JPS58120774A - Electroless plating method - Google Patents
Electroless plating methodInfo
- Publication number
- JPS58120774A JPS58120774A JP189782A JP189782A JPS58120774A JP S58120774 A JPS58120774 A JP S58120774A JP 189782 A JP189782 A JP 189782A JP 189782 A JP189782 A JP 189782A JP S58120774 A JPS58120774 A JP S58120774A
- Authority
- JP
- Japan
- Prior art keywords
- plating
- substrates
- electroless plating
- catalysts
- electroless
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/28—Sensitising or activating
- C23C18/285—Sensitising or activating with tin based compound or composition
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/2006—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
- C23C18/2026—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by radiant energy
- C23C18/2033—Heat
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/28—Sensitising or activating
- C23C18/30—Activating or accelerating or sensitising with palladium or other noble metal
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
- H05K3/18—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
- H05K3/181—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
- H05K3/18—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
- H05K3/181—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
- H05K3/182—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method
- H05K3/184—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method using masks
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemically Coating (AREA)
- Manufacturing Of Printed Wiring (AREA)
Abstract
Description
【発明の詳細な説明】
無電解メッキによる導電層の形成は、絶縁基板面に回路
パターンを形成したり、絶縁基板面を導電化するため(
広く行われている。[Detailed Description of the Invention] Formation of a conductive layer by electroless plating is used to form a circuit pattern on an insulating substrate surface or to make an insulating substrate surface conductive (
It is widely practiced.
無電解メッキは一般に、前処理として絶縁基板面にメッ
キ触媒を付着させた後に行う。Electroless plating is generally performed after depositing a plating catalyst on the surface of an insulating substrate as a pretreatment.
ところで、従来、メッキ触媒を付着させた後、速やかに
無電解メッキ処理を行5場合には問題はなかったが、メ
ッキ触媒付着後,相当時間経過してから無電解メッキを
行った場合、しばしばメッキ触媒付着部に均一に金属が
析出しない現象が発生する。By the way, in the past, there was no problem if electroless plating was performed immediately after depositing the plating catalyst, but if electroless plating was performed after a considerable amount of time had passed after the plating catalyst was deposited, problems often occurred. A phenomenon occurs in which metal is not deposited uniformly on the part where the plating catalyst is attached.
本発明はこの問題を解決して、メッキ触媒付着工程と無
電解メッキ工程とを時間をおいて行った場合でもメッキ
触媒付着部に均一に金属が析出する無電解メッキ方法を
提供することを主たる目的とする。The main object of the present invention is to solve this problem and provide an electroless plating method in which metal is deposited uniformly on the plating catalyst adhesion area even if the plating catalyst adhesion process and the electroless plating process are performed at a certain time. purpose.
本発明による無電解メッキ方法は絶縁基板面にメッキ触
媒を付着する工程、無電解メッキ工程の前に加熱処理を
施す工程およびメッキ触媒の付着部に無電解メッキによ
って導電層を形成する工程を有することを特徴とするも
のである。The electroless plating method according to the present invention includes a step of attaching a plating catalyst to the surface of an insulating substrate, a step of performing heat treatment before the electroless plating step, and a step of forming a conductive layer on the part to which the plating catalyst is attached by electroless plating. It is characterized by this.
即ち、本発明は無電解メッキ工程の前に加熱処理を行う
ことによって、本発明の所期の目的を連成するものであ
る。That is, the present invention accomplishes the intended purpose of the present invention by performing heat treatment before the electroless plating process.
加熱処理によって無電解メッキ処理の際、金属をメッキ
触媒付着部へ均一に析出させることができるのは、メッ
キ触媒の付着後、経時的に活性度が低下したメッキ触媒
の活性度が加熱処理によってメッキ触媒の付着直優の状
lM#′c回復できるからであると考えられる。During electroless plating by heat treatment, metal can be uniformly deposited on the plating catalyst attachment area because the activity of the plating catalyst, which has decreased over time after the plating catalyst has been attached, is reduced by heat treatment. It is thought that this is because the state 1M#'c of the plating catalyst adhesion can be recovered.
加熱処理の温度条件は適宜定められるが、通常、80℃
以上特には90℃以上が好適である。またメッキ触媒の
活性度の回復という点から、加熱処理はメッキ触媒の付
着工程と無電解メッキ工程との間隔又は、メツキレシス
トパターンの乾燥工程と無電解メッキ工程との間隔が2
時間以上、特には8時間以上であるプロセスに好適であ
る。The temperature conditions for heat treatment are determined as appropriate, but are usually 80°C.
The above temperature is particularly preferably 90°C or higher. In addition, from the point of view of restoring the activity of the plating catalyst, the heat treatment should be carried out at a time when the interval between the plating catalyst adhesion process and the electroless plating process, or the interval between the drying process of the metal resist pattern and the electroless plating process is 2.
It is suitable for processes lasting more than 8 hours, especially 8 hours or more.
メッキ触媒の付着処理および無電解メッキ処理について
は、従来より知られる各種の方法が利用できる。これら
の方法については、例えば文献、石橋知著「無電解メッ
キ」(朝倉書店刊)第151〜164頁に詳述されてい
る。ここではその代表的ない(つかの方法を説明すると
、絶縁基板表面に無電解メッキによって金属の析出を容
易にするメッキ触媒として絶縁基板表面に一様に分布さ
せる微まず塩化第1スズ溶液に浸漬し、基板表面に還元
性のSn を表面に吸着さセ、次いで塩化パラジウム
溶液に浸漬することにより先に吸着したSn の還元
作用により金属パラジウムが表面に分布形成される。こ
のために塩化第1スズ101と塩酸40mj/l の
混合溶液および塩化パラジウム0.51と塩酸10 x
ne/l の混合溶液にて処理される。その後メッキ
槽中で無電解メッキを行う。メッキ槽中に含まれる成分
はメッキの種類によって異なるが一般には、主成分とし
て硫酸ニッケル、クエン酸ナトリウム、次亜リン酸ナト
リウムおよび酢駿ナトリウムが含有される。例えば銅を
析出させる為のメッキ液の組成の1つは次に示される。Various conventionally known methods can be used for the plating catalyst adhesion treatment and electroless plating treatment. These methods are described in detail, for example, in the literature, "Electroless Plating" by Satoshi Ishibashi (published by Asakura Shoten), pages 151-164. Here, we will introduce a typical method (to explain a short method), which is immersed in a tinny chloride solution that is evenly distributed over the insulating substrate surface as a plating catalyst to facilitate metal deposition by electroless plating on the insulating substrate surface. Then, reducing Sn is adsorbed onto the surface of the substrate, and then it is immersed in a palladium chloride solution, whereby metallic palladium is distributed on the surface due to the reducing action of the previously adsorbed Sn. Mixed solution of tin 101 and hydrochloric acid 40 mj/l and palladium chloride 0.51 and hydrochloric acid 10 x
It is treated with a mixed solution of ne/l. After that, electroless plating is performed in a plating bath. The components contained in the plating bath vary depending on the type of plating, but generally include nickel sulfate, sodium citrate, sodium hypophosphite, and sodium acetate as main components. For example, one of the compositions of a plating solution for depositing copper is shown below.
硫酸鋼 29 t/1炭酸ナ
トリウム 25 〃酒石酸カリウムナ
トリウム 140 #EDTA )リエタノールア
ミン 17−カ七イソーダ
40 〃57bホルマリン液 166 #
またニッケルを析出させるためのメッキ液の組成の1つ
は次に示される。Sulfuric acid steel 29 t/1 Sodium carbonate 25 Potassium sodium tartrate 140 #EDTA) Reethanolamine 17-Kanaiso soda
40 〃57b formalin solution 166 #
Further, one of the compositions of a plating solution for depositing nickel is shown below.
硫酸ニッケル 35 telクエン
酸ナトリクム 10 #酢酸ナトリウム
10 〃次亜リン酸ナトリウム
15 g/l硫酸マグネシウム
20 。Nickel sulfate 35 tel Sodium citrate 10 # Sodium acetate
10 Sodium hypophosphite
15 g/l magnesium sulfate
20.
析出させる金属の種類は特に限られるものではないが、
実用上、銅、ニッケル、@、金9等が多用される。導電
皮膜は通常0.2〜05μ程度に設定される。The type of metal to be deposited is not particularly limited, but
In practice, copper, nickel, @, gold 9, etc. are often used. The thickness of the conductive film is usually set to about 0.2 to 05 μm.
本発明による無電解メッキ方法によって、絶縁基板の全
面に導電層を形成する場合には、メッキ触媒を全面に付
着させればよいが、導電層をパターン状に形成して、プ
リント回路やパターン電極とする場合には、メッキ触媒
もパターン状に付着又は露呈させることが必要である。When forming a conductive layer on the entire surface of an insulating substrate by the electroless plating method according to the present invention, it is sufficient to deposit a plating catalyst on the entire surface, but it is also possible to form the conductive layer in a pattern to form printed circuits or patterned electrodes. In this case, it is necessary to also attach or expose the plating catalyst in a pattern.
このパターン状に付着させる方法としては、基板表面に
パターン状のメツキレシスト層を形成し、メツキレシス
トの撥水作用によりメッキ触媒をメツキレシスト層が形
成されていない部分に選択的に形成することによってパ
ターン状にメッキ触媒を付着できる。The method for depositing this pattern is to form a patterned plating resist layer on the surface of the substrate, and to selectively form the plating catalyst on the areas where the plating resist layer is not formed due to the water repellent action of the plating resist. Plating catalyst can be attached.
また、他の方法では基板の表面全体にメッキ触媒を付着
させてから、その上にパターン状のメツキレシスト層を
形成することによって、メツキレシスト層でマスクされ
ていない部分ではメッキ触媒が露呈して、結果的にパタ
ーン状にメッキ触媒を形成し得る。特に後者の方法は、
金属の析出が必要でない部分のメッキ触媒をメツキレシ
ストでマスクしているため、無電解メッキによって高い
精度の導電パターンを形成することができる。In other methods, a plating catalyst is deposited on the entire surface of the substrate, and then a patterned plating resist layer is formed on top of the plating catalyst, so that the plating catalyst is exposed in areas not masked by the plating resist layer. The plating catalyst can be formed in a pattern. In particular, the latter method
Since the plating catalyst in areas where metal deposition is not required is masked with a metal resist, a highly accurate conductive pattern can be formed by electroless plating.
実施例
紙フェノール積層板(東芝ケミカル社製、商品名; T
LB −332) <フェノール変性ニトリルゴムな塗
布し、180℃で60分加熱硬化させ【下引樹脂層を形
成した。次にクロム酸−硫酸混液(Crys が10
0 g/l 、 98−硫酸が100m1/l )に4
0℃で6分間浸漬処理して下引樹脂層を粗面化した後、
水洗後金塩酸(35チHcl 2叩ml/l )に20
℃で5分間浸漬し水洗した。Example paper phenol laminate (manufactured by Toshiba Chemical Co., Ltd., trade name: T
LB-332) <Phenol-modified nitrile rubber was applied and cured by heating at 180°C for 60 minutes to form a subbing resin layer. Next, chromic acid-sulfuric acid mixture (Crys is 10
0 g/l, 98-sulfuric acid in 100 ml/l)
After roughening the undercoat resin layer by immersion treatment at 0°C for 6 minutes,
After washing with water, add 20% of gold to hydrochloric acid (35% HCl 2 times ml/l).
It was immersed at ℃ for 5 minutes and washed with water.
次に、パラジウム・スズコロイド溶液(商品名;M K
−220、室町化学社製)K20℃で6分間浸漬して
から水洗し、さらにスズを除去するために塩酸溶液(商
品名; M K −330、室町化学社製)に20℃で
6分間浸漬して水洗後、100℃で10分間乾燥するこ
とKより、パラジウム金属のメッキ触媒を下引樹脂層面
に付着させた。Next, palladium-tin colloid solution (product name: MK
-220, manufactured by Muromachi Kagaku Co., Ltd.) K Soaked at 20°C for 6 minutes, washed with water, and further immersed in hydrochloric acid solution (trade name: MK-330, manufactured by Muromachi Kagaku Co., Ltd.) at 20°C for 6 minutes to remove tin. After washing with water, the plate was dried at 100° C. for 10 minutes to adhere the palladium metal plating catalyst to the surface of the undercoat resin layer.
次に、メツキレシストインク(商品名;8B−60G。Next, Metsuki Resist Ink (trade name: 8B-60G).
タムラ製作所製)をスクリーン印刷法によりプリント回
路パターン状に塗布し、160℃で30分間乾燥し、メ
ツキレシストインク層を形成した。(manufactured by Tamura Seisakusho) was applied in the form of a printed circuit pattern by a screen printing method, and dried at 160° C. for 30 minutes to form a mesh resist ink layer.
その後室内に所定時間(5分、2時間、8時間。After that, stay indoors for a specified period of time (5 minutes, 2 hours, 8 hours.
16時間、40時間)放置後、加熱処理(100℃15
分間又は150℃15分間)をしてから2分後(下記組
成のメッキ浴で無電解鋼メッキを70℃で10時間行い
、プリント回路を形成した。After leaving for 16 hours, 40 hours), heat treatment (100℃ 15 hours)
After 2 minutes (15 minutes at 150°C), electroless steel plating was performed at 70°C for 10 hours in a plating bath with the following composition to form a printed circuit.
硫酸銅 1211EDTA
)リエタノールアミン 40 #NaOH61
37%ホルマリン 8−〃NaCN
20 ppmこのように
して製造したプリント回路について、室内放置時間を変
えた場合、無電解メッキ前の加熱処理条件を変えた場合
の影響を調べた結果、次の表に示される結果を得た。な
お、この表において無析出部出現百分率とは、プリント
回路を100枚製造当り銅が部分的にメッキされなかっ
た部分を持つ欠陥品の発生率である。Copper sulfate 1211EDTA
) Reethanolamine 40 #NaOH61 37% Formalin 8-〃NaCN
20 ppm Regarding the printed circuits manufactured in this way, we investigated the effects of changing the indoor standing time and changing the heat treatment conditions before electroless plating, and the results shown in the following table were obtained. In this table, the percentage of appearance of non-deposited areas is the incidence of defective products having areas where copper was not partially plated per 100 printed circuits manufactured.
第1表
上記の表から明らかなように加熱処理の効果は顕著なも
のがあり、メツキレシストインク乾燥後の経時に拘らず
、回路形成部の局部無析出は皆無であることが認められ
た。Table 1 As is clear from the table above, the effect of heat treatment was remarkable, and no local precipitation was observed in the circuit forming area, regardless of the time elapsed after the Metsukiresist ink dried. .
また、本実施例において、無電解鋼メッキの代りに、無
電解ニッケルメッキを行った場合も加熱処理によって無
析出部の解消が達成できた。Further, in this example, even when electroless nickel plating was performed instead of electroless steel plating, the non-precipitated area could be eliminated by heat treatment.
出願人 キャノン株式会社 トニ2と−1Applicant Canon Co., Ltd. toni 2 and -1
Claims (1)
ッキ工程の前に加熱処理を施す工程およびメッキ触媒の
付着部に無電解メッキによって導電層を形成する工程を
有することを特徴とする無電解メッキ方法。1. An insulating substrate characterized by comprising the steps of attaching a plating catalyst to the surface of an insulating substrate, performing heat treatment before the electroless plating step, and forming a conductive layer on the part to which the plating catalyst is attached by electroless plating. Electrolytic plating method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP189782A JPS58120774A (en) | 1982-01-09 | 1982-01-09 | Electroless plating method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP189782A JPS58120774A (en) | 1982-01-09 | 1982-01-09 | Electroless plating method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58120774A true JPS58120774A (en) | 1983-07-18 |
Family
ID=11514370
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP189782A Pending JPS58120774A (en) | 1982-01-09 | 1982-01-09 | Electroless plating method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58120774A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018001496A (en) * | 2016-06-29 | 2018-01-11 | セーレン株式会社 | Conductive foam and method for producing same |
-
1982
- 1982-01-09 JP JP189782A patent/JPS58120774A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018001496A (en) * | 2016-06-29 | 2018-01-11 | セーレン株式会社 | Conductive foam and method for producing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2046202C (en) | Method for fabricating printed circuits | |
US4585502A (en) | Process for producing printed circuit board | |
JPS60207395A (en) | Method of producing through-hole plated electric printed circuit board | |
JPH022949B2 (en) | ||
EP0053279B1 (en) | Method of preparing a printed circuit | |
JPH01500472A (en) | Printed circuit board manufacturing method | |
EP0060805B1 (en) | Method for the production of printed-circuit boards and printed-circuit boards produced by this method | |
JPH01503101A (en) | Additive manufacturing method for printed wiring boards using a photoresist that can be developed and peeled off with aqueous alkali | |
CH652268A5 (en) | METHOD FOR PRODUCING RESISTANT PRESSURE CIRCUITS AGAINST HEAT SHOCK. | |
US4066809A (en) | Method for preparing substrate surfaces for electroless deposition | |
JPS636628B2 (en) | ||
USRE28042E (en) | Method of making additive printed circuit boards and product thereof | |
JPS58120774A (en) | Electroless plating method | |
KR100235930B1 (en) | Printed wiring board and method for preparing the same | |
JPS6349397B2 (en) | ||
JP3276919B2 (en) | High adhesion plating method for resin substrate and copper plating solution used for the method | |
JPH0376599B2 (en) | ||
JPS5856386A (en) | Method of producing printed circuit board | |
JPS5952557B2 (en) | Manufacturing method for printed wiring boards | |
JP3474291B2 (en) | Method for forming plating layer on glass or ceramic substrate | |
JPS60217695A (en) | Method of treating before electroless plating and method of producing printed circuit board | |
JPS588597B2 (en) | Printed circuit board manufacturing method | |
JP2737599B2 (en) | Electroless plating method on copper circuit pattern of printed wiring board | |
JPH079078B2 (en) | Direct electroplating on non-conductive surface | |
JPS6021226B2 (en) | Electroless plating method for insulating substrates |