JP3178148B2 - Image sensor - Google Patents

Image sensor

Info

Publication number
JP3178148B2
JP3178148B2 JP04161993A JP4161993A JP3178148B2 JP 3178148 B2 JP3178148 B2 JP 3178148B2 JP 04161993 A JP04161993 A JP 04161993A JP 4161993 A JP4161993 A JP 4161993A JP 3178148 B2 JP3178148 B2 JP 3178148B2
Authority
JP
Japan
Prior art keywords
pixel
monitor
photosensitive
pixels
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04161993A
Other languages
Japanese (ja)
Other versions
JPH06261183A (en
Inventor
宏明 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP04161993A priority Critical patent/JP3178148B2/en
Publication of JPH06261183A publication Critical patent/JPH06261183A/en
Application granted granted Critical
Publication of JP3178148B2 publication Critical patent/JP3178148B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Facsimile Scanning Arrangements (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はイメージセンサに関し、
特に被写体輝度をモニターするモニター出力の残像低減
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image sensor,
In particular, the present invention relates to reduction of an afterimage of a monitor output for monitoring the luminance of a subject.

【0002】[0002]

【従来の技術】被写体像をイメージ信号に変換するイメ
ージセンサは、近年カメラのオートフォーカス用のセン
サとして用いられている。ところでフォーカシングを精
度良く行なうためには、被写体の輝度にかかわりなく、
一定の大きさのイメージ信号が得られるようにする必要
がある。すなわち、被写体の輝度が低い場合には、光電
変換の積分時間を長くし、逆に被写体の輝度が高い場合
には、イメージ信号が飽和しないように光電変換の積分
時間を短かくする必要があった。そのため、被写体輝度
をモニターするためのモニター画素をチップ上に設けて
いた。
2. Description of the Related Art In recent years, an image sensor for converting a subject image into an image signal has been used as a sensor for autofocus of a camera. By the way, in order to perform focusing accurately, regardless of the brightness of the subject,
It is necessary to obtain an image signal of a certain size. That is, when the brightness of the subject is low, the integration time of the photoelectric conversion needs to be increased, and when the brightness of the subject is high, the integration time of the photoelectric conversion needs to be short so that the image signal is not saturated. Was. Therefore, a monitor pixel for monitoring the luminance of the subject is provided on the chip.

【0003】以下、従来のモニター画素について図を用
いて説明する。
Hereinafter, a conventional monitor pixel will be described with reference to the drawings.

【0004】図5は従来のイメージセンサのブロック図
である。感光画素13に入射した光量に応じて発生した
信号電荷は、一定電圧VSTが印加された蓄積部12のゲ
ートFに蓄積される。この時ΦTGはローレベルになっ
ている。次に所定の蓄積時間後ΦTGをハイレベルにす
ることによりトランスファゲート11がオンし、信号電
荷は転送部10に流入し、Φ1,Φ2により順次転送さ
れる。
FIG. 5 is a block diagram of a conventional image sensor. The signal charge generated according to the amount of light incident on the photosensitive pixel 13 is stored in the gate F of the storage unit 12 to which the constant voltage V ST is applied. At this time, ΦTG is at a low level. Next, after a predetermined accumulation time, ΦTG is set to a high level to turn on the transfer gate 11, and the signal charge flows into the transfer unit 10 and is sequentially transferred by Φ1 and Φ2.

【0005】感光画素13に入射する光量すなわち、被
写体の輝度をモニターするためにモニター画素34が設
けられている。さらにモニター画素34で発生した信号
電荷を出力信号に変換するための出力部100がゲート
15,電荷電圧変換部16,リセットゲート17,リセ
ットドレイン18により構成されている。
[0005] A monitor pixel 34 is provided to monitor the amount of light incident on the photosensitive pixel 13, that is, the luminance of the subject. Further, an output unit 100 for converting the signal charge generated in the monitor pixel 34 into an output signal includes the gate 15, the charge-voltage converter 16, the reset gate 17, and the reset drain 18.

【0006】図6(a),(b)は、図5のC−C′線
の断面図及びポテンシャル図である。
FIGS. 6A and 6B are a sectional view and a potential diagram taken along the line CC 'of FIG.

【0007】N型半導体基板1の表面にP型拡散層2を
形成し、さらにモニター画素及び電荷電圧変換部を形成
するN型拡散層4を形成し、基板表面からの暗電流の発
生を抑えている。
A P-type diffusion layer 2 is formed on the surface of an N-type semiconductor substrate 1, and an N-type diffusion layer 4 for forming a monitor pixel and a charge-to-voltage converter is formed to suppress generation of dark current from the substrate surface. ing.

【0008】入射光に応じてモニター画素34で発生し
た信号電荷は、一定電圧VBAが印加されたゲート15下
を通って電荷電圧変換部16に流入する。流入した電荷
量に対応した電荷電圧変換部16の電位変化を出力バッ
ファ19を通して出力端子MOUT より取り出す。
[0008] The signal charges generated in the monitor pixels 34 in response to the incident light flow into the charge-to-voltage converter 16 through the lower portion of the gate 15 to which the constant voltage VBA is applied. A change in the potential of the charge-voltage converter 16 corresponding to the amount of charge that has flowed in is extracted from the output terminal M OUT through the output buffer 19.

【0009】[0009]

【発明が解決しようとする課題】イメージセンサでは通
常100画素程度の関係画素領域の入射光量をモニター
するためにモニター画素は200μm程度の大きさを持
つことになる。したがって、モニター画素の両端の部分
で発生した信号電荷は100μm程度の距離を移動する
こととなる。
In an image sensor, a monitor pixel generally has a size of about 200 μm in order to monitor the amount of incident light in a related pixel area of about 100 pixels. Therefore, the signal charges generated at both ends of the monitor pixel move a distance of about 100 μm.

【0010】この場合従来のイメージセンサでは、モニ
ター画素内にポテンシャルの勾配がないために信号電荷
は通常熱拡散による移動となるため、出力部100に流
入するまでの時間が長くなり、残像の原因となってい
た。
In this case, in the conventional image sensor, since there is no potential gradient in the monitor pixel, the signal charge usually moves by thermal diffusion, so that the time required for the signal charge to flow into the output unit 100 becomes longer, and the cause of the afterimage is increased. Had become.

【0011】[0011]

【課題を解決するための手段】本発明のイメージセンサ
は、モニター画素の画素幅が出力部に向かって広くなっ
ている。
According to the image sensor of the present invention, the pixel width of the monitor pixel increases toward the output portion.

【0012】[0012]

【実施例】次に本発明について図面を用いて説明する。
なお、従来と同じ構成の部分は説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings.
The description of the same components as in the related art is omitted.

【0013】図1は本発明の一実施例のブロック図であ
る。感光画素13に入射する光量すなわち、被写体の輝
度をモニターするためのモニター画素14が設けられて
いる。本実施例のモニター画素14は両端に向かって、
画素幅が狭くなっている。このモニター画素以外は従来
と同じ構成である。
FIG. 1 is a block diagram of one embodiment of the present invention. A monitor pixel 14 for monitoring the amount of light incident on the photosensitive pixel 13, that is, the luminance of the subject is provided. The monitor pixel 14 of the present embodiment moves toward both ends.
The pixel width is narrow. Other than this monitor pixel, the configuration is the same as that of the conventional one.

【0014】図2(a),(b)は図1のA−A′線の
断面図及びポテンシャル図である。N型半導体基板1上
にP型拡散層2を形成し、さらに、モニター画素及び電
荷電圧変換部を形成するN型拡散層3を形成する。モニ
ター画素14の表面にはP+型拡散層4を形成し基板表
面からの暗電流の発生を抑えている。
FIGS. 2A and 2B are a sectional view and a potential diagram taken along line AA 'in FIG. A P-type diffusion layer 2 is formed on an N-type semiconductor substrate 1, and an N-type diffusion layer 3 for forming a monitor pixel and a charge-voltage converter is formed. A P + -type diffusion layer 4 is formed on the surface of the monitor pixel 14 to suppress generation of dark current from the substrate surface.

【0015】入射光量に応じて、モニター画素14で発
生した信号電荷は一定電圧VBAが印加されたゲート15
下を通って電荷電圧変換部16に流入する。流入した電
荷量に対応した電荷電圧変換部16の電位変化を出力バ
ッファ19を通して出力端子MOUT より取り出す。
According to the amount of incident light, the signal charge generated in the monitor pixel 14 is converted into a gate 15 to which a constant voltage VBA is applied.
It flows into the charge-voltage converter 16 through below. A change in the potential of the charge-voltage converter 16 corresponding to the amount of charge that has flowed in is extracted from the output terminal M OUT through the output buffer 19.

【0016】この時、a−2点よりA点側はA点側に向
かって画素の幅が狭くなっているため、いわゆる狭チャ
ネル効果により、ポテンシャルが徐々に浅くなるように
なっている。狭チャネル効果は、画素幅が6μm以下で
顕著に現われるので、画素幅が6μmとなるa−1点よ
りA点側ではポテンシャルに勾配ができる。この部分で
は信号電荷は熱拡散+ドリフトで移動するため、従来の
ような熱拡散のみの移動とは異なり、移動が速くなり残
像が低減できる。
At this time, since the width of the pixel becomes narrower toward the point A from the point a-2 toward the point A, the potential is gradually reduced due to the so-called narrow channel effect. Since the narrow channel effect appears remarkably when the pixel width is 6 μm or less, a potential gradient is formed on the point A side from the point a-1 at which the pixel width becomes 6 μm. In this portion, the signal charges move by thermal diffusion and drift, so that the movement is faster and the afterimage can be reduced, unlike the conventional movement of only thermal diffusion.

【0017】次に本発明の第2の実施例について図面を
用いて説明する。
Next, a second embodiment of the present invention will be described with reference to the drawings.

【0018】図3は本発明の第2の実施例のブロック図
である。本発明のモニター画素24は例えばb−2点付
近で2つに分岐し、さらにb−1点付近で各々2つに分
岐しているといった様に両端に向かって次々に分岐し、
画素幅が狭くなるようになっている。
FIG. 3 is a block diagram of a second embodiment of the present invention. For example, the monitor pixel 24 of the present invention branches toward both ends, such as branching into two near the point b-2 and further branching into two near the point b-1.
The pixel width is narrowed.

【0019】図4(a),(b)は、図3のB−B′線
の断面図及びポテンシャル図である。モニター画素の端
からb−1点までの間よりb−1点からb−2点までの
間の法が画素の幅が広くなっている。さらにb−2点か
ら出力部側の方がb−1点からb−2点の間よりも広く
なっている。前述したように狭チャネル効果は、画素幅
9μm以下で顕著に表われるので、例えば、モニター画
素の端からb−1点までの間は画素幅を3μm,B−1
点からb−2点までの間は、画素幅を6μm,b−2点
から出力部側の画素幅を12μmというようにすれば、
モニター画素の端から出力部側に向かってポテンシャル
に段差ができ、この段差部でのポテンシャルの勾配信号
電荷の移動が速くなり残像が低減できる。
FIGS. 4A and 4B are a sectional view and a potential diagram taken along the line BB 'of FIG. The width of the pixel is wider between points b-1 and b-2 than between point b-1 and the end of the monitor pixel. Further, the distance from the point b-2 to the output unit side is wider than that between the point b-1 and the point b-2. As described above, the narrow channel effect is remarkably exhibited at a pixel width of 9 μm or less. Therefore, for example, the pixel width is 3 μm and B-1 between the end of the monitor pixel and the point b-1.
If the pixel width between the point and the point b-2 is 6 μm, and the pixel width from the point b-2 to the output side is 12 μm,
A step is formed in the potential from the end of the monitor pixel toward the output section, and the movement of the potential gradient signal charge at the step is increased, and the afterimage can be reduced.

【0020】本実施例では、画素の両端を狭めていない
ので、モニター領域全域にわたり、一定の感度を保つこ
とができる。
In this embodiment, since both ends of the pixel are not narrowed, a constant sensitivity can be maintained over the entire monitor area.

【0021】[0021]

【発明の効果】以上したように本発明はモニター画素の
端から出力部に向かってモニター画素の幅を広げること
により、モニター画素内のポテンシャルに勾配をつけ、
信号電荷の移動の速度を速め、残像を低減するという効
果を有する。
As described above, according to the present invention, by increasing the width of the monitor pixel from the end of the monitor pixel toward the output portion, the potential in the monitor pixel is graded,
This has the effect of increasing the speed of the movement of the signal charge and reducing the afterimage.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例のブロック図。FIG. 1 is a block diagram of one embodiment of the present invention.

【図2】図1に示したA−A′線断面図及びポテンシャ
ル図。
FIG. 2 is a sectional view and a potential diagram taken along line AA 'shown in FIG.

【図3】本発明の第2の実施例のブロック図。FIG. 3 is a block diagram of a second embodiment of the present invention.

【図4】図3に示したB−B′線断面図及びポテンシャ
ル図。
FIG. 4 is a sectional view and a potential diagram taken along line BB ′ shown in FIG. 3;

【図5】従来例のブロック図。FIG. 5 is a block diagram of a conventional example.

【図6】図5に示したC−C′線断面図及びポテンシャ
ル図。
FIG. 6 is a cross-sectional view taken along line CC ′ and a potential diagram shown in FIG. 5;

【符号の説明】[Explanation of symbols]

10 転送部 11 トランスファゲート 12 蓄積部 13 感光画素 14,24,34 モニター画素 15 ゲート 16 電極電圧変換部 17 リセットゲート 18 リセットドレイン 19 出力バッファ 100 出力部 DESCRIPTION OF SYMBOLS 10 Transfer part 11 Transfer gate 12 Storage part 13 Photosensitive pixel 14, 24, 34 Monitor pixel 15 Gate 16 Electrode voltage conversion part 17 Reset gate 18 Reset drain 19 Output buffer 100 Output part

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被写体からの入射光量に応じた信号電荷
を発生する、配列された複数の感光画素と、前記被写体
の輝度をモニターするためのモニター画素と、当該モニ
ター画素で発生した信号電荷量に応じた出力信号を発生
する出力部とを有し、前記モニター画素が、前記感光画
素の配列方向に細長く、且つ、全感光画素に渡って延在
し、前記感光画素よりも大きいイメージセンサにおい
て、前記モニター画素の画素幅が、前記出力部に向かっ
て広くなっていることを特徴とするイメージセンサ。
1. A plurality of photosensitive pixels arranged to generate signal charges according to the amount of incident light from a subject, monitor pixels for monitoring the luminance of the subject, and signal charge amounts generated by the monitor pixels the output signal have a output unit for generating in response to the monitor pixels, the photosensitive image
It is elongated in the element array direction and extends over all photosensitive pixels
In the image sensor having a size larger than the photosensitive pixel , a pixel width of the monitor pixel increases toward the output unit.
JP04161993A 1993-03-03 1993-03-03 Image sensor Expired - Fee Related JP3178148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04161993A JP3178148B2 (en) 1993-03-03 1993-03-03 Image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04161993A JP3178148B2 (en) 1993-03-03 1993-03-03 Image sensor

Publications (2)

Publication Number Publication Date
JPH06261183A JPH06261183A (en) 1994-09-16
JP3178148B2 true JP3178148B2 (en) 2001-06-18

Family

ID=12613360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04161993A Expired - Fee Related JP3178148B2 (en) 1993-03-03 1993-03-03 Image sensor

Country Status (1)

Country Link
JP (1) JP3178148B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5440000B2 (en) * 2009-07-17 2014-03-12 リコーイメージング株式会社 Focus detection device

Also Published As

Publication number Publication date
JPH06261183A (en) 1994-09-16

Similar Documents

Publication Publication Date Title
US7598132B2 (en) Active photosensitive structure with buried depletion layer
JPS5819080A (en) Solid-state image sensor
JPH10209422A (en) Partially pinned photodiode for solid-state image sensor
EP1850387A1 (en) Solid-state image pickup device
JPS6156583A (en) Solid-state image pickup device
JPH0360159A (en) Solid-state image sensing device
US4616249A (en) Solid state image pick-up element of static induction transistor type
JPS6147662A (en) Solid-state image pick-up device
JP5350659B2 (en) Solid-state imaging device
JP3178148B2 (en) Image sensor
KR100324192B1 (en) Method for driving solid-state imaging device
JPH07284026A (en) Solid-state image pickup device
JPS59178769A (en) Solid-state image pickup device
JP3590158B2 (en) MOS amplification type imaging device
JPS60170255A (en) Solid-state image pickup device
US6891243B2 (en) Solid-state image pick-up device
JPS6318387B2 (en)
JPS6160592B2 (en)
JPH04502234A (en) solid state imager
JPH031871B2 (en)
JPH10189937A (en) Solid-state image sensor, drive method thereof and manufacture thereof
JPS61174765A (en) Solid image pickup device
JPS5850874A (en) Solid-state image pickup device and its driving method
JPS58125961A (en) Driving method of charge transfer image pickup device
JPS60180160A (en) Solid-state image pickup element

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010313

LAPS Cancellation because of no payment of annual fees