitted; □ was used, and tqc was also separately added and mixed. Due to insufficient deoxidation, the oxygen content of the alloy powder was as high as 0.6 (
As a result, sintering progressed insufficiently, and the hardness and density were lower than in Example 2. Furthermore, carbides are formed in a concentrated manner in areas where oxides on the powder surface have been reduced during sintering, and as a result, large-diameter carbides are unevenly distributed, and the wear resistance is also lower than in Example 2.
さらに比較例4はMuを抜いた点以外は実施例5と同一
組成の合金粉末を用い、またCも別に添加し次ものであ
るが、この場合も比較例3と同様に溶湯の脱酸が不充分
で合金゛粉末の酸素量が0.8憾と高く、その結果比較
例4と同様に硬さ、密度が低く、耐摩耗性も低い。Furthermore, in Comparative Example 4, an alloy powder having the same composition as in Example 5 was used except that Mu was omitted, and C was also added separately, but in this case as well, the deoxidation of the molten metal was The amount of oxygen in the alloy powder was as high as 0.8, which was insufficient, resulting in low hardness, low density, and low wear resistance as in Comparative Example 4.
以上の説明で明らかなようにこの発明の焼結合金は、C
を高速度鋼系の合金粉末と別に黒鉛粉末として添加混合
−すること、換°言すれば合金粉末としてCを実質的に
含有しないかまたは含有しても極小量のものを用いるこ
とによって、合金粉末の圧縮性、成形性を良好にして緻
密な圧粉成形体が得られるようにし、かつ原料の合金粉
末として・高速度鋼系の合金元素の11か溶湯脱酸に有
効な81および/またはMnt配合して酸素含有量を小
量(0,5畳以下)に抑えたもの、すなわち表面の酸化
物が少ない合金粉末を用い、さらに、前述のように別に
添加混合された黒鉛粉末によりて焼結時に合金粉末表面
の酸化物が還元されるようにし、これらが総合的に作用
するヒとによりて焼結時における粉末粒子相互の焼結性
YcJIL好とするとともに炭化物を微細かつ均一に形
成するようにしたものであり、したがってこの発明によ
れば、Pを添/
加することなくまたホットプレス等の特殊な圧縮技術を
要さずに1さらには合金粉末の予備還元処理を要さずに
、低コストで高硬度、高1!Fjfでしかも耐摩耗性の
高い焼結合金を得るヒとが可能となったのである。As is clear from the above explanation, the sintered alloy of the present invention has C
By adding and mixing C as a graphite powder separately with the high-speed steel alloy powder, in other words, by using an alloy powder that does not substantially contain C or even if it does contain it, it is possible to form an alloy. It improves the compressibility and formability of the powder so that a dense compacted body can be obtained, and as a raw material alloy powder - 11 of the alloying elements of high speed steel series, 81 and/or effective for deoxidizing molten metal. Using an alloy powder containing Mnt and suppressing the oxygen content to a small amount (0.5 tatami or less), that is, an alloy powder with few oxides on the surface, and then sintering with graphite powder separately added and mixed as described above. At the time of sintering, the oxides on the surface of the alloy powder are reduced, and due to the overall effect of these elements, the mutual sinterability of the powder particles is improved during sintering, and carbides are formed finely and uniformly. Therefore, according to the present invention, it is possible to produce an alloy powder without adding P, without requiring special compression techniques such as hot pressing1, and without requiring preliminary reduction treatment of alloy powder. , low cost, high hardness, high 1! It has now become possible to obtain a sintered alloy that is Fjf and has high wear resistance.
第1図はこの発明の焼結合金を用い九ロ、カアーム/4
ツド附近の一例を示す略解的な正面図である・
出 願 人 ト曹夕自動車工業株式会社(ほか1名
)
代理人 弁理士豊田武人
(ほか1名)Figure 1 shows the use of the sintered alloy of this invention.
This is a schematic front view showing an example of the vicinity of Tsudo. Applicant: Tosoyu Automobile Industry Co., Ltd. (and 1 other person) Agent: Patent attorney Takehito Toyota (and 1 other person)
Claims (2)
同じ)Me 、 W(D 1811 *Id 2種を合
計量テ3.0〜20.0唾、V、M O1種または2種
を合計量”t’0.5〜10.0憾、C・’i15.0
参以下、0をo、s畳以下それぞれ含有し、かつ510
..5〜B、O慢およびMnO,1’〜3.0畳め1種
tたは2種を含有し、残部Faおよび2憾以下の不輔物
からなる噴霧製造された合金粉末を用い、その合金粉末
に黒鉛粉末0.8−; 2.0憾を添加混合し、圧粉成
形お°よび焼結してなること1に特徴とす4耐摩耗性焼
結合金。(1) Cr: 3.0-10.01 (weight 9, same below) Me, W (D 1811 *Id) Total amount of 2 types: 3.0-20.0, V, MO 1 type or 2 Total amount of seeds"t'0.5~10.0, C・'i15.0
Contains 0, o and s tatami, respectively, and 510
.. .. Using a spray-produced alloy powder containing 5 to B, O, and MnO, 1' to 3.0 and 1 or 2 types, the balance being Fa and 2 or less impurities, 4. A wear-resistant sintered alloy, characterized in that it is obtained by adding and mixing graphite powder of 0.8 to 2.0 to an alloy powder, compacting it, and sintering it.
以上であp1直径が15膓以下の炭化物微細粒子が面積
率5〜2011Gでマトリンジス中に均一に分散されて
いる特許請求の範囲第1項記載の耐摩耗性焼結合金。(2) Density ratio is 90 or more and apparent hardness H is 500
The wear-resistant sintered alloy according to claim 1, wherein fine carbide particles having a p1 diameter of 15 mm or less are uniformly dispersed in the matrix at an area ratio of 5 to 2011 G.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17335681A JPS5873750A (en) | 1981-10-28 | 1981-10-28 | Wear resistant sintered alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17335681A JPS5873750A (en) | 1981-10-28 | 1981-10-28 | Wear resistant sintered alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5873750A true JPS5873750A (en) | 1983-05-04 |
Family
ID=15958886
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17335681A Pending JPS5873750A (en) | 1981-10-28 | 1981-10-28 | Wear resistant sintered alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5873750A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58126963A (en) * | 1982-01-22 | 1983-07-28 | Nachi Fujikoshi Corp | Powdered high speed steel |
JPS58130259A (en) * | 1982-01-26 | 1983-08-03 | Mitsubishi Metal Corp | Sintered fe alloy with superior wear and corrosion resistance |
JPS5935659A (en) * | 1982-08-19 | 1984-02-27 | Toyota Motor Corp | Sliding member |
JPS61117250A (en) * | 1984-06-22 | 1986-06-04 | Nachi Fujikoshi Corp | High speed tool steel having superior weldability |
JPS61243155A (en) * | 1985-04-17 | 1986-10-29 | Hitachi Metals Ltd | Vane excellent in wear resistance and sliding property and its production |
JPS63169361A (en) * | 1986-12-30 | 1988-07-13 | ウツデホルム トウーリング アクツイエボラーグ | Tool steel |
US6358298B1 (en) | 1999-07-30 | 2002-03-19 | Quebec Metal Powders Limited | Iron-graphite composite powders and sintered articles produced therefrom |
US6485678B1 (en) | 2000-06-20 | 2002-11-26 | Winsert Technologies, Inc. | Wear-resistant iron base alloys |
JPWO2003000946A1 (en) * | 2001-06-26 | 2004-10-14 | 株式会社豊田中央研究所 | Sliding member and manufacturing method thereof |
-
1981
- 1981-10-28 JP JP17335681A patent/JPS5873750A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58126963A (en) * | 1982-01-22 | 1983-07-28 | Nachi Fujikoshi Corp | Powdered high speed steel |
JPH0143017B2 (en) * | 1982-01-22 | 1989-09-18 | Fujikoshi Kk | |
JPH0115581B2 (en) * | 1982-01-26 | 1989-03-17 | Mitsubishi Metal Corp | |
JPS58130259A (en) * | 1982-01-26 | 1983-08-03 | Mitsubishi Metal Corp | Sintered fe alloy with superior wear and corrosion resistance |
JPH0411616B2 (en) * | 1982-08-19 | 1992-03-02 | Toyota Motor Co Ltd | |
JPS5935659A (en) * | 1982-08-19 | 1984-02-27 | Toyota Motor Corp | Sliding member |
JPS61117250A (en) * | 1984-06-22 | 1986-06-04 | Nachi Fujikoshi Corp | High speed tool steel having superior weldability |
JPS61243155A (en) * | 1985-04-17 | 1986-10-29 | Hitachi Metals Ltd | Vane excellent in wear resistance and sliding property and its production |
JPH0380868B2 (en) * | 1985-04-17 | 1991-12-26 | Hitachi Metals Ltd | |
JPS63169361A (en) * | 1986-12-30 | 1988-07-13 | ウツデホルム トウーリング アクツイエボラーグ | Tool steel |
US6358298B1 (en) | 1999-07-30 | 2002-03-19 | Quebec Metal Powders Limited | Iron-graphite composite powders and sintered articles produced therefrom |
US6485678B1 (en) | 2000-06-20 | 2002-11-26 | Winsert Technologies, Inc. | Wear-resistant iron base alloys |
JPWO2003000946A1 (en) * | 2001-06-26 | 2004-10-14 | 株式会社豊田中央研究所 | Sliding member and manufacturing method thereof |
JP4639589B2 (en) * | 2001-06-26 | 2011-02-23 | 株式会社豊田中央研究所 | Sliding member and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4183346B2 (en) | Mixed powder for powder metallurgy, iron-based sintered body and method for producing the same | |
JPH09511546A (en) | High density sintered alloy | |
JPS5918463B2 (en) | Wear-resistant sintered alloy and its manufacturing method | |
KR100189233B1 (en) | Iron-based powder, component made thereof, and method of making the component | |
JP3865293B2 (en) | Abrasion resistant hard phase forming alloy powder and method for producing wear resistant sintered alloy using the same | |
JPS5873750A (en) | Wear resistant sintered alloy | |
CN104711485A (en) | Low alloyed steel powder | |
JP4201830B2 (en) | Iron-based powder containing chromium, molybdenum and manganese and method for producing sintered body | |
JP6515955B2 (en) | Method of manufacturing mixed powder for powder metallurgy and iron-based sintered body | |
JP3957331B2 (en) | Method for producing water atomized iron powder for powder metallurgy | |
JP4371003B2 (en) | Alloy steel powder for powder metallurgy | |
JP3446322B2 (en) | Alloy steel powder for powder metallurgy | |
JP4051167B2 (en) | Wear-resistant iron-based sintered alloy | |
JP6528899B2 (en) | Method of manufacturing mixed powder and sintered body for powder metallurgy | |
JP4121383B2 (en) | Iron-base metal bond excellent in dimensional accuracy, strength and sliding characteristics and method for manufacturing the same | |
JP3517505B2 (en) | Raw material powder for sintered wear resistant material | |
JP4715358B2 (en) | Alloy steel powder for powder metallurgy | |
JPH06322470A (en) | Cast iron powder for powder metallurgy and wear resistant ferrous sintered alloy | |
JPS61295302A (en) | Low-alloy iron powder for sintering | |
JP5923023B2 (en) | Mixed powder for powder metallurgy and method for producing sintered material | |
US5599377A (en) | Mixed iron powder for powder metallurgy | |
JPH0959740A (en) | Powder mixture for powder metallurgy and its sintered compact | |
JP2012126972A (en) | Alloy steel powder for powder metallurgy, iron-based sintered material, and method for manufacturing the same | |
JP2001131611A (en) | Bearing made of free graphite-precipitated ferrous sintered material exhibiting excellent wear resistance under high specific pressure | |
JP3392228B2 (en) | Alloy steel powder for powder metallurgy |