JPS58125961A - Driving method of charge transfer image pickup device - Google Patents

Driving method of charge transfer image pickup device

Info

Publication number
JPS58125961A
JPS58125961A JP57008176A JP817682A JPS58125961A JP S58125961 A JPS58125961 A JP S58125961A JP 57008176 A JP57008176 A JP 57008176A JP 817682 A JP817682 A JP 817682A JP S58125961 A JPS58125961 A JP S58125961A
Authority
JP
Japan
Prior art keywords
region
voltage
photoelectric conversion
bias voltage
time point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57008176A
Other languages
Japanese (ja)
Other versions
JPH0377712B2 (en
Inventor
Eiichi Takeuchi
竹内 映一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57008176A priority Critical patent/JPS58125961A/en
Publication of JPS58125961A publication Critical patent/JPS58125961A/en
Publication of JPH0377712B2 publication Critical patent/JPH0377712B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14887Blooming suppression

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To eliminate a diaphragm mechanism which is applied to a camera, etc., by having two levels for the adverse bias voltage which form a p-n junction together with a semiconductor substrate, and applied between two p type regions different in depths of junctions. CONSTITUTION:The adverse bias voltage which is formed between a semiconductor substrate 16 and a p type region 22 forming a p-n junction at a time point t1 has a high level V0. During a period of this level V0, the electric charge which is produced after being made incident to a photoelectric converting region 24 is not turned into the signal charge since the regions 24 and 22 are set in forward directions. The adverse bias voltage is converted into the ordinary voltage VS at a time point t2, and the electric charge generated by the light made incident to the region 24 during this period is turned into the signal charge. The voltage is applied to a transfer gate 13 at a time point t3, and the signal charge stored in a region is transferred to a vertical shift register 11. The voltage V0 is applied again to the region 24 at a time point t3 before the register 11 starts the transfer of electric charge. Then a diaphragm mechanism is eliminated if a period from the time point t2 through t3 is controlled in response to the incident light volume.

Description

【発明の詳細な説明】 である一電荷転送装置を用いた撮像装置はフレーム転送
万式、インターライン転送方式と呼ばれる方式が開発さ
nており,固体装置の特徴である小型,低消費は力、高
信頼性を柱に急速に発展している7しかし撮像装置の利
害得失を考えると、先に述べた固体装置の利点の外%雑
音、残儂,焼き付き,等では現在使用されてい養檄像管
より優れているかブルーミング、スミア現象に問題を残
している一またこの様な電荷転送装櫨tカメラ等のシス
テムとして用いる場合に入射光量を調節するため機棹的
礪構,すなわち絞9を必要とする。
[Detailed Description of the Invention] As an imaging device using a charge transfer device, a method called a frame transfer method or an interline transfer method has been developed. 7 However, considering the benefits and disadvantages of imaging devices, the advantages of solid-state devices mentioned above cannot be ignored due to noise, residuals, burn-in, etc. Although it is better than a picture tube, it still has problems with blooming and smear phenomena.In addition, when used as a system such as a charge transfer camera, it has a mechanical structure, that is, an aperture 9, to adjust the amount of incident light. I need.

従来のインターライン転送方式KLる電荷転送撮像装置
は第1図に示すように同一電荷転送電極群で駆動する複
数列の垂直シフトレジスタ11 と。
As shown in FIG. 1, a conventional interline transfer type KL charge transfer imaging device has a plurality of columns of vertical shift registers 11 driven by the same charge transfer electrode group.

各垂直シフトレジスタの一側に隣接し、且つ互いに電気
的に分離された光電変換部l2と、垂直シフトレジスタ
と光電変換部の信号電荷転送を制御するトランスファゲ
ート電1i13と,%垂直シフトレジスタの一端に電気
的に結合した電荷転送水平シフトレジスタ14と、水平
シフトレジスタの一端に信号電荷を検出する装置15が
設けられている。
A photoelectric conversion section 12 adjacent to one side of each vertical shift register and electrically isolated from each other, a transfer gate terminal 1i13 for controlling signal charge transfer between the vertical shift register and the photoelectric conversion section, and a A charge transfer horizontal shift register 14 is electrically coupled to one end, and a signal charge detection device 15 is provided at one end of the horizontal shift register.

このようなインターライン転送方式による電荷転送撮像
装置は、光電変換部12で入射光量に応じて信号電荷l
l−1例えばトランスファゲート13を介してそnぞ1
1に対応する垂直シフトレジスタ11へ転送する・垂直
シフトレジスタへ信号電荷を転送した後、トランスフ1
ゲートが閉じらlrL。
In a charge transfer imaging device using such an interline transfer method, the photoelectric conversion unit 12 converts signal charges l according to the amount of incident light.
l-1 For example, through the transfer gate 13
Transfer to the vertical shift register 11 corresponding to 1 ・After transferring the signal charge to the vertical shift register, transfer 1
The gate is closed lrL.

光電変換部11は次の周期の信号*frv蓄積する。The photoelectric conversion unit 11 accumulates the signal *frv of the next cycle.

−万垂直シフトレジスタ11へ転送された信号電荷は並
列に垂直方向に転送し、各垂直シフトレジスIυ−水平
うイン毎に1水平シフトレジスタ14に転送される。水
平シフトレジスタへ送られた電#は次の垂直シフトレジ
スタから信号が転送さ詐て来る間に水子方向に信号電荷
を転送し検出する装置1atPら信号として外部に取り
出さnるーJR2図は第1図に示す電荷転送撮像装置の
A−A線上の断面を模式的に示した−のである。第2図
において、基板半導体16とP−N接合を形成し且つ、
接合の深場が異なる二つのP型領域22.23が形成さ
れており、及び接合の浅いP型領域22上KuN型の光
電変換領域24が形成さ几てお9%接合の深いP型領域
23上にはN型の埋込みチャネルの垂直シフトレジスタ
25が形成さnでいる。
The signal charges transferred to -10,000 vertical shift registers 11 are transferred vertically in parallel, and are transferred to one horizontal shift register 14 for each vertical shift register Iυ-horizontal row. The voltage sent to the horizontal shift register is taken out as a signal by the device 1atP which transfers the signal charge in the direction of water while the signal is transferred from the next vertical shift register and detects it. 1 is a schematic cross-sectional view of the charge transfer imaging device taken along line A--A shown in FIG. In FIG. 2, a PN junction is formed with the substrate semiconductor 16, and
Two P-type regions 22 and 23 with different junction depths are formed, and a KuN-type photoelectric conversion region 24 is formed on the P-type region 22 with a shallow junction, and a deep P-type region with a 9% junction is formed. An N-type buried channel vertical shift register 25 is formed on 23.

第3図はjlR2図に光電変換部のB−B@上の電位分
布図を示しており、横軸は深さ方向の距離。
FIG. 3 shows a potential distribution diagram on B-B@ of the photoelectric conversion section in the jlR2 diagram, and the horizontal axis is the distance in the depth direction.

縦軸に電位を表している。今第2図に示すチャネルスト
ップ領域20の電位を基準電位(この場合0ボルト)と
する、N型の光電変換領域24はトランスフ1ゲート1
3の電圧”vTG”ランスファゲートの閾値電圧′gt
vT とするとvTo−vTの電位でセラh−gれる。
The vertical axis represents the potential. Now, the N-type photoelectric conversion region 24 is connected to the transfer gate 1 with the potential of the channel stop region 20 shown in FIG.
3 voltage "vTG" Transfer gate threshold voltage 'gt
When vT, a cell h-g is generated at a potential of vTo-vT.

またP型領#、22と基板】6に印加する直流の逆バイ
アス電圧vSUb”曲線26で示す低い電圧から、より
高い逆バイアス1[BEv8U、vc′TI3ト曲線2
7のよう[PW領域22は完全に空乏化する。光電変換
領域24に光が照射され信号電荷が蓄積されると、光電
変換領域24の電位は曲線28から曲@29のように小
さくなってゆき鰻終的には曲線300Jように光電変換
領域24とP型領斌22の接合は順方向とな9.これ以
上光電変換領域24で発生した電荷はPfj1基板領域
22 k介して基板半導体16へ流れ込む。
In addition, the DC reverse bias voltage applied to the P-type region #, 22 and the substrate]6 varies from the low voltage shown by the curve 26 to the higher reverse bias voltage 1 [BEv8U,vc'TI3t curve 2
7 [PW region 22 is completely depleted. When the photoelectric conversion region 24 is irradiated with light and signal charges are accumulated, the potential of the photoelectric conversion region 24 decreases from curve 28 to curve @29, and eventually the photoelectric conversion region 24 decreases as shown by curve 300J. 9. The junction between the P-type groove 22 and the P-type groove 22 is in the forward direction.9. Any more charges generated in the photoelectric conversion region 24 flow into the substrate semiconductor 16 via the Pfj1 substrate region 22k.

丁なわち第2図で示すトランスフ1ゲート領域13直下
、チャネルストップ領域20 i!下、お工び図示して
いないが光IE変僕領域24 t8む全ての領域の表面
電位エフ光′IL変換領域24とPfi領域22e)接
合電位が高く々々ように基板半導体とP型領域22K[
fiの逆バイアス電圧τ印加することにより、光電変換
領域24で発生する過剰電荷は完全に基板半導体16へ
掃き重子こξができる−この構造及び動作rc工ってプ
ルーミング現象を完全に抑制することができる− しかしこの様な電荷転送撮儂f装置tカメラ等のシステ
ムとして用いる場合に入射光1li1!″機械的機構、
すなわち絞9によって調節しなけnばならない欠点が6
った龜 本発明り目的は上記の欠点を無ぐし、前記のブルーミン
グ抑制可能な電荷転送装置の訴しい駆動方法を提供する
ことにあるー 不発明に工れば、半導体基板の主面に、#記基板と反対
の導ζ型髪形成してなる接合領域で、前記接合深さが浅
い第1 C/J領域と、前記接合深さが深い第2の領域
を設け、前記a1の傾城の主面に光道変換素子群を形成
し、前記第2の領域の主面に前記光電変換素子群からの
信号を読み重子袈竜を形成してなる電荷転送装置vc(
tvcおいて、lフィールドυ期間中に前記mlの領域
と光it変換素子群とが順方向となるように通常の逆/
署イアス電圧エリ高い電圧t@記@1の領域及び第2の
領域ξ前記半導体基板間に印加して一一足期間V後前記
第1の領域が完全に空乏化するのに必要な通常の逆バイ
アス電圧を前記第1の領域及び第2の領域と前記半導体
基板に印加することt−特徴とする電荷転送撮像装置の
駆動方法が得られる。
In other words, the channel stop region 20 i! is directly below the transfer 1 gate region 13 shown in FIG. Although not shown in the figure, the surface potential of all the regions including the optical IE conversion region 24 and the Pfi region 22e) has a high junction potential between the substrate semiconductor and the P-type region. 22K [
By applying a reverse bias voltage τ of fi, the excess charge generated in the photoelectric conversion region 24 is completely swept to the substrate semiconductor 16, and a heavy electron ξ is created.This structure and operation rc can be used to completely suppress the pluming phenomenon. However, when such a charge transfer imaging device is used as a system such as a camera, the incident light 1li1! ″Mechanical mechanism,
In other words, the drawback that must be adjusted with the aperture 9 is 6.
An object of the present invention is to eliminate the above-mentioned drawbacks and to provide an attractive method for driving a charge transfer device capable of suppressing blooming. In the bonding area formed by forming a conductive ζ-type hair opposite to the substrate marked #, a first C/J area with a shallow bonding depth and a second area with a deep bonding depth are provided, and the slope of the a1 is A charge transfer device VC (
In tvc, the normal reverse /
The normal voltage required for the first region to be completely depleted after a period of V after a high voltage t is applied between the region 1 and the second region ξ of the semiconductor substrate. A method for driving a charge transfer imaging device is obtained, characterized in that a reverse bias voltage is applied to the first region, the second region, and the semiconductor substrate.

次に本発明の実施例について図面を用いて説明する。以
後本発明の実施例については説明を簡単にするためNチ
fンネルe)半導体装置について述べることにする。
Next, embodiments of the present invention will be described using the drawings. Hereinafter, in the embodiments of the present invention, in order to simplify the explanation, N-channel (e) semiconductor devices will be described.

第4図は不発明の一寮施例を説明するための駆動パルス
波形図である・従来例と違いは、第2図に示した半導体
基板とP−N接合全形成し且つ接曾Rざが異なる二つの
P型領埴22,2Bとの間に印加する逆バイアス電圧9
□bか二つのレベル@v −”v ” t−持つことで
ある・S       O 第5図tX第3図と同様に、第2図に示す電荷転送撮像
装置のB−B線上の深さ方向の電位を示したものである
Figure 4 is a drive pulse waveform diagram for explaining the inventive example.The difference from the conventional example is that the P-N junction is fully formed with the semiconductor substrate shown in Figure 2, and the contact radius is Reverse bias voltage 9 applied between two P-type regions 22, 2B with different
□b or two levels @v - "v" t- S O Figure 5 tX Similarly to Figure 3, the depth direction on the B-B line of the charge transfer imaging device shown in Figure 2 This shows the potential of

第4図における時刻11 C1)とき、半導体基板16
とP−N接合を形成するP型領域22との間に印加する
逆バイアス電圧qsubに1■”である自第5図におい
て、こり逆バイアス電圧ψ、ub@Ivo″はN型の光
電変換領域24とP型領域22との間が順方向となる必
要が多る。第5図にこの逆バイアス電圧ψsub”■o
”の作る電位分布の曲線11−31で示す、この逆バイ
アス電圧ψsub”o”  のレベルの期間、光電変換
領域24 K入射して発生した電荷は、N型の光電変換
領域24とP型領域22が順方向となっているため基板
半導体161C掃き出されるため、信号電荷とはならな
い一時刻t2 のとき、逆バイアス電圧ψsubハ″v
o′″からv″に変るため、光電変換部の深さ方向型位
を示す曲線は31から曲線27に変る。逆バイア8電圧
?aubカ”■S”のレベル期間中、N型の光電変換領
域24に入射した光によって発生した電荷は信号電荷と
なり、N型の光電変換領域24に蓄積さ几、入射光量に
応じてN型の光電変換領域24の電位は曲線28から小
さくなっていく。
At time 11 C1) in FIG. 4, the semiconductor substrate 16
In Fig. 5, the reverse bias voltage qsub applied between the P-type region 22 forming a P-N junction is 1'', and the reverse bias voltage ψ, ub@Ivo'' is applied to the N-type photoelectric conversion. It is often necessary that the region 24 and the P-type region 22 be in the forward direction. Figure 5 shows this reverse bias voltage ψsub”■o
During the period of the level of this reverse bias voltage ψsub"o" shown by the curve 11-31 of the potential distribution created by Since 22 is in the forward direction, the substrate semiconductor 161C is swept out, so at time t2, when it does not become a signal charge, the reverse bias voltage ψsubha''v
Since the curve changes from o''' to v'', the curve indicating the depth direction position of the photoelectric conversion section changes from 31 to curve 27. Reverse bias 8 voltage? During the aub power "■S" level period, charges generated by light incident on the N-type photoelectric conversion region 24 become signal charges, and are accumulated in the N-type photoelectric conversion region 24, depending on the amount of incident light. The potential of the photoelectric conversion region 24 becomes smaller from the curve 28.

W刻t、  のト遣、トランスフ1ゲートに電圧■TG
が印加され%N型の光′Nf換領域24に蓄積されてい
た信号電荷は垂直シフトレジスターlに転送される。こ
の時、N型の光電変換領域24はvTG−■ア の電位
でセットさnる。
W time t, the voltage is applied to the transfer 1 gate, TG
is applied, and the signal charge accumulated in the %N type light 'Nf conversion region 24 is transferred to the vertical shift register l. At this time, the N-type photoelectric conversion region 24 is set at a potential of vTG-■A.

垂直シフトレジスタが電荷転送i始める前の時刻t4 
 のと@、N型の光電変換領域24に再び逆バイアス電
圧ψsub  vo”が印加され1次Qフィールドの動
作を繰り返していぐ− この動作によ−)1フイールドでの光の蓄積時間は時刻
t2 から時刻t! までの期間T、である。
Time t4 before the vertical shift register starts charge transfer i
The reverse bias voltage ψsub vo'' is again applied to the N-type photoelectric conversion region 24, and the operation of the primary Q field is repeated. It is a period T from time t! to time t!.

期間T、を入射光量に応じ、入射光量が多い時に短く、
入射光量が少い時は長くしてイ6号電荷Jlf:制御で
きる・この為従来カメラ等で使用していた絞りの機構は
不用となる・ また逆バイアス電圧ψsub″lVo″H@Vs”↓り
大きくN型の光電変換領域ごP型領域24と間t−1方
向にする電圧以上あれば良いが%垂直シフトレジスタ直
下のP型領#25を空乏化するまでの大きな電圧にして
はならない。
The period T depends on the amount of incident light, and is short when the amount of incident light is large.
When the amount of incident light is small, it can be lengthened to control No. 6 charge Jlf: Therefore, the diaphragm mechanism used in conventional cameras is unnecessary. Also, the reverse bias voltage ψsub"lVo"H@Vs"↓ The voltage should be higher than the voltage that creates the voltage between the N-type photoelectric conversion region and the P-type region 24 in the t-1 direction, but the voltage must not be so large as to deplete the P-type region #25 directly below the vertical shift register. .

以上本発明の実施例についてその駆動法’JrNチャネ
ルについて説明したが各領域の4電型を反対にすること
でPチャネル半導体装置に適用でさることは言うまで本
ない。
Although the driving method of the embodiment of the present invention has been described above for the JrN channel, it goes without saying that it can be applied to a P channel semiconductor device by reversing the four voltage types of each region.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図に従来の電荷転送装置i用いt撮像装置の平面図
、第2図に渠1図に示すA−人1線上の断面模式図に、
第3図は第2図に示すB −B’破線上電位分布を示し
ている。第4図は本発明の詳細な説明するための駆動パ
ルス波形、第5図は不発明の駆動法による第2図に示す
B−BIJI上の電位分布を示している。 図において、 11・・・1■ンフトレジスタ、12・
・・光電変換部、  13・・・トランスフ1ゲート。 14・・・水平シフトレジスタ、  15・・・電荷検
出装e%16・・・半導体基板、  17・・・絶縁膜
、18−・・垂直シフトレジスタ電極、  19・・・
トランスフ1ゲート電極。 20・・・チミンネルストップパー% 21・・・光遮
蔽。 22.23・・・P型領域、24・・・N型の光電変換
領域。 25・・°N型の垂直シフトレジスタ、26,2フ、2
8.29、30.31・・・電位分布を示す曲線、であ
る・代理人弁理士内 原  晋 第1図 15                /4第2図
FIG. 1 is a plan view of an imaging device using a conventional charge transfer device, and FIG. 2 is a schematic cross-sectional view on line A-Person 1 shown in FIG.
FIG. 3 shows the potential distribution on the broken line B-B' shown in FIG. FIG. 4 shows a driving pulse waveform for explaining the present invention in detail, and FIG. 5 shows the potential distribution on B-BIJI shown in FIG. 2 by the uninvented driving method. In the figure, 11...1 ■ft register, 12...
...Photoelectric conversion section, 13...Transf 1 gate. 14...Horizontal shift register, 15...Charge detection device e%16...Semiconductor substrate, 17...Insulating film, 18-...Vertical shift register electrode, 19...
Transfer 1 gate electrode. 20... Chiminer stopper% 21... Light shielding. 22.23...P type region, 24...N type photoelectric conversion region. 25...°N type vertical shift register, 26,2 f,2
8.29, 30.31...Curve showing potential distribution. Susumu Hara, Patent Attorney Attorney Figure 1 15/4 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 半導体基板の主面に、前記基板と反対の導電型を形成し
てなる接合領域で、前記接合深さが浅い第1の領域と、
111記接合深さが深い第2の領域?設け、前記第lの
領域の主面に光電変換素子f#を形成し、前記第2の領
域の主面に前記光電変換素子群からの信号を読み重子装
置を形成してなる電荷転送撮像装置において、lフィー
ルドの期間中に前記第1の領域と光電変換素子群とが順
方向とな4!5に通常の逆バイアス電圧より高い電圧を
繭Ie第1の領域及び第2の領域と前記半導体基板間に
印加して、一定期間の後前記第1の領域が完全に空乏化
するのに必要な通常の逆バイアス電圧Wr#1記第1の
領域及び第2の領域と前記半導体基板に印加することr
*徴とする電荷転送撮像装置の駆動方法−
a first region having a shallow junction depth, the junction region having a conductivity type opposite to that of the substrate formed on the principal surface of the semiconductor substrate;
111. Second region with deep junction depth? a charge transfer imaging device, wherein a photoelectric conversion element f# is formed on the main surface of the first region, and a weight element device for reading signals from the photoelectric conversion element group is formed on the main surface of the second region. During the I field period, the first region and the photoelectric conversion element group are in the forward direction, and a voltage higher than a normal reverse bias voltage is applied to the cocoon Ie first region and second region and the photoelectric conversion element group. A normal reverse bias voltage Wr#1 is applied between the semiconductor substrates and is necessary for the first region to be completely depleted after a certain period of time between the first region, the second region and the semiconductor substrate. to apply r
*Characteristics of driving method of charge transfer imaging device-
JP57008176A 1982-01-21 1982-01-21 Driving method of charge transfer image pickup device Granted JPS58125961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57008176A JPS58125961A (en) 1982-01-21 1982-01-21 Driving method of charge transfer image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57008176A JPS58125961A (en) 1982-01-21 1982-01-21 Driving method of charge transfer image pickup device

Publications (2)

Publication Number Publication Date
JPS58125961A true JPS58125961A (en) 1983-07-27
JPH0377712B2 JPH0377712B2 (en) 1991-12-11

Family

ID=11686003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57008176A Granted JPS58125961A (en) 1982-01-21 1982-01-21 Driving method of charge transfer image pickup device

Country Status (1)

Country Link
JP (1) JPS58125961A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63158981A (en) * 1986-12-23 1988-07-01 Sony Corp Solid-state image pickup device
JPS6446379A (en) * 1987-08-14 1989-02-20 Sony Corp Solid-state image-pick up device
JPH0846875A (en) * 1995-04-21 1996-02-16 Sony Corp Exposure time control method for solid-state image pickup device and video camera

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63158981A (en) * 1986-12-23 1988-07-01 Sony Corp Solid-state image pickup device
JPS6446379A (en) * 1987-08-14 1989-02-20 Sony Corp Solid-state image-pick up device
JPH0846875A (en) * 1995-04-21 1996-02-16 Sony Corp Exposure time control method for solid-state image pickup device and video camera

Also Published As

Publication number Publication date
JPH0377712B2 (en) 1991-12-11

Similar Documents

Publication Publication Date Title
US6731337B2 (en) Solid-state imaging device
JPS5917581B2 (en) solid-state imaging device
JPS5819080A (en) Solid-state image sensor
JPH0125272B2 (en)
US4748486A (en) Solid-state image sensor
JP2006073734A (en) Optoelectric transducer, its manufacturing method and imaging system
JPS5755672A (en) Solid-state image pickup device and its driving method
JPH06181302A (en) Ccd imaging device
JPH0377713B2 (en)
JPS58125961A (en) Driving method of charge transfer image pickup device
JPH0230189B2 (en)
US5047862A (en) Solid-state imager
KR100261158B1 (en) Solid state image sensing device
JPS624362A (en) Solid-state image pickup device
JPH031871B2 (en)
JPS61294977A (en) Driving system for solid state image pickup device
JPH0421351B2 (en)
JPH0637297A (en) Solid-state imaging device and driving method thereof
JPS60244068A (en) Buried channel charge coupled device
JP3178148B2 (en) Image sensor
JPS61174765A (en) Solid image pickup device
JPH0377714B2 (en)
JPH04274367A (en) Solid-state image sensing device
JPH0377711B2 (en)
JPH0251317B2 (en)