JPH0230189B2 - - Google Patents

Info

Publication number
JPH0230189B2
JPH0230189B2 JP55138026A JP13802680A JPH0230189B2 JP H0230189 B2 JPH0230189 B2 JP H0230189B2 JP 55138026 A JP55138026 A JP 55138026A JP 13802680 A JP13802680 A JP 13802680A JP H0230189 B2 JPH0230189 B2 JP H0230189B2
Authority
JP
Japan
Prior art keywords
signal charge
storage region
transfer means
charge transfer
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55138026A
Other languages
Japanese (ja)
Other versions
JPS5762557A (en
Inventor
Shinichi Teranishi
Yasuo Ishihara
Hiromitsu Shiraki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP55138026A priority Critical patent/JPS5762557A/en
Priority to US06/297,759 priority patent/US4484210A/en
Publication of JPS5762557A publication Critical patent/JPS5762557A/en
Publication of JPH0230189B2 publication Critical patent/JPH0230189B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14831Area CCD imagers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】 この発明は残像を小さくした固体撮像装置とそ
の駆動方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solid-state imaging device with reduced afterimage and a method for driving the same.

固体撮像装置の中でも電荷結合素子(CCD)
を用いた固体撮像装置は出力容量が小さいために
雑音が小さく、きわめて低照度での撮像が可能で
ある。しかし、例えば、従来のp−n接合を蓄積
領域に用いたインターライン転送方式CCD固体
撮像装置では低照度ほど残像は目立つようにな
り、再生画像は見るに耐えないものになつてしま
う。従つて雑音が低照度撮像限界を決めるのでは
なく、残像が低照度限界を決めることになる。残
像を減少すれば撮像可能な限界照度を低くするこ
とが出来る。
Among solid-state imaging devices, charge-coupled devices (CCDs)
Solid-state imaging devices using 3D have low output capacitance, have low noise, and can perform imaging at extremely low illuminance. However, for example, in a conventional interline transfer type CCD solid-state imaging device using a pn junction as a storage region, the afterimage becomes more noticeable as the illumination becomes lower, and the reproduced image becomes unwatchable. Therefore, instead of noise determining the low-light imaging limit, the afterimage determines the low-light imaging limit. By reducing afterimages, the limit illuminance that can be captured can be lowered.

第1図はp−n接合を蓄積領域に用いたインタ
ーライン転送方式CCD2次固体撮像装置の平面模
式図である。p型半導体基板の受光側の主面にこ
の基板とpn接合し、入射光による信号電荷を蓄
積するn型の蓄積領域1が多数個複数列に配列形
成されている。蓄積領域1の各列ごとに近接し対
応して信号電荷転送手段としての垂直CCDレジ
スタ2が形成されている。蓄積領域1と垂直
CCDレジスタ2との間にはトランスフアゲート
3が設けられている。垂直CCDレジスタ2の一
方の端部は水平CCDレジスタ4に接続されてお
り、この水平CCDレジスタ4の一方の端部は出
力装置5に接続されている。光電変換を行なう蓄
積領域1以外の部分はアルミニウムによつて光遮
蔽されている。
FIG. 1 is a schematic plan view of an interline transfer type CCD secondary solid-state imaging device using a pn junction as a storage region. A large number of n-type storage regions 1 are formed in a plurality of rows on the main surface of a p-type semiconductor substrate on the light-receiving side, making pn junctions with the substrate and storing signal charges caused by incident light. Vertical CCD registers 2 as signal charge transfer means are formed adjacent to and corresponding to each column of the storage region 1. Perpendicular to accumulation area 1
A transfer gate 3 is provided between the CCD register 2 and the CCD register 2 . One end of the vertical CCD register 2 is connected to a horizontal CCD register 4, and one end of the horizontal CCD register 4 is connected to an output device 5. Portions other than the storage region 1 where photoelectric conversion is performed are shielded from light by aluminum.

このようなインターライン転送方式CCD2次元
イメージセンサの駆動方法と動作の様子を説明す
る。
The driving method and operation of such an interline transfer type CCD two-dimensional image sensor will be explained.

信号電荷蓄積時に、入射光に反応して蓄積領域
1に信号電荷が蓄積される。この信号電荷はトラ
ンスフアゲート3がオン状態になりチヤネルが形
成されることによつて、垂直CCDレジスタ2に
移される。トランスフアゲート3がオフ状態にな
りチヤネルがなくなると、垂直CCDレジスタ2
と蓄積領域1との間に電位障壁ができ、信号電荷
の次の蓄積が始まる。垂直CCDレジスタ2と水
平CCDレジスタ4はパルスによつて駆動され、
垂直CCDレジスタ2へ移つた信号電荷は垂直
CCDレジスタ2の端部に転送し、さらに水平
CCDレジスタ4を通つて出力装置5へ移動させ
る。
During signal charge accumulation, signal charges are accumulated in the accumulation region 1 in response to incident light. This signal charge is transferred to the vertical CCD register 2 by turning on the transfer gate 3 and forming a channel. When transfer gate 3 turns off and there is no channel, vertical CCD register 2
A potential barrier is formed between the storage region 1 and the storage region 1, and the next storage of signal charges begins. Vertical CCD register 2 and horizontal CCD register 4 are driven by pulses,
The signal charge transferred to vertical CCD register 2 is vertical
Transfer to the end of CCD register 2, and then horizontally
It is transferred to the output device 5 through the CCD register 4.

第4図は第1図に示したCCD2次元固体撮像装
置の−線に沿う断面及び各領域の電位分布を
示す図である。また、第1図と同一領域は同一記
号で示してある。単一セルを構成するn型蓄積領
域1、垂直CCDレジスタ2、トランスフアゲー
ト領域3はp型基板6上に形成されている。12
はトランスフアゲート電極、13は垂直CCDの
転送電極で基板6主面に二酸化シリコン膜のよう
な絶縁層14を介して形成されている。
FIG. 4 is a diagram showing a cross section along the - line of the CCD two-dimensional solid-state imaging device shown in FIG. 1 and the potential distribution in each region. Further, the same areas as in FIG. 1 are indicated by the same symbols. An n-type storage region 1, a vertical CCD register 2, and a transfer gate region 3, which constitute a single cell, are formed on a p-type substrate 6. 12
1 is a transfer gate electrode, and 13 is a transfer electrode of a vertical CCD, which is formed on the main surface of the substrate 6 with an insulating layer 14 such as a silicon dioxide film interposed therebetween.

次に残像の原因を説明する。p型の基板の内部
のフエルミ電位15を基準としたn型の蓄積領域
1の電位をVA、トランスフアゲート3がオン状
態のときのチヤンネル電位をVchとする。このVA
はp型の基板6とn型の蓄積領域1との間の逆バ
イアス電圧である。また、トランスフアゲート3
のチヤネル部の電気的に中性のときとフエルミ電
位の真性フエルミ電位との差をVFとする。する
とVFは、 VF=kT/q|lnNB/ni| と表わされる。ただしkはボルツマン定数、Tは
絶対温度、qは単位電荷量、NBはチヤネル部の
不純物濃度、niは真性濃度である。n型の蓄積領
域1を完全に空乏化させるのに必要なVAをVDEP
とする。従来の固体撮像装置では蓄積領域1のド
ナー密度が1017個cm3から1021個cm3と大きく、VDEP
は通常の集積回路動作条件よりはるかに大きい。
通常、MOS型の集積回路の最高電圧はp−n接
合の耐圧とゲート酸化膜の耐圧によつて決まり、
30Vである。信号電荷蓄積時には、入射光に反応
して蓄積領域1に信号電荷である電子が蓄積さ
れ、蓄積領域1中の空乏層は小さくなり、VA
曲線16のように小さくなる。トランスフアゲー
ト3がオン状態になり、チヤネル電位がVchとな
ると、蓄積領域1より垂直CCDレジスタ2へ信
号電荷が移り始める。トランスフアゲート3を
MOS電界効果トランジスタ(MOSFET)とみな
し、蓄積領域1をソースとし、垂直CCDレジス
タ2をドレインと考える。するとVA<Vch<−
2VFならばこのMOSFETは強反転状態で動作し、
電荷転送はすみやかに行なわれ、VAはVch−2VF
程度になる。しかしVA>Vch−2VFではこの
MOSFETは弱反転状態で動作するために、電荷
転送は遅く、VAは最終到達電位であるVch−VF
なかなか到達しない、トランスフアゲート3をオ
ン状態にするのは垂直帰線期間のうちの1部期間
である。標準テレビジヨン方式でぱ垂直帰線期間
は約1110μsecであり、トランスフアゲート3をオ
ン状態にする期間は通常1μsec程度から500μsec程
度までである。例えばトランスフアゲート3のチ
ヤネル長を5μm、チヤネル幅を5μm、蓄積領域
1の容量を0.03pFとすると、VAがVch−2VF程度
からVch−VFになるのに必要な時間は数十msec
であり、トランスフアゲート3がオン状態の期間
に比較してはるかに大きい。このため、通常のト
ランスフアゲート3のオン状態の期間では、信号
電荷は蓄積領域1より垂直CCDレジスタ2へ完
全には転送されず、1部の信号電荷が蓄積領域1
に取り残されることになり、この取り残された信
号電荷は以後のトランスフアゲート3がオン状態
になつたときに蓄積領域1より垂直CCDレジス
タ2へ転送され、再生画面上では残像となつて表
われる欠点があつた。
Next, the cause of the afterimage will be explained. Let V A be the potential of the n-type storage region 1 with reference to the Fermi potential 15 inside the p-type substrate, and V ch be the channel potential when the transfer gate 3 is in the on state. This V A
is the reverse bias voltage between the p-type substrate 6 and the n-type storage region 1. Also, transfer gate 3
Let V F be the difference between the intrinsic Fermi potential and the Fermi potential when the channel part is electrically neutral. Then, V F is expressed as V F =kT/q|lnN B /ni|. Here, k is the Boltzmann constant, T is the absolute temperature, q is the unit charge, N B is the impurity concentration in the channel portion, and ni is the intrinsic concentration. The V A required to completely deplete the n-type accumulation region 1 is V DEP
shall be. In conventional solid-state imaging devices, the donor density in storage region 1 is large, ranging from 10 17 cells cm 3 to 10 21 cells cm 3 , and V DEP
is much larger than normal integrated circuit operating conditions.
Normally, the maximum voltage of a MOS integrated circuit is determined by the breakdown voltage of the p-n junction and the breakdown voltage of the gate oxide film.
It is 30V. During signal charge accumulation, electrons, which are signal charges, are accumulated in the accumulation region 1 in response to incident light, the depletion layer in the accumulation region 1 becomes smaller, and V A becomes smaller as shown by curve 16. When the transfer gate 3 turns on and the channel potential reaches V ch , signal charges begin to transfer from the storage region 1 to the vertical CCD register 2 . transfer gate 3
It is regarded as a MOS field effect transistor (MOSFET), with the storage region 1 as the source and the vertical CCD resistor 2 as the drain. Then V A <V ch <−
At 2V F , this MOSFET operates in a strong inversion state,
Charge transfer occurs quickly, and V A becomes V ch −2V F
It will be about. However, when V A > V ch −2V F, this
Since the MOSFET operates in a weakly inverted state, charge transfer is slow, and V A does not easily reach the final potential, V ch - V F. Transfer gate 3 is turned on during the vertical retrace period. This is the first part of the period. In the standard television system, the vertical retrace period is about 1110 μsec, and the period during which the transfer gate 3 is turned on is usually from about 1 μsec to about 500 μsec. For example, if the channel length of the transfer gate 3 is 5 μm, the channel width is 5 μm, and the capacitance of the storage region 1 is 0.03 pF, the time required for V A to change from approximately V ch −2V F to V ch −V F is several times. 10 msec
, which is much larger than the period during which the transfer gate 3 is in the on state. Therefore, during the normal period when the transfer gate 3 is on, the signal charge is not completely transferred from the storage region 1 to the vertical CCD register 2, and a portion of the signal charge is transferred to the storage region 1.
This leftover signal charge is then transferred from the storage area 1 to the vertical CCD register 2 when the transfer gate 3 turns on, resulting in the disadvantage that it appears as an afterimage on the playback screen. It was hot.

この発明の目的は上記のような残像をなくした
固体撮像装置とその駆動方法を提供することにあ
る。
An object of the present invention is to provide a solid-state imaging device that eliminates the above-mentioned afterimage and a method for driving the same.

この発明によれば、第1導電型の半導体基板
と、この基板の主面に形成され光の入射による信
号電荷を蓄積する第1導電型と逆導電性の第2導
電型の蓄積領域と、この蓄積領域に対応して設け
られた信号電荷転送手段と、前記蓄積領域と前記
信号電荷転送手段との間に設けられ前記蓄積領域
から前記信号電荷転送手段への信号電荷の転送を
制御するトランスフアゲートとを有する固体撮像
装置の単位セルにおいて、前記蓄積領域の表面の
全面に前記第1導電型の表面層が設けられ、かつ
前記蓄積領域が完全に空乏化するのに必要な前記
基板と前記蓄積領域との間の逆バイアス電圧が30
ボルト以下であることを満たすように構成されて
なることを特徴とする固体撮像装置が得られる。
さらに前記この発明の固体撮像装置において、前
記トランスフアゲートのチヤネル部の電気的に中
性のときのフエルミ電位と真性フエルミ電位との
差をVFとしたとき、前記基板の内部の空乏化し
ていない部分のフエルミ電位を基準とした前記ト
ランスフアゲートのチヤネル電位の絶対値Vch
VDEP+2VF以上にすることによつて前記蓄積領域
から前記信号電荷転送手段へ電荷を移すことを特
徴とする固体撮像装置の駆動方法が得られる。
According to the present invention, a semiconductor substrate of a first conductivity type, an accumulation region of a second conductivity type formed on the main surface of the substrate and having a conductivity opposite to that of the first conductivity type and accumulating signal charges caused by incident light; a signal charge transfer means provided corresponding to the accumulation region; and a transfer means provided between the accumulation region and the signal charge transfer means for controlling the transfer of signal charges from the accumulation region to the signal charge transfer means. In a unit cell of a solid-state imaging device having an agate, the surface layer of the first conductivity type is provided on the entire surface of the storage region, and the substrate and the Reverse bias voltage between storage region is 30
There is obtained a solid-state imaging device characterized in that it is configured to satisfy the requirement of less than volts.
Furthermore, in the solid-state imaging device of the present invention, when the difference between the Fermi potential when the channel portion of the transfer gate is electrically neutral and the intrinsic Fermi potential is V F , the inside of the substrate is not depleted. The absolute value V ch of the channel potential of the transfer gate with reference to the Fermi potential of the part is
A method for driving a solid-state imaging device is obtained, characterized in that charges are transferred from the accumulation region to the signal charge transfer means by setting V DEP +2V F or more.

第5図は本発明の一実施例である単一セルの断
面および電位分布を示す図で、従来例の第4図に
対応している。従来例と同一領域は同一記号で示
してある。
FIG. 5 is a diagram showing the cross section and potential distribution of a single cell according to an embodiment of the present invention, and corresponds to FIG. 4 of the conventional example. The same areas as in the conventional example are indicated by the same symbols.

以下この発明の実施例に基いて説明する。 The present invention will be explained below based on embodiments.

この発明による残像をなくした固体撮像装置で
は、従来に比較して蓄積領域1のドナー濃度が低
くなつており、かつ、蓄積領域1の表面の全面に
p型の表面層7が設けられている。このため蓄積
領域1を完全に空乏化させるのに必要な逆バイア
ス電圧VDEPは小さく、VDEP+2VFは通常のMOS型
集積回路の最高電圧30Vより小さい。VDEP+2VF
<30ボルトであるので、VchをVDEP+2VF以上に
することができる。Vch>VDEP+2VFとした駆動
方法では、トランスフアゲート3がオン状態にな
り、チヤネル電位がVchになると、蓄積領域1よ
り垂直CCDレジスタ2へ信号電荷が移り始める。
トランスフアゲート3をMOSFETとみなし、蓄
積領域1をソースとし、垂直CCDレジスタ2を
ドレインと考える。すると、VAの最終到達電位
VDEPにおいてもVA<Vch−2VFであるので、この
MOSFETは常に強反転状態で動作し、電荷転送
はすみやかに行なわれ、蓄積領域1が完全に空乏
化し、VAが最終到達電位VDEPになる。例えばn
型領域1のドナー密度を1016個/cm3、n型領域1
の接合深さを1μm、p型表面層のアクセプタ密
度と接合深さをそれぞれ1018個/cm3、0.5μmとす
ると、VDEPは約2.5Vと小さい。このような不純
物濃度で例えばトランスフアゲート3のチヤンネ
ル長が5μm、チヤネル幅が5μm、蓄積領域1の
容量が0.03pFの場合に、VAがVDEP−2V程度から
VDEPになるのに必要な時間は高々100nsec程度で
あり、トランスフアゲートがオン状態にある時間
1μsec程度から500μsec程度に比較して非常に速
い。この結果、信号電荷は蓄積領域1より垂直
CCDレジスタ2へ完全に転送され、蓄積領域1
に信号電荷が取り残されることはなく、残像現象
は起こらない。
In the solid-state imaging device that eliminates afterimages according to the present invention, the donor concentration in the storage region 1 is lower than that of the conventional device, and a p-type surface layer 7 is provided on the entire surface of the storage region 1. . Therefore, the reverse bias voltage V DEP required to completely deplete the storage region 1 is small, and V DEP +2V F is smaller than the maximum voltage of 30 V of a normal MOS type integrated circuit. V DEP +2V F
<30 volts, so V ch can be greater than V DEP + 2V F. In the driving method where V ch >V DEP +2V F , when the transfer gate 3 is turned on and the channel potential reaches V ch , signal charges begin to transfer from the storage region 1 to the vertical CCD register 2 .
The transfer gate 3 is considered to be a MOSFET, the storage region 1 is considered to be the source, and the vertical CCD register 2 is considered to be the drain. Then, the final potential of V A
Since V A <V ch −2V F also at V DEP , this
The MOSFET always operates in a strongly inverted state, charge transfer is performed quickly, storage region 1 is completely depleted, and V A becomes the final potential V DEP . For example n
Donor density in type region 1 is 10 16 /cm 3 , n-type region 1
Assuming that the junction depth of is 1 μm, and the acceptor density and junction depth of the p-type surface layer are 10 18 pieces/cm 3 and 0.5 μm, respectively, V DEP is as small as about 2.5V. With such an impurity concentration, for example, when the channel length of transfer gate 3 is 5 μm, the channel width is 5 μm, and the capacitance of storage region 1 is 0.03 pF, V A will vary from about V DEP −2V.
The time required to reach V DEP is about 100n sec at most, which is the time the transfer gate is in the on state.
It is very fast compared to about 1μsec to about 500μsec. As a result, the signal charge is perpendicular to the accumulation region 1.
Completely transferred to CCD register 2, storage area 1
No signal charge is left behind, and no afterimage phenomenon occurs.

n型の蓄積領域1の表面の全面に設けられたp
型の表面層の効果を説明する。第2図と第3図は
この発明のそれぞれ異なる実施例において、蓄積
領域1を表面と垂直方向に見たときの電位分布を
示した図である。左側が表面であり、表面よりp
型の表面層7とn型の蓄積領域1とp型の基板6
がある。実線8は電子が感じるポテンシヤルの分
布である。1点鎖線9はp型の基板6の内部の空
乏化していない領域でのフエルミ電位であり、電
位の規準とする。これらの図ではn型の蓄積領域
1が完全に空乏化した場合を示している。第2図
は表面層7のアクセプタ濃度が小さく、表面層7
が完全に空乏化している場合であり、第3図は表
面層7の表面付近が空乏化していない場合であ
る。後者の場合、表面層7の空乏化していない部
分の電位は基板6の内部の空乏化していない部分
の電位と等しい。さて表面層7の第1の効果は、
上述したようにVDEPを小さくすることである。n
型の蓄積領域1はp型の基板6とp−n接合する
だけではなく、p型の表面層7ともp−n接合す
るために、両方のp−n接合面から空乏層が拡が
るためにVDEPは小さくなるのである。第2の効果
は、電位の最大点がシリコンとシリコン表面に設
けられた酸化膜との界面に位置しないために、信
号電荷が界面に接触しない。この結果、信号電荷
が界面付近に分布しているトラツプにトラツプさ
れないので、トラツプによる残像が生じないとい
うことである。さらに第3図に示した実施例の場
合、デバイス表面に設けられた酸化膜中や酸化膜
表面上の浮遊電荷の影響が表面層のうちの空乏化
していない表面付近でシールドされ、蓄積領域1
には及ばず、ロツトやデバイス間での特性のばら
つきが小さくなるという効果がある。またシリコ
ンと酸化膜の界面付近が空乏化していないので、
暗電流が小さいという効果もある。
P layer provided on the entire surface of the n-type storage region 1
Explain the effect of the surface layer of the mold. FIGS. 2 and 3 are diagrams showing potential distributions when the storage region 1 is viewed in a direction perpendicular to the surface in different embodiments of the present invention. The left side is the surface, and p from the surface
mold surface layer 7, n-type accumulation region 1, and p-type substrate 6
There is. The solid line 8 is the distribution of potential felt by electrons. The one-dot chain line 9 is the Fermi potential in a non-depleted region inside the p-type substrate 6, and is used as a potential standard. These figures show a case where the n-type storage region 1 is completely depleted. FIG. 2 shows that the acceptor concentration in the surface layer 7 is small;
is completely depleted, and FIG. 3 shows a case where the vicinity of the surface of the surface layer 7 is not depleted. In the latter case, the potential of the non-depleted portion of the surface layer 7 is equal to the potential of the non-depleted portion inside the substrate 6. Now, the first effect of the surface layer 7 is
As mentioned above, the goal is to reduce V DEP . n
Since the type accumulation region 1 not only makes a p-n junction with the p-type substrate 6 but also makes a p-n junction with the p-type surface layer 7, the depletion layer spreads from both p-n junction surfaces. V DEP becomes smaller. The second effect is that since the maximum potential point is not located at the interface between silicon and the oxide film provided on the silicon surface, signal charges do not come into contact with the interface. As a result, the signal charge is not trapped in the traps distributed near the interface, so that no afterimage occurs due to the traps. Furthermore, in the case of the embodiment shown in FIG.
However, it has the effect of reducing variations in characteristics between lots and devices. Also, since there is no depletion near the interface between silicon and oxide film,
Another effect is that the dark current is small.

この発明は、垂直方向の信号電荷転送手段とし
て信号線を用い、この信号線が1個または複数個
のMOSFETを介して水平方向の信号電荷転送手
段としての水平CCDレジスタや水平バケツトブ
リエード(BBD)レジスタに接続されている、
いわゆるMOS+CCD型2次元固体撮像装置や
MOS+BBD型2次元固体撮像装置にも適用でき
る。また2次元固体撮像装置ばかりでなく、1次
元固体撮像装置にも適用できる。
This invention uses a signal line as a vertical signal charge transfer means, and this signal line is connected to a horizontal CCD register or horizontal bucket triade ( BBD) connected to the register,
So-called MOS + CCD type two-dimensional solid-state imaging device
It can also be applied to MOS+BBD type two-dimensional solid-state imaging devices. Moreover, it is applicable not only to two-dimensional solid-state imaging devices but also to one-dimensional solid-state imaging devices.

以上nチヤネル型の場合の実施例について説明
した。pチヤネル型の場合は、nチヤネル型の場
合のpとnとを入れ替へ、符号のある電位は絶対
値を用いればよい。例えば、蓄積領域1と基板と
の間の逆バイアス電圧VAやトランスフアゲート
のチヤネル部のフエルミ電位と真性フエルミ電位
との差VFは通常絶対値を用いるので、pチヤネ
ルでも絶対値を用いる。基板の内部の空乏化して
いない部分のフエルミ電位を基準としたトランス
フアゲートのチヤネル電位はnチヤネル型の場合
は正であり、pチヤネル型の場合は負なので、絶
対値を用いる。
The embodiment of the n-channel type has been described above. In the case of a p-channel type, p and n in the case of an n-channel type may be exchanged, and the absolute value may be used for the signed potential. For example, since the reverse bias voltage V A between the storage region 1 and the substrate and the difference V F between the Fermi potential of the channel portion of the transfer gate and the intrinsic Fermi potential V F are usually absolute values, absolute values are also used for the p channel. The channel potential of the transfer gate based on the Fermi potential of the non-depleted portion inside the substrate is positive in the case of an n-channel type and negative in the case of a p-channel type, so the absolute value is used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は固体撮像装置の模式的平面図、第4図
は第1図の−線に単位セルに沿う断面と電位
分布を示す図、第5図は本発明における単位セル
断面と電位分布を示す図、第2図と第3図はこの
発明のそれぞれ異なる実施例において、蓄積領域
を表面と垂直方向に見たときの電位分布を示した
図である。 1……蓄積領域、2……信号電荷転送手段(垂
直CCDレジスタ)、3……トランスフアゲート、
6……基板、7……表面層、9……基板の内部の
空乏化していない部分のフエルミ電位、VDEP……
蓄積領域が完全に空乏化するのに必要な基板と蓄
積領域との間の逆バイアス電圧。
FIG. 1 is a schematic plan view of a solid-state imaging device, FIG. 4 is a diagram showing a cross section and potential distribution along a unit cell along the - line in FIG. 1, and FIG. 5 is a diagram showing a cross section and potential distribution of a unit cell in the present invention. The figures shown in FIGS. 2 and 3 are diagrams showing potential distributions when the storage region is viewed in a direction perpendicular to the surface in different embodiments of the present invention. 1...Storage region, 2...Signal charge transfer means (vertical CCD register), 3...Transfer gate,
6...Substrate, 7...Surface layer, 9...Felmi potential of the non-depleted portion inside the substrate, V DEP ...
Reverse bias voltage between the substrate and the storage region required to fully deplete the storage region.

Claims (1)

【特許請求の範囲】 1 第1導電型の半導体基板と、この基板の主面
に形成され光の入射による信号電荷を蓄積する第
1導電性と逆導電型の第2導電型の蓄積領域と、
この蓄積領域に対応して設けられた信号電荷転送
手段と、前記蓄積領域と前記信号電荷転送手段と
の間に設けられ前記蓄積領域から前記信号電荷転
送手段への信号電荷の転送を制御するトランスフ
アゲートとを有する固体撮像装置の単位セルにお
いて、前記蓄積領域の表面の全面に前記第1導電
型の表面層が設けられ、かつ信号電荷を前記蓄積
領域から前記信号電荷転送手段へ転送するとき前
記蓄積領域が完全に空乏化ししかも空乏化するの
に必要な前記基板と前記蓄積領域との間の逆バイ
アス電圧が30ボルト以下であることを満たすよう
に構成されてなることを特徴とする固体撮像装
置。 2 第1導電型の半導体基板と、この基板の主面
に形成され光の入射による信号電荷を蓄積する前
記第1導電型と逆導電性の第2導電型の蓄積領域
と、この蓄積領域に対応して設けられた信号電荷
転送手段と、前記蓄積領域と前記信号電荷転送手
段との間に設けられ前記蓄積領域から前記信号電
荷転送手段への信号電荷の転送を制御するトラン
スフアゲートとを有する固体撮像装置の単位セル
の、前記蓄積領域の表面の全面に前記第1導電型
の表面層が設けられ、かつ前記蓄積領域が完全に
空乏化するのに必要な前記基板と前記蓄積領域と
の間の逆バイアス電圧VDEPが30ボルト以下である
ことを満たすように構成された固体撮像装置にお
いて、前記トランスフアゲートのチヤネル部の電
気的に中性のときのフエルミ電位と真性フエルミ
電位との差をVFとしたとき、前記基板の内部の
空乏化していない部分のフエルミ電位を基準とし
た前記トランスフアゲートのチヤネル電位の絶対
値VchをVDEP+2VF以上にすることによつて前記
蓄積領域から前記信号電荷転送手段へ電荷を移
し、前記蓄積領域が完全に空乏化することを特徴
とする固体撮像装置の駆動方法。
[Claims] 1. A semiconductor substrate of a first conductivity type, and an accumulation region of a second conductivity type formed on the main surface of this substrate and having a conductivity type opposite to the first conductivity and accumulating signal charges caused by incident light. ,
a signal charge transfer means provided corresponding to the accumulation region; and a transfer means provided between the accumulation region and the signal charge transfer means for controlling the transfer of signal charges from the accumulation region to the signal charge transfer means. In the unit cell of a solid-state imaging device having agate, the surface layer of the first conductivity type is provided on the entire surface of the storage region, and when the signal charge is transferred from the storage region to the signal charge transfer means, the A solid-state imaging device characterized in that the storage region is completely depleted, and the reverse bias voltage between the substrate and the storage region required for depletion is 30 volts or less. Device. 2. A semiconductor substrate of a first conductivity type, an accumulation region of a second conductivity type formed on a main surface of the substrate and having a conductivity opposite to that of the first conductivity type and accumulating signal charges caused by incident light; A signal charge transfer means provided correspondingly, and a transfer gate provided between the accumulation region and the signal charge transfer means to control transfer of signal charges from the accumulation region to the signal charge transfer means. The surface layer of the first conductivity type is provided on the entire surface of the storage region of the unit cell of the solid-state imaging device, and the amount of contact between the substrate and the storage region is necessary for the storage region to be completely depleted. In a solid-state imaging device configured to satisfy the requirement that the reverse bias voltage V DEP between When V F is the absolute value of the channel potential of the transfer gate with reference to the Fermi potential of the non- depleted portion inside the substrate, the accumulation region is A method for driving a solid-state imaging device, characterized in that the storage region is completely depleted by transferring charges from the signal charge transfer means to the signal charge transfer means.
JP55138026A 1980-09-05 1980-10-02 Solid state image pickup device and driving method therefor Granted JPS5762557A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP55138026A JPS5762557A (en) 1980-10-02 1980-10-02 Solid state image pickup device and driving method therefor
US06/297,759 US4484210A (en) 1980-09-05 1981-08-31 Solid-state imaging device having a reduced image lag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55138026A JPS5762557A (en) 1980-10-02 1980-10-02 Solid state image pickup device and driving method therefor

Publications (2)

Publication Number Publication Date
JPS5762557A JPS5762557A (en) 1982-04-15
JPH0230189B2 true JPH0230189B2 (en) 1990-07-04

Family

ID=15212308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55138026A Granted JPS5762557A (en) 1980-09-05 1980-10-02 Solid state image pickup device and driving method therefor

Country Status (1)

Country Link
JP (1) JPS5762557A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58187082A (en) * 1982-04-26 1983-11-01 Matsushita Electric Ind Co Ltd Driving method of solid-state image pickup device
JPS6273662A (en) * 1985-09-26 1987-04-04 Toshiba Corp Manufacture of solid-state image pickup device
JPS62124771A (en) * 1985-11-25 1987-06-06 Sharp Corp Solid-state image pickup device
JPH06105782B2 (en) * 1985-12-20 1994-12-21 株式会社東芝 Solid-state imaging device
JP2517882B2 (en) * 1986-12-23 1996-07-24 ソニー株式会社 Solid-state imaging device
JPH02280377A (en) * 1989-04-20 1990-11-16 Matsushita Electron Corp Solid-state image pickup device and driving method for same
JP2595138B2 (en) * 1990-06-14 1997-03-26 三菱電機株式会社 Solid-state imaging device and method of manufacturing the same
JP3284986B2 (en) 1998-12-04 2002-05-27 日本電気株式会社 Photoelectric conversion element and solid-state imaging device using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5386516A (en) * 1977-01-10 1978-07-31 Hitachi Ltd Solid state pickup device
JPS5437422A (en) * 1977-08-29 1979-03-19 Toshiba Corp Solid state pickup device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5386516A (en) * 1977-01-10 1978-07-31 Hitachi Ltd Solid state pickup device
JPS5437422A (en) * 1977-08-29 1979-03-19 Toshiba Corp Solid state pickup device

Also Published As

Publication number Publication date
JPS5762557A (en) 1982-04-15

Similar Documents

Publication Publication Date Title
US4484210A (en) Solid-state imaging device having a reduced image lag
JPH0410785B2 (en)
JPS5917581B2 (en) solid-state imaging device
JPS5819080A (en) Solid-state image sensor
US4688098A (en) Solid state image sensor with means for removing excess photocharges
KR101788890B1 (en) Charge-integration multilinear image sensor
JPS6216599B2 (en)
JPH0230189B2 (en)
EP0453530B1 (en) Solid-state image sensor
KR0139314B1 (en) Solid state image sensing device with storage-diode potential controller
US5774182A (en) Solid-state image sensor device with pixel array structure of interline transfer CCD image sensor
JPH0453149B2 (en)
JP2004087963A (en) Solid imaging element, solid imaging device, and drive method thereof
JPH0424870B2 (en)
US4321614A (en) Radiant energy sensor with blooming control
JPS6161589B2 (en)
JPH0689998A (en) Solid image pickup device
US5047862A (en) Solid-state imager
KR950002194B1 (en) Frame transfer style ccd image sensor
JPH031871B2 (en)
JPH0421351B2 (en)
JPS5917585B2 (en) solid-state imaging device
JP3087718B2 (en) Solid-state imaging device
EP0029367A2 (en) Solid state imaging apparatus
JPS63155759A (en) Image sensor