JPH0376599B2 - - Google Patents

Info

Publication number
JPH0376599B2
JPH0376599B2 JP57226758A JP22675882A JPH0376599B2 JP H0376599 B2 JPH0376599 B2 JP H0376599B2 JP 57226758 A JP57226758 A JP 57226758A JP 22675882 A JP22675882 A JP 22675882A JP H0376599 B2 JPH0376599 B2 JP H0376599B2
Authority
JP
Japan
Prior art keywords
substrate
plating
bath
electroless copper
copper plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57226758A
Other languages
Japanese (ja)
Other versions
JPS59119786A (en
Inventor
Takakazu Ishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP22675882A priority Critical patent/JPS59119786A/en
Publication of JPS59119786A publication Critical patent/JPS59119786A/en
Publication of JPH0376599B2 publication Critical patent/JPH0376599B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、プリント配線板の無電解銅めつき方
法に係り、特に、機械的特性に優れためつき膜を
有するプリント配線板についてのかかる無電解銅
めつき方法に関するものである。 周知の如くラジオ、テレビ等の民生用電子機器
から電子計算機、情報産業用電子機器などの高級
産業機器にいたるまで電子工業各分野に広く普及
しているプリント配線板は、従来その殆どがエツ
チドフオイル法によつて製造されてきたが、近年
電子機器産業が高度の発達をとげ、益々高密度
化、高性能化が促進されてきた。 このプリント配線板の高密度および多層板化に
伴い、従来のエツチドフオイル法において、エツ
チング工程でのアンダーカツトや電解めつき工程
におけるめつき厚みのばらつきが大きいため、パ
ターン寸法精度が悪くなるばかりでなく、オーバ
ーハングによるブリツジ、多層板などの板厚の厚
い基板に形成される径の小さな穴、例えば板厚が
3.2mm程度で直径が1.00mm以下の穴に、めつきを
施す場合、穴のコーナー部と中央部とのめつき厚
みの差が大きく、時にはコーナー部のみめつきが
施され、穴の中央部にめつきが施されないなどの
欠点があつた。そのため高密度配線や、高アスペ
クト比(板厚/穴径)のプリント配線板の工業的
な生産が難しくなつてきている。また、エツチド
フオイル法では銅張り積層板を用いるため、銅張
り積層板へのパターン印刷後には、そのパターン
印刷部以外の銅箔をエツチング工程で除去しなけ
ればならず、そのエツチングで除去される無駄な
銅箔は全体の50〜80%であり、極めて不経済であ
り、かつこの様な銅箔除去処理を行うエツチング
液も塩化第二鉄、塩化第二銅、あるいはアンモニ
ア水等を主成分としているため、誤つて外部に流
した場合、公害問題を引き起こす原因となる。い
ずれにしてもエツチドフオイル法は製造工程の複
雑化および銅箔の無駄等を避けることができず、
経済上不利であつた。 したがつて、最近、電解めつきの代わりに無電
解銅めつきでパターンおよびスルーホールを形成
させるアデイテイブ法が注目されている。この方
法によれば、電子機器の高機能化、小型化、高信
頼化、低コスト化という要望に応えることがで
き、高密度配線や高アスペクト比のプリント配線
板の工業的な生産が可能となつてきた。 しかし、従来のプリント配線板用無電解銅めつ
き方法によれば、まず被めつき基板にアルカリ溶
液を用いて脱脂処理を施し、次に酸などによる表
面粗化および活性化処理を施した後、無電解銅め
つき浴に浸漬し、一定時間恒温に保持することに
より、所望の厚みの無電解銅めつき膜を得ること
ができる。しかし、前記従来方法により得られる
めつき膜は一般に脆く、実用上いまだ充分に満足
されていない。例えば、プリント配線板の導通パ
ターンおよびスルーホールを、無電解銅めつき方
法を用いてめつきする場合、めつき膜が脆いため
プリント配線板の加工や部品装着の際に生じる機
械的応力による歪によつて、パターンの断線、ス
ルーホール内のコーナークラツクなどが生じると
いう欠点がある。これに比べ、パターンおよびス
ルーホールを電解銅めつき方法を用いてめつきす
る場合、無電解銅めつきのようなパターンの断
線、はがれ、亀裂およびスルーホール内のコーナ
ークラツクは生じない。ところで、この電解銅め
つき方法で得られためつき膜の機械的特性を測定
した結果、めつき膜の引張り強度30〜50Kg/mm2
伸び率3〜8%、180°折り曲げ回数4回であつ
た。 一方、銅塩、錯化剤、還元剤、PH調整剤から成
る無電解銅めつき浴から得られるめつき膜は、10
〜20Kg/mm2の引張り強度、0.5%程度の伸び率、
1回程度の折り曲げ回数を有し、プリント配線板
のパターンまたはスルーホール用胴膜としてほと
んど信頼性に乏しかつた。そこで、めつき膜の延
性改良剤としてメルカプタンのような有機硫黄化
合物、チオールまたはチオ化合物、ジピリジル、
フエナントロリンのような複素環式化合物、その
他無機シアン化合物等を添加することにより、無
電解銅めつき膜の機械的特性の向上がはかられて
今日に到つている。このような無電解銅めつき浴
から得られるめつき膜は、20〜35Kg/mm2の引張り
強度、1〜2%の伸び率、折り曲げ回数が2回程
度の機械的特性を有し、プリント配線板のパター
ンおよびスルーホール用銅膜として実用に供せら
れる。しかし、さらに高信頼性が要求されるよう
なプリント配線板の導通パターンおよびスルーホ
ール用銅膜には、電解銅めつき膜なみの機械的特
性が必要である。 そこで、従来無電解銅めつき浴に新しく開発し
たり改良した種々のめつき膜の延性改良剤を添加
することにより、無電解銅めつき膜の機械的特性
を向上させる試みが終始なされた。また、めつき
膜と基盤との間に接着剤層を設けることにより、
の接着剤層がクツシヨンの役割を果たし、プリン
ト配線板の加工や部品装着の際に生じる機械的応
力による歪が和らげられると考えられたが、無電
解銅めつき膜との密着が非常に良い接着剤、絶縁
性に優れた接着剤、あるいは耐熱性に優れた接着
剤がほとんど見い出されなかつた。しかも、無電
解銅めつき膜と接着剤の密着性を上げるために
は、クロム、硫酸混酸などの非常に危険で有害な
酸を使用しなければならなかつた。 また、特開昭57−114657号公報に記載の発明に
よれば、被めつき基板表面に無電解銅めつき膜を
形成するに当り、銅塩、酢化剤、還元剤、PH調整
剤を含む無電解銅めつき浴の基本組成に添加剤と
してエチレンオキサイド系非イオン界面活性剤、
ジピリジル、フエナントロリン誘導体、シアン化
合物の少なくとも1種を含む無電解銅めつき浴
と、添加剤として硫黄化合物、けい素化合物、燐
化合物の少なくとも1種を含む無電解銅めつき浴
を交互に用いて、無電解銅めつき層を重層せしめ
ることにより、無電解銅めつき膜の機械的向上を
計る方法が知られている。 しかし、この方法は被めつき基板に無電解銅め
つきを施す際、添加剤は微量であり、かつめつき
浴中には多量の妨害物が含まれているため、通常
の分析方法では分析不可能とされている添加剤を
それぞれのめつき浴に対して管理しなければなら
ないという欠点を有する。 本発明は、従来のプリント配線板用無電解銅め
つき方法の欠点を改善し、機械的特性に優れため
つき膜を与えるプリント配線板用無電解銅めつき
方法を提供することを目的とし、特許請求の範囲
記載の方法によつて、上記目的を達成することが
できる。 すなわち、本発明の第1の方法は、 プリント配線板を製造する際に施される無電解
銅めつき方法において、下記(a)〜(e)の工程;すな
わち (a) 被めつき用基板を、数種の溶質を含む浴温が
50℃以上の1番目の無電解銅めつき浴に浸漬す
ることにより、基板上に第1種無電解めつき膜
を形成する工程、 (b) 前記1番目のめつき浴から第1種無電解めつ
き膜を形成した前記基板を引き上げ、常温下で
水洗する工程、 (c) 上記(b)工程を経て得られた基板を、前記1番
目のめつき浴中に含まれるものと同種の溶質を
含みかつ50℃以上の浴温であるが、溶質の濃度
および/または浴温については前記1番目のめ
つき浴とは異ならしめた2番目の無電解銅めつ
き浴中に浸漬することにより、前記第1種無電
解めつき膜とは異なる第2種無電解めつき膜を
異なる析出速度で析出させてめつきする工程、 (d) 上記(c)工程を経ためつき基板を、前記2番目
の無電解めつき浴から引き上げ、常温下で水洗
する工程、 (e) さらに、上記(d)工程を経ためつき基板に対
し、上記(a)と(b)の工程だけを1回繰返すか、ま
たは上記(a)〜(d)の各工程のうちの(a)と(b)の工程
を2回以上そして(c)と(d)の工程については1回
以上繰返すことにより、 基板上に、隣接する層が異なる析出速度で形成
された3層以上のものであつて、仕上り全厚に対
する各層の厚さがそれぞれ1/100〜1/2の層状無電
解銅めつき膜を形成させることを特徴とするプリ
ント配線板の無電解銅めつき方法である。 なお、上記工程における繰返しの処理は、 (a)と(b)の工程だけを1回繰返す(3層)か、ま
たは上記(a)〜(d)の各工程のうちの(a)と(b)の工程に
ついては2回以上(5層以上)そして(c)と(d)の工
程については1回以上(4層以上)、目標の仕上
全厚になるまで繰返すことにより、3層以上とす
るための処理のことである。 また、本発明の第2の方法は、 プリント配線板の無電解銅めつき方法におい
て、下記(a)〜(f)の工程;すなわち (a) 被めつき用基板を数種の溶質を含む浴温が50
℃以上の1番目の無電解銅めつき浴に浸漬する
ことにより、基板上に第1種無電解めつき膜を
形成する工程、 (b) 前記1番目のめつき浴から第1種無電解めつ
き膜を形成した前記基板を引き上げ、常温下で
水洗する工程、 (c) 上記(b)工程で得られた基板に活性化処理を施
す工程、 (d) 上記(c)工程で得られた基板を、前記1番目の
めつき浴中に含まれるものと同種の溶質を含み
かつ50℃以上の浴温であるが、溶質の濃度およ
び/または浴温を前記1番目のめつき浴とは異
ならしめた2番目の無電解銅めつき浴中に浸漬
することにより、前記第1種無電解めつき膜と
は異なる第2種無電解めつき膜を異なる析出速
度で析出させてめつきする工程、 (e) 上記(d)工程を経ためつき基板を、前記2番目
のめつき浴から引き上げ、常温で水洗する工
程、 (f) さらに、上記(d)工程を経ためつき基板に対
し、上記(a)と(b)の工程だけを1回繰返すか、ま
たは上記(a)〜(e)の各工程のうちの(a)と(b)の工程
については2回以上そして(c)と(d)と(e)の工程に
ついては1回以上繰返すことにより、 基板上に、隣接する各層が異なる析出速度で形
成された3層以上のものであつて、仕上り全厚に
対する各層の厚さがそれぞれ1/100〜1/2の層状の
無電解銅めつき膜を形成させることを特徴とする
プリント配線板の無電解銅めつき方法である。 なお、上記活性化処理は、第1種無電解めつき
から第2種無電解めつきに移るときのみに、この
第2種無電解めつきに先立つて施される。 また、本発明の第3の方法は、 プリント配線板の無電解銅めつき方法におい
て、下記(a)〜(g)の工程;すなわち (a) 被めつき用基板を、数種の溶質を含む浴温が
50℃以上の1番目の無電解銅めつき浴に浸漬す
ることにより、基板上に第1種無電解めつき膜
を形成する工程、 (b) 前記1番目のめつき浴から第1種無電解めつ
き膜を形成した前記基板を引き上げ、常温下で
水洗する工程、 (c) 上記(b)工程で得られた基板に活性化処理を施
す工程、 (d) 上記(c)工程で得られた基板を、前記1番目の
めつき浴中に含まれるものと同種の溶質を含み
かつ50℃以上の浴温であるが、溶質の濃度およ
び/または浴温を前記1番目のめつき浴とは異
ならしめた2番目の無電解銅めつき浴中に浸漬
することにより、前記第1種無電解めつき膜と
は異なる第2種無電解めつき膜を異なる析出速
度で析出させてめつきする工程、 (e) 上記(d)工程を経ためつき基板を、前記2番目
のめつき浴から引き上げ、水洗する工程、 (f) 前記(e)工程を経て引き上げられた基盤に活性
化処理を施す工程、 (g) さらに、上記(f)工程を経ためつき基板に対
し、上記(a)と(b)の工程だけを1回繰返すか、ま
たは上記(a)〜(f)の各工程のうちの(f)と(a)と(b)の
工程については2回以上そして(c)と(d)と(e)の工
程については1回以上繰返すことにより、 基板上に、隣接する各層が異なる析出速度で形
成された3層以上のものであつて、仕上り全厚に
対する各層の厚さがそれぞれ1/100〜1/2の層状の
無電解銅めつき膜を形成させることを特徴とする
プリント配線板の無電解銅めつき方法である。 なお、上記活性化処理は、第1種、第2種無電
解めつきの処理の前にそれぞれ施される。 次に、本発明を詳細に説明する。 本発明の特徴は、無電解銅めつき浴を用いて所
望の回路厚みのパターンを形成する際、無電解銅
めつきの析出を、水洗工程を挟んで少なくとも2
回中断させ、プリント配線板上の無電解銅めつき
膜を3層以上のめつき層として形成させることに
より、プリント配線板への部品装着およびプリン
ト配線板が使用される時に受ける機械的応力によ
る歪を分散させて少なくし、プリント配線板の機
械的特性の評価試験項目である引張り強度、伸び
率、折り曲げ回数を、従来の無電解銅めつき方法
に比べて大きく向上させることにある。 本発明は、まず、基板の表面をトリクレンなど
の有機溶剤またはアルカリ性水溶液中に浸漬もし
くはスプレーにより脱脂して整面し、続いて酸を
用いてソフトエツチングし、さらに、活性化処理
を施したプリント配線板用基板に無電解銅めつき
を施す。例えば、紙基材エポキシ樹脂基板、合成
繊維布基材エポキシ樹脂基板、ガラス布基材エポ
キシ樹脂基板、紙基材フエノール樹脂基板、また
は市販されている触媒入積層板や紫外線を照射す
る部分のみ触媒となるような物質を含む照射後の
積層板を、無電解銅めつき浴中に一定時間浸漬
し、基板上に所望のめつき厚みの無電解銅めつき
膜を形成する。その後、中断させるため前記被め
つき基板を無電解膜めつき浴から引き上げる。 次に、引き上げた前後被めつき基板に、活性化
処理その他の手段を施した後、前記無電解銅めつ
き浴に再度浸漬して無電解銅めつきする操作を無
電解銅めつき最終仕上がり厚さになるまで繰返
す。このようにして得られた無電解銅めつき膜
は、無電解銅めつき層が3層以上の層状に形成さ
れているため、プリント配線板への部品装着およ
びプリント配線板の使用時に受ける機械的応力に
よる歪が分散されて少なくなり、プリント配線板
の機械的特性の評価試験項目である引張り強度、
伸び率、折り曲げ回数を、従来の無電解銅めつき
方法で得られるめつき膜に比べて大きく向上させ
ることができる。 なお、被めつき基板を一定時間無電解銅めつき
浴中に浸漬し引き上げ、再度浴中に浸漬する操作
を繰返し行う場合、1回毎に浸漬時間をそれぞれ
変化させて無電解銅めつきを施すか、もしくはそ
れぞれ同一時間で無電解銅めつきを施すかの2通
りが考えられるが、浸漬時間をそれぞれ同一時間
にする場合の方が、浸漬時間をそれぞれ変化させ
る場合よりも、引張り強度、伸び率および折り曲
げ回数が大となる。 また、被めつき基板が無電解銅めつき浴中に浸
漬される際、1回の浸漬で基板上に析出させる無
電解銅めつき膜の厚さは、無電解銅めつき浴中に
含まれる4成分、銅塩、還元剤、PH調整剤、錯化
剤のそれぞれの濃度および無電解銅めつき浴の温
度により析出速度が決まるため、被めつき基板の
浸漬時間を多くしたり、少なくしたりして調整
し、無電解銅めつきの最終仕上がり厚さの1/100
〜1/2の範囲内とすることにより、引張り強度、
伸び率および折り曲げ回数が向上する。 次に、本発明においては、無電解銅めつきを3
層以上の層状に形成するに当り、1番目の無電解
銅めつき浴に対し、それに続くめつき処理につい
ては1番目のめつき浴とは溶質の濃度と沿面のみ
が異なる2番目の無電解銅めつき浴を使つて、浸
漬と引き上げによる中断を含むめつき処理を施す
ことに特徴がある。以下にその具体的なめつき処
理の方法について説明する。 この場合に用いる2種の無電解銅めつき浴は、
無電解銅めつき浴中に含まれる溶質の種類、特に
添加剤の種類を変える必要はなく、各溶質の種類
は同一であり、浴中の個々の溶質濃度、浴の温度
の2種のうちいずれか少なくとも1種が異なつた
浴である。2種の無電解銅めつき浴に被めつき基
板を交互に浸漬する際、無電解銅めつき浴中に被
めつき基板を一定時間浸漬し、所望のめつき厚さ
になるまで無電解銅めつきを析出させた後、無電
解銅めつき浴から被めつき基板を引き上げ、引き
上げた被めつき基板に活性化処理を施した後、異
なる無電解銅めつき浴に浸漬する操作を、無電解
銅めつき最終仕上がり厚さになるまで繰返す。こ
のようにして得られた無電解銅めつき膜は、無電
解銅めつき層が3層以上の層状に形成されている
ため、プリント配線板への部品装着およびプリン
ト配線板の使用時に受ける機械的応力による歪が
分散されて少なくなり、プリント配線板の機械的
特性である引張り強度、伸び率、折り曲げ回数
が、従来の無電解銅めつき方法である無電解銅め
つき浴に被めつき基板を連続して浸漬し層状でな
い無電解銅めつき層を持つめつき膜に比べ大きく
向上する。 2種の無電解銅めつき浴の組合せは、(1)無電解
銅めつき浴中の個々の溶質濃度は同一、浴の温度
が異なつた2種の無電解銅めつき浴の組合せ、(2)
無電解銅めつき浴中の個々の溶質濃度が異なり、
浴の温度が同一の2種の無電解銅めつき浴の組合
せ、(3)無電解銅めつき浴中の個々の溶質濃度と浴
の温度が異なる2種の無電解銅めつき浴の組合
せ、である。 以上3種の組合せが可能であり、何れの組合せ
においても、無電解銅めつき浴に被めつき基板を
連続して浸漬し、層状でない無電解銅めつき層を
持つめつき膜と比べて、引張り強度、伸び率、折
り曲げ回数が向上する。 また、被めつき基板をそれぞれの無電解銅めつ
き浴に浸漬させて、被めつき基板面に析出させる
銅の厚さは、一方の無電解銅めつき浴では無電解
銅めつきの最終仕上がり厚さの1/30〜1/2の範囲
内であり、もう一方の浴においては1/100〜1/30
の範囲内とすることが好ましい。 前記3種の組合せにより無電解銅めつきを施す
場合、片方の無電解銅めつき浴中へ被めつき基板
を浸漬後、無電解銅めつき浴から被めつき基板を
引き上げ、異なる無電解銅めつき浴に浸漬する
際、毎回引き上げた基板に水洗を施し、被めつき
基板上の無電解銅めつき液を洗い落とし、異なる
無電解銅めつき浴に浸漬する操作を繰返すことに
より、無電解銅めつき層は3層以上の層状に形成
され、引張り強度、伸び率、折り曲げ回数が向上
する。その他の方法として、毎回引き上げた基板
に活性化処理を施す方法、または一方の無電解銅
めつき浴に被めつき基板を浸漬する前に水洗を施
し、もう一方の無電解銅めつき浴に浸漬する前に
活性化処理を施すという、以上3種の方法があ
り、これらのうちいずれの方法を用いても引張り
強度、伸び率、折り曲げ回数が向上する。 無電解銅めつき浴に浸漬される都度、被めつき
基板に施される前記活性化処理は、被めつき基板
上についている無電解銅めつき液を水で洗い落と
した後、無機酸に浸漬して銅表面に生成した酸化
物および微量の金属銅を溶解されることにより銅
表面を洗浄し、次に被めつき基板上についている
無機酸を水洗し、無電解銅めつき浴に浸漬する方
法、また、その他に前記方法と同様に水洗で被め
つき基板に付着した無電解銅めつき液を洗い落と
し、無機酸に浸漬して銅表面を洗浄し、さらに触
媒付与を施した後、無電解銅めつき浴に浸漬する
方法が好ましい。 この2種の活性化処理方法で使用する無機酸
は、先程述べたとおり、銅の酸化物を溶解するこ
とのできる無機酸である。例えば、塩酸または硫
酸の単純浴もしくは塩酸と硫酸の混合浴が好まし
い。無機酸の濃度は、0.規定より薄いと銅の酸化
物および金属銅の溶解がほとんど生起せず、10規
定より濃いと酸濃度を上げても銅の酸化物および
金属銅の溶解速度がほとんど変化しないため、
0.5〜10規定の範囲内が好ましい。また、浴の温
度は5〜40℃の範囲内、一回当りの被めつき基板
の浸漬時間は1〜10分間の範囲内が好ましい。 被めつき基板を無電解銅めつき浴に一定時間浸
漬後、無電解銅めつき浴から被めつき基板を引き
上げ、異なる無電解銅めつき浴に浸漬する際、被
めつき基板に施される活性化処理は、被めつき基
板上に付着した無電解銅めつき液を水で洗い落と
した後、触媒付与を施すという操作も好ましく、
前記2種を含め3種のうちいずれを用いても引張
り強度、伸び率、折り曲げ回数が向上する。 触媒付与は、触媒となりうる金属イオンを含む
水溶液、例えばPdCl2−SnCl2−HCl(コロイドタ
イプ)があり、その他に前記浴では塩酸のため作
業環境が悪くなるということで、その改良型であ
るPDCl2−SnCl2−NaCl(コロイドタイプ)、パラ
ジウム有機錯塩化合物、中性銅タイプの以上4種
のうちのいずれか1種の浴に被めつき基板を浸漬
して、被めつき基板上に金属イオン吸着させ、次
に、触媒となる金属イオンを金属に還元可能な
液、例えば硫酸とシユウ酸の混合液、水酸化ナト
リウムまたは炭酸ナトリウム等のアルカリ性水酸
化物とホウ水素化合物との混合液に、金属イオン
が吸着した基板を浸漬し、金属イオンを金属に還
元させる操作を少なくとも1回繰返すことによ
り、被めつき基板上に触媒を吸着させる方法であ
る。 この触媒付与手段において使用する金属イオン
を含む水溶液中の金属イオン濃度は、20ppmより
薄いと吸着した金属イオンの量が少なく、無電解
銅めつきの析出が開始しないし、2500ppmより濃
い濃度では金属イオン濃度をいくら上げても吸着
する金属イオンの量は一定となるため20〜
2500ppmの範囲内が好ましい。浴の温度は、20℃
より低いと吸着する金属イオンの量が少なく無電
解銅めつきの析出しない部分があり、60℃より高
くなると浴の分解が生起するため、20〜60℃の範
囲内が好ましい。また、1回の被めつき基板の浸
漬時間についても同様に、1分間より短いと金属
イオンの吸着量が少なく無電解銅めつきの析出が
開始せず、また、10分間より長く浸漬しても吸着
する金属イオンの量はほぼ一定であるため、1〜
10分間の範囲内が好ましい。 次に、金属イオンを金属に還元する還元液につ
いて、その浴温度、濃度、浸漬時間についてそれ
ぞれ説明すると、浴の温度は10℃より低いと還元
反応が生起しにくく、50℃より高いと還元剤の自
己分解が生起するため、10〜50℃の範囲内が好ま
しい。被めつき基板の1回の浸漬時間は、2分間
より短いと金属イオンから金属に還元される量が
少ないため無電解銅めつきの析出が開始せず、10
分間程度の浸漬で基板上に吸着した金属イオンが
ほぼ全て金属に還元されるため、これ以上浸漬さ
せる必要はなく、浸漬時間は2〜10分間の範囲内
が好ましい。還元液の濃度は、0.01mol/より
薄いと金属への還元反応が生起せず、一方、
1mol/より濃いと金属イオンに対して過剰の
量となり還元反応がほぼ一定の速度となるため、
0.01〜1mol/の範囲内が好ましい。 次に、本発明において使用する無電解銅めつき
浴は、従来用いられている第二銅イオン源となる
銅塩、銅イオンを金属銅にするための還元剤、還
元剤を有効に働かすアルカリ性溶液にするための
PH調整剤、アルカリ性溶液中での銅の沈澱を防ぐ
ための錯化剤の4成分を含有し、その他必要によ
り安定剤を含有させることができ、この安定剤の
働きは無電解銅めつき浴の自己分解を防いで浴の
寿命を長くする。このように浴の寿命が長くなる
原因は、一価の銅および銅粒子を安定剤でマスク
するからである。 安定剤としては、キレート剤および高分子剤が
あり、キレート剤としては、シアン化ナトリウ
ム、シアン化カリウム、シアン化ニツケルカリウ
ム、シアン化鉄カリウム、シアン化コバルトカリ
ウム、ジピリジル,2(2−ピリジル)イミダゾ
ン、2(2−ピリジル)ベンゾイミダゾール、
1.10−フエナントロリン、2.9−ジメチル−1.10−
フエナントロリン、4.7−ジフエニル−1.10−フ
エナントロリン、4.7−ジフエニル−2.9−ジメチ
ル−1.10−フエナントロリン、チオ尿素、アリル
チオ尿素、ロダニン、2−メルカプトベンゾチア
ゾールが知られており、高分子剤としてはポリエ
チレングリコール、ポリエチレンオキサイドなど
が知られている。 銅塩としては、硫酸銅、塩化第二銅、酢酸銅、
硝酸銅などを用いることができるが、コストなど
の点から硫酸銅が好ましい。還元剤としては、ヒ
ドラジン、ホルマリン、ホウ水素化合物、次亜り
ん酸ナトリウムを用いることができるが、コスト
および安定性の点からホルマリンが好ましい。同
様に、PH調整剤として、水酸化ナトリウム、水酸
化カリウム、炭酸ナトリウム、アンモニア水を用
いることができるが、コストの点から水酸化ナト
リウムが好ましい。錯化剤についても酒石酸ナト
リウムカリウムおよびエチレンジアミン四酢酸ナ
トリウム塩の2種を用いることができるが、無電
解銅めつき浴の安定性および析出速度の高速性の
点からエチレンジアミン四酢酸ナトリウム塩がよ
り好ましい。 無電解銅めつき浴の4成分のそれぞれの濃度
は、銅塩の場合、0.01mol/より薄いと無電解
銅めつきの析出が起こらず、0.15mol/より濃
いと無電解銅めつきの際、液中に銅粒子が生成す
るいわゆる無電解銅めつき浴の分解が生起するた
め、0.01〜0.15mol/の範囲内が好ましい。還
元剤は、0.1mol/より薄いと二価の銅イオン
が金属銅に還元される反応が生起せず、1mol/
程度で銅の析出速度がほぼ一定となるため、
0.1〜1mol/の範囲内が好ましい。PH調整剤濃
度は、0.1mol/より薄いと無電解銅めつきの
析出が起こらず、1mol/より濃いと無電解銅
めつき浴の分解が起こるため、0.1〜1mol/の
範囲内が好ましい。錯化剤は、二価の銅イオンが
水酸化物と反応して水酸化銅の沈澱を生成させな
いようにするために添加し、その濃度は銅イオン
のモル濃度の1〜3倍の範囲内が好ましい。 また、無電解銅めつき浴の温度は、30℃より低
いと析出速度が遅すぎるため、所望の無電解銅め
つき厚さを得るまでに時間がかかりすぎ、一方、
80℃以上では無電解銅めつき浴の分解が起こるた
め、30〜80℃の範囲内が好ましい。 被めつき基板を無電解銅めつき浴に一定時間浸
漬し、めつき浴から被めつき基板を引き上げ、そ
の引き上げた基板を異なる無電解銅めつき浴に浸
漬するまでの時間は、45分間以内が好ましい。そ
の理由は、水洗水または空気中に被めつき基板を
長時間放置すると銅表面に酸化膜が生成し、この
酸化膜上に析出させる銅との密着性が悪くなり、
乾燥程度の熱的歪でもふくれなどを生じるので、
45分以内が好ましい。 以上で1種または2種の無電解銅めつき浴を用
いて、無電解銅めつき層を層状に形成させ、プリ
ント配線板の機械的特性の評価試験項目である引
張り強度、伸び率、折り曲げ回数が電解銅めつき
膜と同等の無電解銅めつき膜を得る方法を詳細に
説明した。 本発明の他の態様方法によれば、無電解銅めつ
き浴なかに含まれる各々の溶質の種類は同一であ
り、浴中の溶質の濃度、浴の温度のいずれか少な
くとも1種が異なる3種以上の無電解銅めつき浴
に被めつき基板を順次浸漬させることにより、無
電解銅めつき層を層状に形成させることができ、
電解銅めつき膜と同等の引張り強度、伸び率、折
り曲げ回数を有する無電解銅めつき膜を得ること
ができる。 以下に本発明を実施例についてさらに詳細に説
明する。 比較例 1 表面を機械的に研摩したステンレススチール板
を10g/の水酸化ナトリウム水溶液を用いて脱
脂した後、ジプレイ社製キヤタポジツト44水溶液
及び同社製アクセラレーター19を使用して、表面
に触媒付与を行なうた。これを被めつき板とし
た。浴温度が60℃の第1表記載の組成1の無電解
銅めつき浴に前記被めつき板を連続して浸漬し、
被めつき板上に厚さ35〜40μmの無電解銅めつき
膜を形成させた。このめつき膜をステンレススチ
ール板より剥がして、幅10mm、長さ100mmに切断
し、東洋ボールドウイン社製の引張り試験機を用
いて引張り強度及び伸び率を測定した。また、別
のサンプルを180°折り曲げ、また元に戻すという
折り曲げ試験を行ない、折り目に割れを生じるま
での回数を測定した。その結果を第2表に示す。
The present invention relates to a method for electroless copper plating of printed wiring boards, and in particular to such a method for electroless copper plating of printed wiring boards having a tamping film with excellent mechanical properties. As is well known, most of the printed wiring boards that are widely used in various fields of the electronic industry, from consumer electronic equipment such as radios and televisions to high-end industrial equipment such as computers and information industry electronic equipment, are manufactured using the etched oil method. However, as the electronic equipment industry has advanced to a high level of development in recent years, higher density and higher performance have been promoted. As printed wiring boards become more dense and multilayered, the conventional etched oil method not only deteriorates pattern dimensional accuracy due to undercuts in the etching process and large variations in plating thickness in the electrolytic plating process. , bridges due to overhang, small diameter holes formed in thick boards such as multilayer boards, etc.
When plating a hole with a diameter of approximately 3.2 mm and 1.00 mm or less, there is a large difference in the plating thickness between the corners and the center of the hole. There were drawbacks such as the lack of glazing. For this reason, it is becoming difficult to industrially produce printed wiring boards with high density wiring and high aspect ratios (board thickness/hole diameter). In addition, since the etched oil method uses copper-clad laminates, after the pattern is printed on the copper-clad laminate, the copper foil other than the pattern-printed area must be removed in an etching process, and the waste that is removed during the etching process is Copper foil accounts for 50 to 80% of the total, which is extremely uneconomical, and the etching solution used to remove copper foil is mainly composed of ferric chloride, cupric chloride, or aqueous ammonia. Therefore, if it is accidentally released outside, it can cause pollution problems. In any case, the etched oil method cannot avoid complicating the manufacturing process and wasting copper foil.
It was economically disadvantageous. Therefore, recently, an additive method in which patterns and through holes are formed by electroless copper plating instead of electrolytic plating has been attracting attention. This method can meet the demands for higher functionality, smaller size, higher reliability, and lower cost in electronic devices, and enables industrial production of high-density wiring and high aspect ratio printed wiring boards. I'm getting old. However, according to the conventional electroless copper plating method for printed wiring boards, the substrate to be plated is first degreased using an alkaline solution, then the surface is roughened and activated using acid, etc. An electroless copper plating film with a desired thickness can be obtained by immersing it in an electroless copper plating bath and maintaining it at a constant temperature for a certain period of time. However, the plated films obtained by the above-mentioned conventional methods are generally brittle and are not yet fully satisfactory in practical terms. For example, when electroless copper plating is used to plate conductive patterns and through-holes on a printed wiring board, the plating film is brittle and is strained by mechanical stress that occurs during processing of the printed wiring board and mounting of parts. This has disadvantages such as disconnection of the pattern and corner cracks in the through holes. In contrast, when patterns and through-holes are plated using an electrolytic copper plating method, disconnections, peeling, and cracks in the patterns and corner cracks in the through-holes do not occur as in electroless copper plating. By the way, as a result of measuring the mechanical properties of the plated film obtained by this electrolytic copper plating method, the tensile strength of the plated film was 30 to 50 Kg/mm 2 ,
The elongation rate was 3 to 8%, and the number of 180° bending was 4 times. On the other hand, the plated film obtained from an electroless copper plating bath consisting of a copper salt, a complexing agent, a reducing agent, and a PH adjuster is
Tensile strength of ~20Kg/ mm2 , elongation rate of about 0.5%,
It was bent about once, and had little reliability as a pattern or through-hole shell for a printed wiring board. Therefore, organic sulfur compounds such as mercaptan, thiol or thio compounds, dipyridyl,
By adding heterocyclic compounds such as phenanthroline and other inorganic cyanide compounds, attempts have been made to improve the mechanical properties of electroless copper plating films. The plated film obtained from such an electroless copper plating bath has mechanical properties such as a tensile strength of 20 to 35 kg/ mm2 , an elongation rate of 1 to 2%, and a bending frequency of about 2 times, and is suitable for printing. It is used practically as a copper film for wiring board patterns and through holes. However, copper films for conductive patterns and through-holes of printed wiring boards, which require even higher reliability, require mechanical properties comparable to electrolytic copper plating films. Therefore, attempts have been made to improve the mechanical properties of electroless copper plating films by adding various newly developed or improved ductility improvers to electroless copper plating baths. In addition, by providing an adhesive layer between the plating film and the base,
It was thought that the adhesive layer would play the role of a cushion, relieving distortion caused by mechanical stress that occurs during processing of printed wiring boards and mounting parts, but the adhesion to the electroless copper plating film was very good. Almost no adhesives, adhesives with excellent insulation properties, or adhesives with excellent heat resistance have been found. Moreover, in order to improve the adhesion between the electroless copper plating film and the adhesive, extremely dangerous and harmful acids such as chromium and sulfuric acid mixed acid had to be used. Furthermore, according to the invention described in JP-A No. 57-114657, when forming an electroless copper plating film on the surface of a plated substrate, a copper salt, an acetylating agent, a reducing agent, and a PH adjusting agent are used. The basic composition of the electroless copper plating bath contains an ethylene oxide nonionic surfactant as an additive,
Alternating between an electroless copper plating bath containing at least one of dipyridyl, a phenanthroline derivative, and a cyanide compound and an electroless copper plating bath containing at least one of a sulfur compound, a silicon compound, and a phosphorus compound as an additive. A method is known in which mechanical improvement of an electroless copper plating film is achieved by overlaying an electroless copper plating layer using the above method. However, when applying electroless copper plating to the plated substrate, this method uses only a small amount of additives and the plating bath contains a large amount of interference, so it cannot be analyzed using normal analytical methods. It has the disadvantage that additives must be controlled for each plating bath, which is not possible. The present invention aims to improve the shortcomings of conventional electroless copper plating methods for printed wiring boards, and to provide an electroless copper plating method for printed wiring boards that provides a matted film with excellent mechanical properties. The above object can be achieved by the method described in the claims. That is, the first method of the present invention is an electroless copper plating method performed when manufacturing a printed wiring board, and includes the following steps (a) to (e); that is, (a) a substrate to be plated; , the bath temperature containing several kinds of solutes is
forming a first type electroless plating film on the substrate by immersing it in a first electroless copper plating bath at 50°C or higher; (b) forming a first type electroless copper plating film on the substrate from the first electroless copper plating bath; a step of pulling up the substrate on which the electrolytically plated film has been formed and washing it with water at room temperature; Immersion in a second electroless copper plating bath that contains a solute and has a bath temperature of 50°C or higher, but that is different from the first plating bath in terms of solute concentration and/or bath temperature. a step of depositing and plating a second type electroless plated film different from the first type electroless plated film at a different deposition rate; (d) a plated substrate that has undergone the above step (c); (e) Further, the plating substrate that has undergone the above step (d) is subjected to only the above steps (a) and (b) once. or by repeating steps (a) and (b) of the steps (a) to (d) above two or more times and steps (c) and (d) one or more times. , A layered electroless copper plating film having three or more layers on a substrate, in which adjacent layers are formed at different deposition rates, and each layer has a thickness of 1/100 to 1/2 of the total finished thickness. This is a method for electroless copper plating of printed wiring boards, which is characterized by forming. In addition, the repeated processing in the above steps is to repeat only steps (a) and (b) once (3 layers), or to repeat steps (a) and (d) of each step (a) to (d) above. Step b) is repeated two or more times (five layers or more), and steps (c) and (d) are repeated one or more times (four layers or more) until the desired total thickness is achieved, resulting in three or more layers. This refers to processing to achieve this. Further, the second method of the present invention is a method for electroless copper plating of printed wiring boards, which includes the following steps (a) to (f); namely, (a) a plating substrate containing several kinds of solutes; Bath temperature is 50
a step of forming a first type electroless copper plating film on the substrate by immersing it in a first electroless copper plating bath at a temperature of at least ℃; a step of pulling up the substrate on which the plating film has been formed and washing it with water at room temperature; (c) a step of subjecting the substrate obtained in step (b) above to activation treatment; The plated substrate contains the same kind of solute as that contained in the first plating bath and has a bath temperature of 50°C or higher, but the concentration of the solute and/or the bath temperature is different from that of the first plating bath. A second type electroless plating film different from the first type electroless plating film is deposited at a different deposition rate by immersion in a second electroless copper plating bath having a different temperature. (e) removing the plating substrate that has gone through the step (d) above from the second plating bath and washing it with water at room temperature; (f) further adding On the other hand, repeat only the steps (a) and (b) above once, or repeat steps (a) and (b) of the steps (a) to (e) above two or more times, and ( By repeating steps c), (d), and (e) one or more times, three or more layers are formed on the substrate with each adjacent layer formed at a different deposition rate, and each layer has a thickness relative to the total finished thickness. This is a method for electroless copper plating of printed wiring boards, characterized by forming layered electroless copper plating films each having a thickness of 1/100 to 1/2. Note that the above activation treatment is performed only when transitioning from the first type electroless plating to the second type electroless plating, and prior to the second type electroless plating. Further, the third method of the present invention is a method for electroless copper plating of printed wiring boards, which includes the following steps (a) to (g); that is, (a) a plating substrate is coated with several kinds of solutes. The bath temperature including
forming a first type electroless plating film on the substrate by immersing it in a first electroless copper plating bath at 50°C or higher; (b) forming a first type electroless copper plating film on the substrate from the first electroless copper plating bath; (c) a step of subjecting the substrate obtained in step (b) above to activation treatment; (d) The plated substrate contains the same kind of solute as that contained in the first plating bath and has a bath temperature of 50°C or higher, but the solute concentration and/or bath temperature is lower than that of the first plating bath. A second type electroless plating film different from the first type electroless plating film is deposited at a different deposition rate by immersion in a second electroless copper plating bath different from the first type electroless plating film. (e) removing the plating substrate that has passed through step (d) above from the second plating bath and washing it with water; (f) activating the substrate that has been pulled up through step (e) above; (g) Further, the steps (a) and (b) above are repeated once for the matted substrate that has undergone the step (f) above, or the steps (a) to (f) above are repeated once. By repeating steps (f), (a), and (b) of each step two or more times, and steps (c), (d), and (e) one or more times, on the substrate, To form a layered electroless copper plating film having three or more layers in which adjacent layers are formed at different deposition rates, and each layer has a thickness of 1/100 to 1/2 of the total finished thickness. This is an electroless copper plating method for printed wiring boards, which is characterized by: Note that the above activation treatment is performed before the first type and second type electroless plating treatments. Next, the present invention will be explained in detail. A feature of the present invention is that when forming a pattern with a desired circuit thickness using an electroless copper plating bath, the deposition of electroless copper plating is prevented at least twice with a water washing process in between.
By interrupting the process and forming the electroless copper plating film on the printed wiring board as three or more plating layers, it is possible to reduce the mechanical stress received when parts are mounted on the printed wiring board and when the printed wiring board is used. The purpose of this method is to disperse and reduce strain, and to significantly improve tensile strength, elongation, and number of bends, which are test items for evaluating the mechanical properties of printed wiring boards, compared to conventional electroless copper plating methods. In the present invention, the surface of the substrate is first degreased by dipping or spraying in an organic solvent such as trichloride or an alkaline aqueous solution, then soft etched with acid, and then activated. Electroless copper plating is applied to wiring board substrates. For example, paper-based epoxy resin substrates, synthetic fiber cloth-based epoxy resin substrates, glass cloth-based epoxy resin substrates, paper-based phenolic resin substrates, commercially available catalyst-containing laminates, and catalysts only in the parts that are irradiated with ultraviolet light. The irradiated laminated board containing the substance is immersed in an electroless copper plating bath for a certain period of time to form an electroless copper plating film with a desired plating thickness on the substrate. Thereafter, the plated substrate is removed from the electroless film plating bath for interruption. Next, the pulled up front and rear plated substrates are subjected to activation treatment and other means, and then immersed in the electroless copper plating bath again to perform electroless copper plating to complete the final electroless copper plating process. Repeat until thick. The electroless copper plating film obtained in this way has three or more electroless copper plating layers, so it is not exposed to the mechanical stress that it receives when mounting components on a printed wiring board and when using the printed wiring board. The strain caused by physical stress is dispersed and reduced, and the tensile strength, which is a test item for evaluating the mechanical properties of printed wiring boards, is reduced.
The elongation rate and number of bends can be greatly improved compared to plated films obtained by conventional electroless copper plating methods. In addition, when repeating the operation of immersing a plated substrate in an electroless copper plating bath for a certain period of time, pulling it up, and dipping it into the bath again, the immersion time is changed each time to perform electroless copper plating. There are two options: to apply electroless copper plating or to apply electroless copper plating for the same amount of time, but using the same immersion time for each will improve the tensile strength, The elongation rate and number of bending increases. In addition, when a plated substrate is immersed in an electroless copper plating bath, the thickness of the electroless copper plating film deposited on the substrate in one immersion is The deposition rate is determined by the concentration of each of the four components copper salt, reducing agent, PH adjuster, and complexing agent and the temperature of the electroless copper plating bath. Adjust to 1/100 of the final finished thickness of electroless copper plating.
By setting the tensile strength within the range of ~1/2,
Improves elongation rate and number of bends. Next, in the present invention, electroless copper plating is
When forming more than one layer, the first electroless copper plating bath is treated with a second electroless copper plating bath that differs only in solute concentration and creepage from the first plating bath. It is characterized by using a copper plating bath to perform the plating process, which includes interruptions by dipping and pulling. The specific plating method will be explained below. The two types of electroless copper plating baths used in this case are:
There is no need to change the types of solutes contained in the electroless copper plating bath, especially the types of additives.The types of solutes are the same, and the concentration of each solute in the bath and the temperature of the bath are different. At least one of them is a different bath. When the plated substrate is alternately immersed in two types of electroless copper plating baths, the plated substrate is immersed in the electroless copper plating bath for a certain period of time, and the electroless plating is continued until the desired plating thickness is achieved. After the copper plating has been deposited, the plated substrate is pulled up from the electroless copper plating bath, the pulled up plated substrate is subjected to activation treatment, and then immersed in a different electroless copper plating bath. , repeat until the final finished thickness of electroless copper plating is achieved. The electroless copper plating film obtained in this way has three or more electroless copper plating layers, so it is not exposed to the mechanical stress that it receives when mounting components on a printed wiring board and when using the printed wiring board. The strain caused by physical stress is dispersed and reduced, and the mechanical properties of the printed wiring board, such as tensile strength, elongation rate, and number of bends, are reduced by applying the conventional electroless copper plating method to the electroless copper plating bath. This is greatly improved compared to a plating film that has a non-layered electroless copper plating layer in which the substrate is continuously immersed. A combination of two types of electroless copper plating baths is: (1) a combination of two types of electroless copper plating baths in which the individual solute concentrations in the electroless copper plating baths are the same but the bath temperatures are different; 2)
The concentration of individual solutes in the electroless copper plating bath is different,
A combination of two types of electroless copper plating baths with the same bath temperature; (3) a combination of two types of electroless copper plating baths with different concentrations of individual solutes in the electroless copper plating baths and different bath temperatures; , is. Combinations of the above three types are possible, and in any combination, the plated substrate is continuously immersed in an electroless copper plating bath, and compared to a plated film having a non-layered electroless copper plating layer. , tensile strength, elongation rate, and number of bends are improved. In addition, the thickness of the copper deposited on the surface of the plated substrate when the plated substrate is immersed in each electroless copper plating bath is determined by the final finish of electroless copper plating in one electroless copper plating bath. It is within the range of 1/30 to 1/2 of the thickness, and in the other bath it is 1/100 to 1/30.
It is preferable to set it within the range of. When performing electroless copper plating using a combination of the three types described above, after dipping the plated substrate into one electroless copper plating bath, the plated substrate is pulled out of the electroless copper plating bath, and then a different electroless copper plating bath is applied. When immersing in a copper plating bath, the removed board is washed with water each time, the electroless copper plating solution on the plated board is washed off, and the process of immersing it in a different electroless copper plating bath is repeated. The electrolytic copper plating layer is formed into three or more layers, and the tensile strength, elongation rate, and number of bends are improved. Other methods include applying an activation treatment to the board that is pulled up each time, or rinsing the plated board with water before immersing it in one electroless copper plating bath, and then immersing it in the other electroless copper plating bath. There are three methods of performing activation treatment before dipping, and any of these methods improves tensile strength, elongation, and number of bends. The activation treatment performed on the plated substrate each time it is immersed in an electroless copper plating bath involves washing off the electroless copper plating solution on the plated substrate with water, and then immersing it in an inorganic acid. The copper surface is cleaned by dissolving the oxides and trace amounts of metallic copper that have formed on the copper surface, then the inorganic acid on the plated substrate is washed with water, and the plated substrate is immersed in an electroless copper plating bath. In addition, in the same way as the above method, the electroless copper plating solution adhering to the plated substrate is washed off with water, the copper surface is washed by immersion in an inorganic acid, and then a catalyst is applied, and then the copper plating solution is washed off with water. A method of immersion in an electrolytic copper plating bath is preferred. As mentioned earlier, the inorganic acids used in these two types of activation treatment methods are inorganic acids that can dissolve copper oxides. For example, a simple bath of hydrochloric acid or sulfuric acid or a mixed bath of hydrochloric acid and sulfuric acid is preferred. If the concentration of the inorganic acid is thinner than 0.N, dissolution of copper oxide and metallic copper will hardly occur, and if it is thicker than 10N, the dissolution rate of copper oxide and metallic copper will be negligible even if the acid concentration is increased. Because it does not change,
It is preferably within the range of 0.5 to 10 normal. Further, the temperature of the bath is preferably within the range of 5 to 40°C, and the immersion time of the coated substrate per soak is preferably within the range of 1 to 10 minutes. After the plated substrate is immersed in an electroless copper plating bath for a certain period of time, the plated substrate is pulled out of the electroless copper plating bath and immersed in a different electroless copper plating bath. The activation treatment is preferably performed by washing off the electroless copper plating solution adhering to the plated substrate with water and then applying a catalyst.
No matter which one of the three types, including the above two types, is used, the tensile strength, elongation rate, and number of bends are improved. For catalyst application, an aqueous solution containing metal ions that can serve as a catalyst, such as PdCl 2 -SnCl 2 -HCl (colloidal type), is used, and since the working environment is poor due to hydrochloric acid in the bath, this is an improved version. The plated substrate is immersed in any one of the above four types of baths: PDCl 2 -SnCl 2 -NaCl (colloid type), palladium organic complex salt compound, and neutral copper type. A liquid capable of adsorbing metal ions and then reducing the metal ions to metals, such as a mixture of sulfuric acid and oxalic acid, a mixture of an alkaline hydroxide such as sodium hydroxide or sodium carbonate, and a borohydride compound. In this method, the substrate on which metal ions have been adsorbed is immersed and the process of reducing the metal ions to metal is repeated at least once, thereby adsorbing the catalyst onto the coated substrate. If the concentration of metal ions in the aqueous solution containing metal ions used in this catalyst application means is less than 20 ppm, the amount of adsorbed metal ions will be small and precipitation of electroless copper plating will not start, and if the concentration is higher than 2500 ppm, metal ions No matter how much the concentration is increased, the amount of metal ions adsorbed remains constant, so 20~
It is preferably within the range of 2500 ppm. Bath temperature is 20℃
If it is lower, the amount of adsorbed metal ions will be small and there will be areas where electroless copper plating will not precipitate, and if it is higher than 60°C, the bath will decompose, so it is preferably within the range of 20 to 60°C. Similarly, regarding the immersion time of the plated substrate once, if it is shorter than 1 minute, the amount of metal ions adsorbed is small and electroless copper plating does not start to deposit; Since the amount of adsorbed metal ions is almost constant, 1~
Preferably within a range of 10 minutes. Next, we will explain the bath temperature, concentration, and immersion time for the reducing solution that reduces metal ions to metals.If the bath temperature is lower than 10℃, the reduction reaction will hardly occur, and if the bath temperature is higher than 50℃, the reducing agent will Since self-decomposition occurs, the temperature is preferably within the range of 10 to 50°C. If the immersion time of the plated substrate is shorter than 2 minutes, the amount of metal ions reduced to metal will be small, and electroless copper plating will not start to be deposited.
Since almost all of the metal ions adsorbed on the substrate are reduced to metal by immersion for about a minute, there is no need for further immersion, and the immersion time is preferably within the range of 2 to 10 minutes. If the concentration of the reducing solution is less than 0.01 mol/min, the reduction reaction to the metal will not occur;
If the concentration is more than 1 mol/mol, the amount will be in excess of the metal ion, and the reduction reaction will be at a nearly constant rate.
It is preferably within the range of 0.01 to 1 mol/. Next, the electroless copper plating bath used in the present invention includes a conventionally used copper salt as a source of cupric ions, a reducing agent for converting copper ions into metallic copper, and an alkaline bath that makes the reducing agent effective. to make a solution
Contains four components: a PH adjuster, a complexing agent to prevent copper precipitation in alkaline solutions, and can also contain other stabilizers if necessary.The function of this stabilizer is Prevents self-decomposition and extends the life of the bath. This longer bath life is due to the masking of the monovalent copper and copper particles by the stabilizer. Stabilizers include chelating agents and polymeric agents, and chelating agents include sodium cyanide, potassium cyanide, potassium cyanide nickel, potassium iron cyanide, potassium cobalt cyanide, dipyridyl, 2(2-pyridyl)imidazone, 2(2-pyridyl)benzimidazole,
1.10-phenanthroline, 2.9-dimethyl-1.10-
Phenanthroline, 4.7-diphenyl-1.10-phenanthroline, 4.7-diphenyl-2.9-dimethyl-1.10-phenanthroline, thiourea, allylthiourea, rhodanine, and 2-mercaptobenzothiazole are known, and are polymeric agents. Known examples include polyethylene glycol and polyethylene oxide. Copper salts include copper sulfate, cupric chloride, copper acetate,
Although copper nitrate or the like can be used, copper sulfate is preferable from the viewpoint of cost. As the reducing agent, hydrazine, formalin, a borohydride compound, and sodium hypophosphite can be used, but formalin is preferable from the viewpoint of cost and stability. Similarly, sodium hydroxide, potassium hydroxide, sodium carbonate, and aqueous ammonia can be used as the pH adjuster, but sodium hydroxide is preferred from the viewpoint of cost. Two kinds of complexing agents can be used: sodium potassium tartrate and sodium ethylenediaminetetraacetic acid salt, but sodium ethylenediaminetetraacetic acid salt is more preferable from the viewpoint of stability of the electroless copper plating bath and high deposition rate. . In the case of copper salt, if the concentration of each of the four components of the electroless copper plating bath is less than 0.01 mol, precipitation will not occur during electroless copper plating, and if it is more than 0.15 mol/concentration, the liquid will not be deposited during electroless copper plating. Since decomposition of the so-called electroless copper plating bath in which copper particles are generated occurs, the amount is preferably within the range of 0.01 to 0.15 mol/. If the reducing agent is thinner than 0.1 mol/mol, the reaction in which divalent copper ions are reduced to metallic copper will not occur;
Since the copper precipitation rate is almost constant at
It is preferably within the range of 0.1 to 1 mol/. The PH adjuster concentration is preferably within the range of 0.1 to 1 mol/, because if it is thinner than 0.1 mol/no precipitation in electroless copper plating will not occur, and if it is thicker than 1 mol//, the electroless copper plating bath will be decomposed. The complexing agent is added to prevent divalent copper ions from reacting with hydroxide to form copper hydroxide precipitates, and its concentration is within the range of 1 to 3 times the molar concentration of copper ions. is preferred. In addition, if the temperature of the electroless copper plating bath is lower than 30°C, the deposition rate is too slow, so it takes too much time to obtain the desired electroless copper plating thickness.
Since decomposition of the electroless copper plating bath occurs at 80°C or higher, the temperature is preferably within the range of 30 to 80°C. The time required to immerse the plated substrate in an electroless copper plating bath for a certain period of time, lift the plated substrate from the plating bath, and immerse the lifted substrate in a different electroless copper plating bath is 45 minutes. Preferably within The reason for this is that if the coated substrate is left in washing water or air for a long time, an oxide film will form on the copper surface, and the adhesion with the copper deposited on this oxide film will deteriorate.
Even thermal distortion to the degree of dryness can cause blistering, so
Preferably within 45 minutes. Using one or two types of electroless copper plating baths, an electroless copper plating layer is formed in a layered manner, and test items such as tensile strength, elongation rate, and bending A method for obtaining an electroless copper plating film with the same number of times as an electrolytic copper plating film was explained in detail. According to another aspect of the method of the present invention, the types of solutes contained in the electroless copper plating bath are the same, and at least one of the concentration of the solute in the bath and the temperature of the bath is different. By sequentially immersing the plated substrate in more than one type of electroless copper plating bath, an electroless copper plating layer can be formed in a layered manner.
It is possible to obtain an electroless copper plating film having tensile strength, elongation rate, and number of bends equivalent to those of the electrolytic copper plating film. The present invention will be explained in more detail with reference to Examples below. Comparative Example 1 A stainless steel plate whose surface was mechanically polished was degreased using a 10 g/aqueous sodium hydroxide solution, and then a catalyst was applied to the surface using an aqueous solution of Cataposi 44 manufactured by Gyplay and Accelerator 19 manufactured by the same company. I did a song. This was used as a covered board. Continuously immersing the plated plate in an electroless copper plating bath having composition 1 listed in Table 1 at a bath temperature of 60°C,
An electroless copper plating film with a thickness of 35 to 40 μm was formed on the plated plate. This plating film was peeled off from the stainless steel plate and cut into pieces of 10 mm in width and 100 mm in length, and the tensile strength and elongation rate were measured using a tensile tester manufactured by Toyo Baldwin. In addition, a bending test was conducted in which another sample was bent 180 degrees and then returned to its original position, and the number of times it took for cracks to occur at the folds was measured. The results are shown in Table 2.

【表】【table】

【表】 また、大きさ100mm×100mm、厚さ1.6mmのガラ
ス布基材エポキシ樹脂系銅張り積層板にドリルを
用いて直径1.00mmの穴を250個あけた。次に、前
記被めつき基板をシプレイ社製アルキレート水溶
液を用いて脱脂し、同社コンデイシヨナー1160水
溶液を用いて整面し、過硫酸アンモニウム水溶液
を用いて銅表面を粗化し、さらにシプレイ社製キ
ヤタポジツト44水溶液及び同社製アクセラレータ
ー19を使用して表面に触媒付与を行なつた。前記
と同様の組成と浴温度を持つ無電解銅めつき浴を
用いて、前記と同様の方法により厚さが35〜40μ
mの無電解銅めつき膜を前記被めつき基板上に形
成させた。前記方法により得られた被めつき基板
について260℃のはんだ槽に10秒浸漬し、5秒放
冷後、室温のトリクレンに10秒浸漬する操作を1
サイクルとし、穴のコーナー部にクラツクが生じ
る最小回数を測定した。このはんだデイツプ試験
の結果を第3表に示す。
[Table] In addition, 250 holes with a diameter of 1.00 mm were drilled in a glass cloth-based epoxy resin copper-clad laminate with a size of 100 mm x 100 mm and a thickness of 1.6 mm using a drill. Next, the plated substrate was degreased using an aqueous alkylate solution manufactured by Shipley, smoothed using an aqueous solution of Conditioner 1160 manufactured by Shipley, and the copper surface was roughened using an aqueous solution of ammonium persulfate. Catalysts were applied to the surface using an aqueous solution and Accelerator 19 manufactured by the same company. Using an electroless copper plating bath with the same composition and bath temperature as above, the thickness was 35 to 40 μm by the same method as above.
An electroless copper plating film of m was formed on the plated substrate. The plated substrate obtained by the above method was immersed in a solder bath at 260°C for 10 seconds, left to cool for 5 seconds, and then immersed in room temperature trichloride for 10 seconds.
The minimum number of times a crack occurs at the corner of the hole was measured. The results of this solder dip test are shown in Table 3.

【表】 比較例 2 表面を機械的に研摩したステンレススチール板
を10g/の水酸化ナトリウム水溶液を用いて脱
脂した後、水洗し、3.6規定の硫酸水溶液で中和
した。次に、硫酸銅めつきを行ない、板上に厚さ
35〜40μmの電気銅めつき膜を形成させた。この
膜をステンレススチール板より剥がして、比較例
1と同様の方法により引張り強度、伸び率及び折
り曲げ回数を測定した。その結果を第2表に示
す。 また、比較例1と同様の穴あけを行なつたガラ
ス布基材エポキシ樹脂系銅張り積層板をシプレイ
社製ニユートラクリーン水溶液を用いて脱脂し、
過硫酸アンモニウム水溶液を用いて銅表面を粗化
し、さらに、3.6規定の硫酸水溶液に浸漬し、表
面の酸化物を溶解させた。次に、硫酸銅めつきを
行ない、被めつき基板上に厚さが35〜40μmの電
気銅めつき膜を形成させた。前記方法により得ら
れた被めつき基板についてはんだデイツプ試験を
行ない、穴のコーナー部にクラツクが生じる最小
回数を測定した。その結果を第3表に示す。 比較例 3 表面を機械的に研摩したステンレススチール板
上に比較例1と同様の方法を用いて触媒付与を行
なつた。これを被めつき板とした。 浴温度60℃、組成1の無電解銅めつき浴に前記
被めつき板を浸漬して厚さ2μmのめつき膜を形
成させた。次に、前記被めつき板を前記めつき浴
引き上げ、水で前記被めつき板上に付着している
無電解銅めつき液を洗い落した後、前記被めつき
板を前記無電解銅めつき浴に浸漬する一連の操作
を繰返し行ない、被めつき板上に厚さ35〜40μm
の無電解銅めつき膜を形成させた。このめつき膜
をステンレススチール板より剥がして、比較例1
と同様の方法により引張り強度、伸び率及び折り
曲げ回数を測定した。その結果を第2表に示す。 また、比較例1と同様の穴あけを行なつたガラ
ス布基材エポキシ樹脂系銅張り積層板に比較例1
と同様の方法を用いて触媒付与を行なつた。浴温
度が60℃、組成1の無電解銅めつき浴を用いて、
前記と同様のめつき方法により、被めつき基板上
に厚さ35〜40μmのめつき膜を形成させた。前記
方法により得られた被めつき基板についてはんだ
デイツプ試験を行ない、穴のコーナー部にクラツ
クが生じる最小回数を測定した。その結果を第3
表に示す。 比較例 4 表面を機械的に研摩したステンレススチール板
上に比較例1と同様の方法を用いて触媒付与を行
なつた。これを被めつき板とした。 浴温度80℃、組成2の無電解銅めつき浴に前記
被めつき板を浸漬して厚さ1μmのめつき膜を形
成させた。次に、前記被めつき板を前記めつき浴
から引き上げ、水洗した後、前記被めつき板を前
記無電解銅めつき浴に浸漬する一連の操作を繰返
し行ない、被めつき板上に厚さ35〜40μmの無電
解銅めつき膜を形成させた。このめつき膜をステ
ンレススチール板より剥がして、比較例1と同様
の方法により引張り強度、伸び率及び折り曲げ回
数を測定した。その結果を第2表に示す。 また、比較例1と同様の穴あけを行なつたガラ
ス布基材エポキシ樹脂系銅張り積層板に同様の方
法を用いて触媒付与を行なつた。浴温度80℃、組
成2の無電解銅めつき浴を用いて、前記と同様の
めつき方法により、被めつき基板上に厚さ35〜
40μmのめつき膜を形成させた。前記方法により
得られた被めつき基板について、はんだデイツプ
試験を行ない、穴のコーナー部にクラツクが生じ
る最小回数を測定した。その結果を第3表に示
す。 実施例 1 表面を機械的に研摩したステンレススチール板
上に比較例1と同様の方法を用いて触媒付与を行
なつた。これを被めつき板とした。 浴温度60℃、組成7の無電解銅めつき浴に前記
被めつき板を浸漬して厚さ2μmのめつき膜を形
成させた。次に、前記被めつき板を前記めつき浴
から引き上げ、水洗した後、浴温度60℃、組成8
無電解銅めつき浴に前記被めつき板を浸漬して厚
さ0.5μmのめつき膜を形成させた。もう一度、前
記被めつき板をめつき浴から引き上げ、水洗後、
前記浴温度60℃、組成7の無電解銅めつき浴に浸
漬する一連の操作を繰返し行ない、被めつき板上
に厚さ35〜40μmの無電解銅めつき膜を形成させ
た。このめつき膜をステンレススチール板より剥
がして、比較例1と同様の方法により引張り強
度、伸び率及び折り曲げ回数を測定した。その結
果を第2表に示す。 また、比較例1と同様の穴あけを行なつたガラ
ス布基材エポキシ樹脂系銅張り積層板に比較例1
と同様の方法を用いて触媒付与を行なつた。浴温
度が60℃、組成7及び浴温度60℃、組成8の2種
の無電解銅めつき浴を用いて、前記と同様のめつ
き方法により被めつき基板に厚さ35〜40μmのめ
つき膜を形成させた。前記方法により得られた被
めつき基板についてはんだデイツプ試験を行な
い、穴のコーナー部にクラツクが生じる最小回数
を測定した。その結果を第3表に示す。 実施例 2 表面を機械的に研摩したステンレススチール板
上に比較例1と同様の方法を用いて触媒付与を行
なつた。これを被めつき板とした。 浴温度60℃、組成7の無電解銅めつき浴に前記
被めつき板を浸漬して厚さ2μmのめつき膜を形
成させた。次に、前記被めつき板を前記めつき浴
から引き上げ、水洗した後、浴温度50℃、組成7
の無電解銅めつき浴に被めつき板を浸漬して0.7μ
mのめつき膜を形成させた。もう一度、前記被め
つき板をめつき浴から引き上げ、水洗後、前記浴
温度60℃、組成7の無電解銅めつき浴に浸漬する
一連の操作を繰返し行ない、被めつき板上に厚さ
35〜40μmの無電解銅めつき膜を形成させた。こ
のめつき膜をステンレススチール板より剥がし
て、比較例1と同様の方法により引張り強度、伸
び率及び折り曲げ回数を測定した。その結果を第
2表に示す。 また、比較例1と同様の穴あけを行なつたガラ
ス布基材エポキシ樹脂系銅張り積層板に比較例1
と同様の方法を用いて触媒付与を行なつた。浴温
度60℃、組成7及び浴温度50℃、組成7の2種の
無電解銅めつき浴を用いて、前記と同様のめつき
方法により、被めつき基板に厚さ35〜40μmのめ
つき膜を形成させた。前記方法により得られた被
めつき基板についてはんだデイツプ試験を行な
い、穴のコーナー部にクラツクが生じる最小回数
を測定した。その結果を第3表に示す。 実施例 3 表面を機械的に研摩したステンレススチール板
上に比較例1と同様の方法を用いて触媒付与を行
なつた。これを被めつき板とした。 浴温度60℃、組成7の無電解銅めつき浴に前記
被めつき板を浸漬して厚さ3μmのめつき膜を形
成させた。次に、前記被めつき板を前記めつき浴
から引き上げ、水洗した後、浴温度70℃、組成9
の無電解銅めつき浴に被めつき板を浸漬して0.5μ
mのめつき膜を形成させた。もう一度、前記被め
つき板をめつき浴から引き上げ、水洗後、前記浴
温度60℃、組成7の無電解銅めつき浴に浸漬する
一連の操作を繰返し行ない、被めつき板上に厚さ
35〜40μmの無電解銅めつき膜を形成させた。こ
のめつき膜をステンレススチール板より剥がし
て、比較例1と同様の方法により引張り強度、伸
び率及び折り曲げ回数を測定した。その結果を第
2表に示す。 また、比較例1と同様の穴あけを行なつたガラ
ス布基材エポキシ樹脂系銅張り積層板に比較例1
と同様の方法を用いて触媒付与を行なつた。浴温
度60℃、組成7及び浴温度60℃、組成9の2種の
無電解銅めつき浴を用いて前記と同様のめつき方
法により、被めつき基板に厚さ35〜40μmのめつ
き膜を形成させた。前記方法により得られた被め
つき基板についてはんだデイツプ試験を行ない、
穴のコーナー部にクラツクが生じる最小回数を測
定した。その結果を第3表に示す。 実施例 4 表面を機械的に研摩したステンレススチール板
上に比較例1と同様の方法を用いて触媒付与を行
なつた。これを被めつき板とした。 浴温度60℃、組成7の無電解銅めつき浴に前記
被めつき板を浸漬して厚さ4μmのめつき膜を形
成させた。次に、前記被めつき板を前記めつき浴
から引き上げ、水洗した後、浴温度70℃、組成8
の無電解銅めつき浴に被めつき板を浸漬して0.8μ
mのめつき膜を形成させた。もう一度、前記被め
つき板をめつき浴から引き上げ、水洗後、前記浴
温度60℃、組成7の無電解銅めつき浴に浸漬する
一連の操作を繰返し行ない、被めつき板上に厚さ
30〜45μmの無電解銅めつき膜を形成させた。こ
のめつき膜をステンレススチール板より剥がし
て、比較例1と同様の方法により引張り強度、伸
び率及び折り曲げ回数を測定した。その結果を第
2表に示す。 また、比較例1と同様の穴あけを行なつたガラ
ス布基材エポキシ樹脂系銅張り積層板に比較例1
と同様の方法を用いて触媒付与を行なつた。浴温
度60℃、組成7及び浴温度70℃、組成8の2種の
無電解銅めつき浴を用いて前記と同様のめつき方
法により、被めつき基板に厚さ35〜40μmのめつ
き膜を形成させた。前記方法により得られた被め
つき基板についてはんだデイツプ試験を行ない、
穴のコーナー部にクラツクが生じる最小回数を測
定した。その結果を第3表に示す。 実施例 5 表面を機械的に研摩したステンレススチール板
上に比較例1と同様の方法を用いて触媒付与を行
なつた。これを被めつき板とした。 浴温度60℃、組成7の無電解銅めつき浴に前記
被めつき板を浸漬して厚さ3μmのめつき膜を形
成させた。次に、前記被めつき板を前記めつき浴
から引き上げ、水洗した後、浴温度60℃、組成9
の無電解銅めつき浴に被めつき板を浸漬して0.6μ
mのめつき膜を形成させた。もう一度、前記被め
つき板をめつき浴から引き上げ、水洗後、前記浴
温度60℃、組成7の無電解銅めつき浴に浸漬する
一連の操作を繰返し行ない、被めつき板上に厚さ
35〜40μmの無電解銅めつき膜を形成させた。こ
のめつき膜をステンレススチール板より剥がし
て、比較例1と同様の方法により引張り強度、伸
び率及び折り曲げ回数を測定した。その結果を第
2表に示す。 また、比較例1と同様の穴あけを行なつたガラ
ス布基材エポキシ樹脂系銅張り積層板に比較例1
と同様の方法を用いて触媒付与を行なつた。浴温
度60℃、組成7及び浴温度60℃、組成9の2種の
無電解銅めつき浴を用いて、前記と同様のめつき
方法により、被めつき基板に厚さ35〜40μmのめ
つき膜を形成させた。前記方法により得られた被
めつき基板についてはんだデイツプ試験を行な
い、穴のコーナー部にクラツクが生じる最小回数
を測定した。その結果を第3表に示す。 実施例 6 表面を機械的に研摩したステンレススチール板
上に比較例1と同様の方法を用いて触媒付与を行
なつた。これを被めつき板とした。 浴温度60℃、組成8の無電解銅めつき浴に前記
被めつき板を浸漬して厚さ2μmのめつき膜を形
成させた。次に、前記被めつき板を前記めつき浴
から引き上げ、水洗した後、浴温度60℃、組成7
の無電解銅めつき浴に被めつき板を浸漬して0.5μ
mのめつき膜を形成させた。もう一度、前記被め
つき板をめつき浴から引き上げ、水洗後、前記浴
温度60℃、組成8の無電解銅めつき浴に浸漬する
一連の操作を繰返し行ない、被めつき板上に厚さ
35〜40μmの無電解銅めつき膜を形成させた。こ
のめつき膜をステンレススチール板より剥がし
て、比較例1と同様の方法により引張り強度、伸
び率及び折り曲げ回数を測定した。その結果を第
2表に示す。 また、比較例1と同様の穴あけを行なつたガラ
ス布基材エポキシ樹脂系銅張り積層板に比較例1
と同様の方法を用いて触媒付与を行なつた。浴温
度60℃、組成8及び浴温度60℃、組成7の2種の
無電解銅めつき浴を用いて、前記と同様のめつき
方法により、被めつき基板に厚さ35〜40μmのめ
つき膜を形成させた。前記方法により得られた被
めつき基板についてはんだデイツプ試験を行な
い、穴のコーナー部にクラツクが生じる最小回数
を測定した。その結果を第3表に示結果を第3表
に示す。 実施例 7 表面を機械的に研摩したステンレススチール板
上に比較例1と同様の方法を用いて触媒付与を行
なつた。これを被めつき板とした。 浴温度70℃、組成9の無電解銅めつき浴に前記
被めつき板を浸漬して厚さ5μmのめつき膜を形
成させた。次に、前記被めつき板を前記めつき浴
から引き上げ、水洗し、3.6規定、30℃の硫酸水
溶液に2分間浸漬した。水洗した後、浴温度60
℃、組成8の無電解銅めつき浴に被めつき板を浸
漬して、0.4μmのめつき膜を形成させた。被めつ
き板をめつき浴から引き上げ、前記活性化処理操
作をもう一度繰返した後、前記浴温度70℃、組成
9の無電解銅めつき浴に浸漬する一連の操作を繰
返し行ない、被めつき板上に厚さ35〜40μmの無
電解銅めつき膜を形成させた。このめつき膜をス
テンレススチール板より剥がして、比較例1と同
様の方法により引張り強度、伸び率及び折り曲げ
回数を測定した。その結果を第2表に示す。 また、比較例1と同様の穴あけを行なつたガラ
ス布基材エポキシ樹脂系銅張り積層板に比較例1
と同様の方法を用いて触媒付与を行なつた。浴温
度70℃、組成9及び浴温度60℃、組成8の2種の
無電解銅めつき浴を用いて、前記と同様のめつき
方法により、被めつき基板に厚さ35〜40μmのめ
つき膜を形成させた。前記方法により得られた被
めつき基板についてはんだデイツプ試験を行な
い、穴のコーナー部にクラツクが生じる最小回数
を測定した。その結果を第3表に示す。 実施例 8 表面を機械的に研摩したステンレススチール板
上に比較例1と同様の方法を用いて触媒付与を行
なつた。これを被めつき板とした。 浴温度50℃、組成7の無電解銅めつき浴い前記
被めつき板を浸漬して厚さ2μmのめつき膜を形
成させた。次に、前記被めつき板を前記めつき浴
から引き上げ、水洗し、1.2規定、40℃の塩酸水
溶液に3分間浸漬した。被めつき板を水洗した
後、250ppm、50℃のPdCl2−SnCl2−NaCl水溶
液に6分間浸漬し、もう一度水洗後、各々
0.4mol/の硫酸・シユウ酸を含む水溶液に7
分間浸漬した。水洗した後、浴温度70℃、組成9
の無電解銅めつき浴に浸漬して厚さ0.5μmのめつ
き膜を形成させた。被めつき板をめつき浴から引
き上げ、前記活性化処理操作をもう一度繰返した
後、前記浴温度50℃、組成7の無電解銅めつき浴
に浸漬する一連の操作を繰返し行ない、被めつき
板上に厚さ35〜40μmの無電解銅めつき膜を形成
させた。このめつき膜をステンレススチール板よ
り剥がして、比較例1と同様の方法により引張り
強度、伸び率及び折り曲げ回数を測定した。その
結果を第2表に示す。 また、比較例1と同様の穴あけを行なつたガラ
ス布基材エポキシ樹脂系銅張り積層板に比較例1
と同様の方法を用いて触媒付与を行なつた。浴温
度50℃、組成7及び浴温度70℃、組成9の2種の
無電解銅めつき浴を用いて、前記と同様のめつき
方法により、被めつき基盤に厚さ35〜40μmのめ
つき膜を形成させた。前記方法により得られた被
めつき基板についてはんだデイツプ試験を行な
い、穴のコーナー部にクラツクが生じる最小回数
を測定した。その結果を第3表に示す。 実施例 9 表面を機械的に研摩したステンレススチール板
上に比較例1と同様の方法を用いて触媒付与を行
なつた。これを被めつき板とした。 浴温度60℃、組成7の無電解銅めつき浴に前記
被めつき板を浸漬して厚さ3μmのめつき膜を形
成させた。次に、前記被めつき板を前記めつき浴
から引き上げ、水洗し、250ppm、45℃のpdCl2
SnCl2−NaCl水溶液に5分間浸漬した。さらに水
洗し、各々0.4mol/の硫酸・シユウ酸を含む
40℃の水溶液に6分間浸漬した。もう一度水洗
後、浴温度70℃、組成8の無電解銅めつき浴に被
めつき板を浸漬して厚さ0.6μmのめつき膜を形成
させた。被めつき板をめつき浴から引き上げ、前
記活性化処理操作をもう一度繰返した後、前記浴
温度60℃、組成7の無電解銅めつき浴に浸漬する
一連の操作を繰返し行ない、被めつき板上に厚さ
35〜40μmの無電解銅めつき膜を形成させあ。こ
のめつき膜をステンレススチール板より剥がし
て、比較例1と同様の方法により引張り強度、伸
び率及び折り曲げ回数を測定した。その結果を第
2表に示す。 また、比較例1と同様の穴あけを行なつたガラ
ス布基材エポキシ樹脂系銅張り積層板に比較例1
と同様の方法を用いて触媒付与を行なつた。浴温
度60℃、組成7及び浴温度70℃、組成8の2種の
無電解銅めつき浴を用いて、前記と同様のめつき
方法により、被めつき基板に厚さ35〜40μmのめ
つき膜を形成させた。前記方法により得られた被
めつき基板についてはんだデイツプ試験を行な
い、穴のコーナー部にクラツクが生じる最小回数
を測定した。その結果を第3表に示す。 実施例 10 表面を機械的に研摩したステンレススチール板
上に比較例1と同様の方法を用いて触媒付与を行
なつた。これを被めつき板とした。 浴温度70℃、組成9の無電解銅めつき浴に前記
被めつき板を浸漬して厚さ4μmのめつき膜を形
成させた。次に、前記被めつき板を前記めつき浴
から引き上げ、水洗し、3.6規定、30℃の硫酸に
3分間浸漬し、水洗した後、浴温度60℃、組成9
の無電解銅めつき浴に被めつき板を浸漬して厚さ
0.7μmのめつき膜を形成させた。さらに被めつき
板をめつき浴から引き上げ、水洗して、前記浴温
度70℃、組成9の無電解銅めつき浴に浸漬する一
連の操作を繰返し行ない、被めつき板上に厚さ35
〜40μmの無電解銅めつき膜を形成させた。この
めつき膜をステンレススチール板より剥がして、
比較例1と同様の方法により引張り強度、伸び率
及び折り曲げ回数を測定した。その結果を第2表
に示す。 また、比較例1と同様の穴あけを行なつたガラ
ス布基材エポキシ樹脂系銅張り積層板に比較例1
と同様の方法を用いて触媒付与を行なつた。浴温
度70℃、組成9及び浴温度60℃、組成9の2種の
無電解銅めつき浴を用いて、前記と同様のめつき
方法により、被めつき基板に厚さ35〜40μmのめ
つき膜を形成させた。前記方法により得られた被
めつき基板についてはんだデイツプ試験を行な
い、穴のコーナー部にクラツクが生じる最小回数
を測定した。その結果を第3表に示す。 実施例 11 表面を機械的に研摩したステンレススチール板
上に比較例1と同様の方法を用いて触媒付与を行
なつた。これを被めつき板とした。 浴温度70℃、組成8の無電解銅めつき浴に前記
被めつき板を浸漬して厚さ2μmのめつき膜を形
成させた。次に、前記被めつき板を前記めつき浴
から引き上げ、水洗し、浴温度60℃、組成9の無
電解銅めつき浴に浸漬して厚さ0.5μmのめつき膜
を形成させた。次に、前記被めつき板をめつき浴
から引き上げ、水洗し、250ppm、50℃のPdCl2
−SnCl2−NaCl水溶液に被めつき板を5分間浸漬
した。もう一度水洗し、各々0.3mol/の硫
酸・シユウ酸を含む30℃の水溶液に被めつき板を
8分間浸漬した。さらに水洗した後、前記浴温度
70℃、組成8の無電解銅めつき浴に浸漬する一連
の操作の繰返し行ない、被めつき板上に厚さ35〜
40μmの無電解銅めつき膜を形成させた。このめ
つき膜をステンレススチール板より剥がして、比
較例1と同様の方法により引張り強度、伸び率及
び折り曲げ回数を測定した。その結果を第2表に
示す。また、比較例1と同様の穴あけを行なつた
ガラス布基材エポキシ樹脂系銅張り積層板に比較
例1と同様の方法を用いて触媒付与を行なつた。
浴温度70℃、組成8及び浴温度60℃、組成9の2
種の無電解銅めつき浴を用いて、前記と同様のめ
つき方法により被めつき基板に厚さ35〜40μmの
めつき膜を形成させた。前記方法により得られた
被めつき基板についてはんだデイツプ試験を行な
い、穴のコーナー部にクラツクが生じる最小回数
を測定した。その結果を第3表に示す。 以上、第2表、第3表から明らかなように、本
発明により得られる無電解銅めつき膜は、引張り
強度36〜48Kg/mm2、伸び率3.4〜5.6%、折り曲げ
回数3〜4という機械的特性を有し、電気銅めつ
き膜の引張り強度30〜50Kg/mm2、伸び率3〜8
%、折り曲げ回数4回と比較するとほぼ同等の値
であることがわかる。したがつて、本発明の方法
によれば、電気銅めつき膜と同等の機械的特性を
有する無電解銅めつき膜を得ることができる。
[Table] Comparative Example 2 A stainless steel plate whose surface had been mechanically polished was degreased using a 10 g/aqueous sodium hydroxide solution, washed with water, and neutralized with a 3.6N sulfuric acid aqueous solution. Next, copper sulfate plating is performed, and the thickness is
An electrolytic copper plating film of 35 to 40 μm was formed. This film was peeled off from the stainless steel plate, and the tensile strength, elongation rate, and number of bends were measured in the same manner as in Comparative Example 1. The results are shown in Table 2. In addition, a glass cloth-based epoxy resin-based copper-clad laminate with holes drilled in the same manner as in Comparative Example 1 was degreased using a NutraClean aqueous solution manufactured by Shipley.
The copper surface was roughened using an ammonium persulfate aqueous solution, and then immersed in a 3.6N sulfuric acid aqueous solution to dissolve oxides on the surface. Next, copper sulfate plating was performed to form an electrolytic copper plating film with a thickness of 35 to 40 μm on the plated substrate. A solder dip test was conducted on the plated substrate obtained by the above method, and the minimum number of times a crack would occur at the corner of the hole was measured. The results are shown in Table 3. Comparative Example 3 A catalyst was applied to a stainless steel plate whose surface had been mechanically polished using the same method as in Comparative Example 1. This was used as a covered board. The plated plate was immersed in an electroless copper plating bath having composition 1 at a bath temperature of 60°C to form a plated film with a thickness of 2 μm. Next, the plated plate is lifted out of the plating bath, and after washing off the electroless copper plating solution adhering to the plated plate with water, the plated plate is removed from the electroless copper plating bath. A series of immersion operations in a plating bath is repeated to coat the plated plate with a thickness of 35 to 40 μm.
An electroless copper plating film was formed. This plating film was peeled off from the stainless steel plate and Comparative Example 1
The tensile strength, elongation rate, and number of bends were measured in the same manner as above. The results are shown in Table 2. In addition, Comparative Example 1 was applied to a glass cloth base epoxy resin copper-clad laminate in which holes were drilled in the same manner as in Comparative Example 1.
Catalyst application was carried out using the same method as described above. Using an electroless copper plating bath with a bath temperature of 60℃ and composition 1,
A plating film having a thickness of 35 to 40 μm was formed on the plated substrate by the same plating method as described above. A solder dip test was conducted on the plated substrate obtained by the above method, and the minimum number of times a crack would occur at the corner of the hole was measured. The result is the third
Shown in the table. Comparative Example 4 A catalyst was applied to a stainless steel plate whose surface had been mechanically polished using the same method as in Comparative Example 1. This was used as a covered board. The plated plate was immersed in an electroless copper plating bath having composition 2 at a bath temperature of 80°C to form a plated film with a thickness of 1 μm. Next, the plated plate is removed from the plating bath, washed with water, and then the plated plate is immersed in the electroless copper plating bath. An electroless copper plating film with a thickness of 35 to 40 μm was formed. This plating film was peeled off from the stainless steel plate, and the tensile strength, elongation rate, and number of bends were measured in the same manner as in Comparative Example 1. The results are shown in Table 2. In addition, a catalyst was applied to a glass cloth-based epoxy resin-based copper-clad laminate in which holes were drilled in the same manner as in Comparative Example 1 using the same method. Using an electroless copper plating bath with a bath temperature of 80°C and a composition of 2, a plating layer with a thickness of 35 to 30 cm was applied to the plated substrate by the same plating method as described above.
A 40 μm plating film was formed. A solder dip test was conducted on the plated substrate obtained by the above method, and the minimum number of times cracks occurred at the corner of the hole was measured. The results are shown in Table 3. Example 1 A catalyst was applied to a stainless steel plate whose surface had been mechanically polished using the same method as in Comparative Example 1. This was used as a covered board. The plated plate was immersed in an electroless copper plating bath having composition 7 at a bath temperature of 60°C to form a plated film with a thickness of 2 μm. Next, the plated plate was taken out of the plating bath and washed with water, and then the bath temperature was 60°C and the composition was 8.
The plated plate was immersed in an electroless copper plating bath to form a plated film with a thickness of 0.5 μm. Once again, lift the plated plate out of the plating bath, wash it with water, and then
A series of operations of immersion in an electroless copper plating bath having a composition 7 at a bath temperature of 60 DEG C. were repeated to form an electroless copper plating film with a thickness of 35 to 40 .mu.m on the plated plate. This plating film was peeled off from the stainless steel plate, and the tensile strength, elongation rate, and number of bends were measured in the same manner as in Comparative Example 1. The results are shown in Table 2. In addition, Comparative Example 1 was applied to a glass cloth base epoxy resin copper-clad laminate in which holes were drilled in the same manner as in Comparative Example 1.
Catalyst application was carried out using the same method as described above. Using two types of electroless copper plating baths, composition 7 with a bath temperature of 60°C and composition 8 with a bath temperature of 60°C, a plating method of 35 to 40 μm thick was applied to the plated substrate using the same plating method as described above. A coated film was formed. A solder dip test was conducted on the plated substrate obtained by the above method, and the minimum number of times a crack would occur at the corner of the hole was measured. The results are shown in Table 3. Example 2 A catalyst was applied to a stainless steel plate whose surface had been mechanically polished using the same method as in Comparative Example 1. This was used as a covered board. The plated plate was immersed in an electroless copper plating bath having composition 7 at a bath temperature of 60°C to form a plated film with a thickness of 2 μm. Next, the plated plate was taken out of the plating bath and washed with water, and then the bath temperature was 50°C and the composition was 7.
The plated plate is immersed in an electroless copper plating bath of 0.7μ.
A plated film of m was formed. Once again, the plated plate was taken out of the plating bath, washed with water, and then immersed in an electroless copper plating bath of composition 7 at a bath temperature of 60°C.
An electroless copper plating film of 35 to 40 μm was formed. This plating film was peeled off from the stainless steel plate, and the tensile strength, elongation rate, and number of bends were measured in the same manner as in Comparative Example 1. The results are shown in Table 2. In addition, Comparative Example 1 was applied to a glass cloth base epoxy resin copper-clad laminate in which holes were drilled in the same manner as in Comparative Example 1.
Catalyst application was carried out using the same method as described above. Using two types of electroless copper plating baths, one with a bath temperature of 60°C and composition 7, and the other with a bath temperature of 50°C and composition 7, a plating method with a thickness of 35 to 40 μm was applied to the plated substrate using the same plating method as described above. A coated film was formed. A solder dip test was conducted on the plated substrate obtained by the above method, and the minimum number of times a crack would occur at the corner of the hole was measured. The results are shown in Table 3. Example 3 A catalyst was applied to a stainless steel plate whose surface had been mechanically polished using the same method as in Comparative Example 1. This was used as a covered board. The plated plate was immersed in an electroless copper plating bath having composition 7 at a bath temperature of 60°C to form a plated film with a thickness of 3 μm. Next, the plated plate was taken out of the plating bath and washed with water, and then the bath temperature was 70°C and the composition was 9.
The plated plate is immersed in an electroless copper plating bath of 0.5μ.
A plated film of m was formed. Once again, the plated plate was taken out of the plating bath, washed with water, and then immersed in an electroless copper plating bath of composition 7 at a bath temperature of 60°C.
An electroless copper plating film of 35 to 40 μm was formed. This plating film was peeled off from the stainless steel plate, and the tensile strength, elongation rate, and number of bends were measured in the same manner as in Comparative Example 1. The results are shown in Table 2. In addition, Comparative Example 1 was applied to a glass cloth base epoxy resin copper-clad laminate in which holes were drilled in the same manner as in Comparative Example 1.
Catalyst application was carried out using the same method as described above. The plated substrate was plated to a thickness of 35 to 40 μm using the same plating method as described above using two types of electroless copper plating baths: composition 7, bath temperature 60 °C, and composition 9, bath temperature 60 °C. A film was formed. Conducting a solder dip test on the plated substrate obtained by the above method,
The minimum number of times a crack occurs at the corner of the hole was measured. The results are shown in Table 3. Example 4 A catalyst was applied to a stainless steel plate whose surface had been mechanically polished using the same method as in Comparative Example 1. This was used as a covered board. The plated plate was immersed in an electroless copper plating bath having composition 7 at a bath temperature of 60°C to form a plated film with a thickness of 4 μm. Next, the plated plate was taken out of the plating bath and washed with water, and then the bath temperature was 70°C and the composition was 8.
The plated plate is immersed in an electroless copper plating bath of 0.8μ.
A plated film of m was formed. Once again, the plated plate was taken out of the plating bath, washed with water, and then immersed in the electroless copper plating bath with composition 7 at a bath temperature of 60°C.
An electroless copper plating film of 30 to 45 μm was formed. This plating film was peeled off from the stainless steel plate, and the tensile strength, elongation rate, and number of bends were measured in the same manner as in Comparative Example 1. The results are shown in Table 2. In addition, Comparative Example 1 was applied to a glass cloth base epoxy resin copper-clad laminate in which holes were drilled in the same manner as in Comparative Example 1.
Catalyst application was carried out using the same method as described above. The plated substrate was plated to a thickness of 35 to 40 μm using the same plating method as described above using two types of electroless copper plating baths: composition 7, bath temperature 60°C, and composition 8, bath temperature 70°C. A film was formed. Conducting a solder dip test on the plated substrate obtained by the above method,
The minimum number of times a crack occurs at the corner of the hole was measured. The results are shown in Table 3. Example 5 A catalyst was applied to a stainless steel plate whose surface had been mechanically polished using the same method as in Comparative Example 1. This was used as a covered board. The plated plate was immersed in an electroless copper plating bath having composition 7 at a bath temperature of 60°C to form a plated film with a thickness of 3 μm. Next, the plated plate was taken out of the plating bath and washed with water, and then the bath temperature was 60°C and the composition was 9.
The plated plate is immersed in an electroless copper plating bath of 0.6μ.
A plated film of m was formed. Once again, the plated plate was taken out of the plating bath, washed with water, and then immersed in an electroless copper plating bath of composition 7 at a bath temperature of 60°C.
An electroless copper plating film of 35 to 40 μm was formed. This plating film was peeled off from the stainless steel plate, and the tensile strength, elongation rate, and number of bends were measured in the same manner as in Comparative Example 1. The results are shown in Table 2. In addition, Comparative Example 1 was applied to a glass cloth base epoxy resin copper-clad laminate in which holes were drilled in the same manner as in Comparative Example 1.
Catalyst application was carried out using the same method as described above. Using two types of electroless copper plating baths, composition 7 with a bath temperature of 60°C and composition 9 with a bath temperature of 60°C, a plate with a thickness of 35 to 40 μm was applied to the plated substrate by the same plating method as described above. A coated film was formed. A solder dip test was conducted on the plated substrate obtained by the above method, and the minimum number of times a crack would occur at the corner of the hole was measured. The results are shown in Table 3. Example 6 A catalyst was applied to a stainless steel plate whose surface had been mechanically polished using the same method as in Comparative Example 1. This was used as a covered board. The plated plate was immersed in an electroless copper plating bath having a composition of 8 at a bath temperature of 60°C to form a plated film with a thickness of 2 μm. Next, the plated plate was taken out of the plating bath, washed with water, and the bath temperature was 60°C and the composition was 7.
The plated plate is immersed in an electroless copper plating bath of 0.5μ.
A plated film of m was formed. Once again, the plated plate was taken out of the plating bath, washed with water, and then immersed in an electroless copper plating bath of composition 8 at a bath temperature of 60°C.
An electroless copper plating film of 35 to 40 μm was formed. This plating film was peeled off from the stainless steel plate, and the tensile strength, elongation rate, and number of bends were measured in the same manner as in Comparative Example 1. The results are shown in Table 2. In addition, Comparative Example 1 was applied to a glass cloth base epoxy resin copper-clad laminate in which holes were drilled in the same manner as in Comparative Example 1.
Catalyst application was carried out using the same method as described above. Using two types of electroless copper plating baths, composition 8 and bath temperature 60°C, and composition 7 and bath temperature 60°C, a plating method of 35 to 40 μm thick was applied to the plated substrate using the same plating method as described above. A coated film was formed. A solder dip test was conducted on the plated substrate obtained by the above method, and the minimum number of times a crack would occur at the corner of the hole was measured. The results are shown in Table 3. Example 7 A catalyst was applied to a stainless steel plate whose surface had been mechanically polished using the same method as in Comparative Example 1. This was used as a covered board. The plated plate was immersed in an electroless copper plating bath having composition 9 at a bath temperature of 70°C to form a plated film with a thickness of 5 μm. Next, the plated plate was taken out of the plating bath, washed with water, and immersed in a 3.6N sulfuric acid aqueous solution at 30°C for 2 minutes. After washing with water, bath temperature 60
The plated plate was immersed in an electroless copper plating bath having a composition of 8 at a temperature of 8°C to form a plated film of 0.4 μm. The plated plate is lifted from the plating bath, the activation process is repeated once again, and then the plated plate is immersed in an electroless copper plating bath having a composition of 9 and a bath temperature of 70°C. An electroless copper plating film with a thickness of 35 to 40 μm was formed on the plate. This plating film was peeled off from the stainless steel plate, and the tensile strength, elongation rate, and number of bends were measured in the same manner as in Comparative Example 1. The results are shown in Table 2. In addition, Comparative Example 1 was applied to a glass cloth base epoxy resin copper-clad laminate in which holes were drilled in the same manner as in Comparative Example 1.
Catalyst application was carried out using the same method as described above. Using two types of electroless copper plating baths, composition 9 and bath temperature 70°C and composition 8 and bath temperature 60°C, a plating method of 35 to 40 μm thick was applied to the plated substrate using the same plating method as described above. A coated film was formed. A solder dip test was conducted on the plated substrate obtained by the above method, and the minimum number of times a crack would occur at the corner of the hole was measured. The results are shown in Table 3. Example 8 A catalyst was applied to a stainless steel plate whose surface had been mechanically polished using the same method as in Comparative Example 1. This was used as a covered board. The plated plate was immersed in an electroless copper plating bath having composition 7 at a bath temperature of 50°C to form a plated film having a thickness of 2 μm. Next, the plated plate was taken out of the plating bath, washed with water, and immersed in a 1.2N aqueous hydrochloric acid solution at 40°C for 3 minutes. After washing the plated plate with water, it was immersed in a 250 ppm PdCl 2 -SnCl 2 -NaCl aqueous solution at 50℃ for 6 minutes, and after washing again with water, each
7 in an aqueous solution containing 0.4 mol/sulfuric acid/oxalic acid.
Soaked for minutes. After washing with water, bath temperature 70℃, composition 9
A plated film with a thickness of 0.5 μm was formed by immersing it in an electroless copper plating bath. The plated plate is removed from the plating bath, the activation process is repeated once more, and then the plated plate is immersed in an electroless copper plating bath having a composition of 7 at a bath temperature of 50°C. An electroless copper plating film with a thickness of 35 to 40 μm was formed on the plate. This plating film was peeled off from the stainless steel plate, and the tensile strength, elongation rate, and number of bends were measured in the same manner as in Comparative Example 1. The results are shown in Table 2. In addition, Comparative Example 1 was applied to a glass cloth base epoxy resin copper-clad laminate in which holes were drilled in the same manner as in Comparative Example 1.
Catalyst application was carried out using the same method as described above. Using two types of electroless copper plating baths, composition 7 with a bath temperature of 50°C and composition 9 with a bath temperature of 70°C, a plate with a thickness of 35 to 40 μm was applied to the plated substrate by the same plating method as described above. A coated film was formed. A solder dip test was conducted on the plated substrate obtained by the above method, and the minimum number of times a crack would occur at the corner of the hole was measured. The results are shown in Table 3. Example 9 A catalyst was applied to a stainless steel plate whose surface had been mechanically polished using the same method as in Comparative Example 1. This was used as a covered board. The plated plate was immersed in an electroless copper plating bath having composition 7 at a bath temperature of 60°C to form a plated film with a thickness of 3 μm. Next, the plated plate was taken out of the plating bath, washed with water, and treated with pdCl 2 − at 250 ppm and 45°C.
It was immersed in a SnCl 2 -NaCl aqueous solution for 5 minutes. Further washed with water, each containing 0.4 mol/sulfuric acid and oxalic acid.
It was immersed in an aqueous solution at 40°C for 6 minutes. After washing again with water, the plated plate was immersed in an electroless copper plating bath having a composition of 8 at a bath temperature of 70°C to form a plated film with a thickness of 0.6 μm. The plated plate is lifted out of the plating bath, the activation process is repeated once again, and then the plated plate is immersed in an electroless copper plating bath having a composition of 7 at a bath temperature of 60°C. thickness on board
Form an electroless copper plating film of 35 to 40 μm. This plating film was peeled off from the stainless steel plate, and the tensile strength, elongation rate, and number of bends were measured in the same manner as in Comparative Example 1. The results are shown in Table 2. In addition, Comparative Example 1 was applied to a glass cloth base epoxy resin copper-clad laminate in which holes were drilled in the same manner as in Comparative Example 1.
Catalyst application was carried out using the same method as described above. Using two types of electroless copper plating baths, composition 7 and bath temperature 60°C and composition 8 and bath temperature 70°C, a plating method of 35 to 40 μm thick was applied to the plated substrate using the same plating method as described above. A coated film was formed. A solder dip test was conducted on the plated substrate obtained by the above method, and the minimum number of times a crack would occur at the corner of the hole was measured. The results are shown in Table 3. Example 10 A catalyst was applied to a stainless steel plate whose surface had been mechanically polished using the same method as in Comparative Example 1. This was used as a covered board. The plated plate was immersed in an electroless copper plating bath having composition 9 at a bath temperature of 70°C to form a plated film with a thickness of 4 μm. Next, the plated plate was taken out of the plating bath, washed with water, immersed in 3.6N sulfuric acid at 30°C for 3 minutes, washed with water, bath temperature 60°C, composition 9.
The plated plate is immersed in an electroless copper plating bath to determine the thickness.
A 0.7 μm plating film was formed. Further, the plated plate was removed from the plating bath, washed with water, and immersed in an electroless copper plating bath having a composition of 9 at a bath temperature of 70°C.
An electroless copper plating film of ~40 μm was formed. Peel off this plating film from the stainless steel plate,
The tensile strength, elongation rate, and number of bends were measured in the same manner as in Comparative Example 1. The results are shown in Table 2. In addition, Comparative Example 1 was applied to a glass cloth base epoxy resin copper-clad laminate in which holes were drilled in the same manner as in Comparative Example 1.
Catalyst application was carried out using the same method as described above. Using two types of electroless copper plating baths, composition 9 with a bath temperature of 70°C and composition 9 with a bath temperature of 60°C, a plate with a thickness of 35 to 40 μm was applied to the plated substrate by the same plating method as described above. A coated film was formed. A solder dip test was conducted on the plated substrate obtained by the above method, and the minimum number of times a crack would occur at the corner of the hole was measured. The results are shown in Table 3. Example 11 A catalyst was applied to a stainless steel plate whose surface had been mechanically polished using the same method as in Comparative Example 1. This was used as a covered board. The plated plate was immersed in an electroless copper plating bath having a composition of 8 at a bath temperature of 70°C to form a plated film with a thickness of 2 μm. Next, the plated plate was taken out of the plating bath, washed with water, and immersed in an electroless copper plating bath of composition 9 at a bath temperature of 60°C to form a plated film with a thickness of 0.5 μm. Next, the plated plate was taken out of the plating bath, washed with water, and coated with PdCl 2 at 250 ppm and 50°C.
The covered plate was immersed in the -SnCl2 -NaCl aqueous solution for 5 minutes. After washing again with water, the plated plate was immersed for 8 minutes in an aqueous solution at 30°C containing 0.3 mol/0.3 mol of each of sulfuric acid and oxalic acid. After further washing with water, the bath temperature
A series of operations of immersion in an electroless copper plating bath with a composition of 8 at 70°C is repeated, and a thickness of 35~35 mm is applied to the plated plate.
A 40 μm electroless copper plating film was formed. This plating film was peeled off from the stainless steel plate, and the tensile strength, elongation rate, and number of bends were measured in the same manner as in Comparative Example 1. The results are shown in Table 2. In addition, a catalyst was applied to a glass cloth-based epoxy resin copper-clad laminate in which holes were drilled in the same manner as in Comparative Example 1 using the same method as in Comparative Example 1.
Bath temperature 70℃, composition 8 and bath temperature 60℃, composition 9-2
A plating film having a thickness of 35 to 40 μm was formed on the plated substrate by the same plating method as described above using a different type of electroless copper plating bath. A solder dip test was conducted on the plated substrate obtained by the above method, and the minimum number of times a crack would occur at the corner of the hole was measured. The results are shown in Table 3. As is clear from Tables 2 and 3, the electroless copper plating film obtained by the present invention has a tensile strength of 36 to 48 Kg/mm 2 , an elongation rate of 3.4 to 5.6%, and a bending frequency of 3 to 4. It has mechanical properties, tensile strength of electrolytic copper plating film is 30 to 50 Kg/mm 2 and elongation rate is 3 to 8.
% and the number of times of bending is 4, it can be seen that the values are almost the same. Therefore, according to the method of the present invention, it is possible to obtain an electroless copper plating film having mechanical properties equivalent to those of an electrolytic copper plating film.

Claims (1)

【特許請求の範囲】 1 プリント配線板を製造する際に施される無電
解銅めつき方法において、下記(a)〜(e)の工程;す
なわち (a) 被めつき用基板を、数種の溶質を含む浴温が
50℃以上の1番目の無電解銅めつき浴に浸漬す
ることにより、基板上に第1種無電解めつき膜
を形成する工程、 (b) 前記1番目のめつき浴から第1種無電解めつ
き膜を形成した前記基板を引き上げ、常温下で
水洗する工程、 (c) 上記(b)工程を経て得られた基板を、前記1番
目のめつき浴中に含まれるものと同種の溶質を
含みかつ50℃以上の浴温であるが、溶質の濃度
および/または浴温については前記1番目のめ
つき浴とは異ならしめた2番目の無電解銅めつ
き浴中に浸漬することにより、前記第1種無電
解めつき膜とは異なる第2種無電解めつき膜を
異なる析出速度で析出させてめつきする工程、 (d) 上記(c)工程を経ためつき基板を、前記2番目
の無電解めつき浴から引き上げ、常温下で水洗
する工程、 (e) さらに、上記(d)工程を経ためつき基板に対
し、上記(a)と(b)の工程だけを1回繰返すか、ま
たは上記(a)〜(d)の各工程のうちの(a)と(b)の工程
を2回以上そして(c)と(d)の工程については1回
以上繰返すことにより、 基板上に、隣接する層が異なる析出速度で形成
された3層以上のものであつて、仕上り全厚に対
する各層の厚さがそれぞれ1/100〜1/2の層状無電
解銅めつき膜を形成させることを特徴とするプリ
ント配線板の無電解銅めつき方法。 2 前記1番目のめつき浴中の各々の溶質の濃度
は前記2番目のめつき浴のそれと同一であるが、
1番目のめつき浴の温度は2番目のそれと異なる
ことを特徴とする特許請求の範囲第1項記載の方
法。 3 前記1番目のめつき浴中の各々の溶質の濃度
は前記2番目のめつき浴のそれと異なるが、1番
目のめつき浴の温度は2番目のそれと同一である
ことを特徴とする特許請求の範囲第1項記載の方
法。 4 前記1番目のめつき浴中の各々の溶質の濃度
は前記2番目のめつき浴のそれと異なり、また1
番目のめつき浴の温度も2番目のそれと異なるこ
とを特徴とする特許請求の範囲第1項記載の方
法。 5 2種の前記めつき浴中の各々の溶質の濃度、
2種の前記めつき浴の温度および2種の前記めつ
き浴中への浸漬時間を制御することにより、前記
1番目のめつき浴中に浸漬される際、毎回基板上
に析出させる銅めつきの厚さを銅めつき最終仕上
がり厚さの1/30〜1/2の範囲内とし、前記2番目
のめつき浴に浸漬される際、毎回基板上に析出さ
せる銅めつきの厚さを銅めつき最終仕上がり厚さ
の1/100〜1/30の範囲内とすることを特徴とする
特許請求の範囲第1項記載の方法。 6 前記2種類の無電解銅めつき浴には、溶質と
して、銅塩、還元剤、PH調整剤および錯化剤を含
むことを特徴とする特許請求の範囲第1項記載の
方法。 7 前記銅塩は、硫酸銅、塩化第二銅、酢酸銅、
硝酸銅の中から選ばれるいずれか少なくとも1種
であることを特徴とする特許請求の範囲第1また
は6項のいずれかに記載の方法。 8 前記2種のめつき浴中の銅塩の濃度は、各々
0.01mol/〜0.15mol/の範囲内であること
を特徴とする特許請求の範囲第1、6、7項のい
ずれか1つに記載の方法。 9 前記還元剤は、ヒドラジン、ホルマリン、ホ
ウ水素化合物、次亜リン酸ナトリウムの中から選
ばれるいずれか少なくとも1種であることを特徴
とする特許請求の範囲第第1または6項のいずれ
かに記載の方法。 10 前記2種のめつき浴中の還元剤の濃度は、
各々0.1mol/〜1mol/の範囲内であること
を特徴とする特許請求の範囲第1、6、9項のい
ずれか1つに記載の方法。 11 前記PH調整剤は、水酸化ナトリウム、水酸
化カルシウム、炭酸ナトリウム、アンモニア水の
中から選ばれるいずれか少なくとも1種であるこ
とを特徴とする特許請求の範囲第1または6項の
いずれかに記載の方法。 12 前記2種のめつき浴中のPH調整剤の濃度
は、各々0.1mol/〜1mol/の範囲内である
ことを特徴とする特許請求の範囲第1、6、11
項のいずれか1つに記載の方法。 13 前記錯化剤は、酒石酸ナトリウムカリウ
ム、エチレンジアミン四酢酸ナトリウム塩の中か
ら選ばれるいずれか少なくとも1種であることを
特徴とする特許請求の範囲第1または6項のいず
れかに記載の方法。 14 前記2種のめつき浴中の錯化剤のモル濃度
は、前記2種のめつき浴中の銅イオンのモル濃度
の1〜3倍の範囲内であることを特徴とする特許
請求の範囲第1、6、13項のいずれか1つに記
載の方法。 15 前記2種のめつき浴の温度は、各々30℃〜
80℃の範囲内であることを特徴とする特許請求の
範囲第1〜14項のいずれか1つに記載の方法。 16 前記1番目のめつき浴から引き上げられた
基板を次の前記2番目のめつき浴に浸漬するまで
の時間は45分間以内とすることを特徴とする特許
請求の範囲第1〜14項のいずれか1つに記載の
方法。 17 プリント配線板の無電解銅めつき方法にお
いて、下記(a)〜(f)の工程;すなわち (a) 被めつき用基板を数種の溶質を含む浴温が50
℃以上の1番目の無電解銅めつき浴に浸漬する
ことにより、基板上に第1種無電解めつき膜を
形成する工程、 (b) 前記1番目のめつき浴から第1種無電解めつ
き膜を形成した前記基板を引き上げ、常温下で
水洗する工程、 (c) 上記(b)工程で得られた基板に活性化処理を施
す工程、 (d) 上記(c)工程で得られた基板を、前記1番目の
めつき浴中に含まれるものと同種の溶質を含み
かつ50℃以上の浴温であるが、溶質の濃度およ
び/または浴温を前記1番目のめつき浴とは異
ならしめた2番目の無電解銅めつき浴中に浸漬
することにより、前記第1種無電解めつき膜と
は異なる第2種無電解めつき膜を異なる析出速
度で析出させてめつきする工程、 (e) 上記(d)工程を経ためつき基板を、前記2番目
のめつき浴から引き上げ、常温で水洗する工
程、 (f) さらに、上記(d)工程を経ためつき基板に対
し、上記(a)と(b)の工程だけを1回繰返すか、ま
たは上記(a)〜(e)の各工程のうちの(a)と(b)の工程
については2回以上そして(c)と(d)と(e)の工程に
ついては1回以上繰返すことにより、 基板上に、隣接する各層が異なる析出速度で形
成された3層以上のものであつて、仕上り全厚に
対する各層の厚さがそれぞれ1/100〜1/2の層状の
無電解銅めつき膜を形成させることを特徴とする
プリント配線板の無電解銅めつき方法。 18 前記活性化処理方法は下記の(a)〜(d)各工程
を1回以上行うことを特徴とする特許請求の範囲
第17項記載の方法: (a) 前記いずれか1種もしくは2種のめつき浴か
ら引き上げられた基板を水で洗浄する工程、 (b) 洗浄された基板を1種もしくは2種以上の無
機酸からなる溶液に浸漬する工程、 (c) 浸漬された基板を溶液から引き上げる工程、 および (d) 引き上げられた基板を水で洗浄する工程。 19 前記活性化処理方法は下記の(a)〜(b)各工程
を1回以上行うことを特徴とする特許請求の範囲
第17項記載の方法: (a) 前記いずれか1種もしくは両方のめつき浴か
ら引き上げられた基板を水で洗浄する工程、お
よび (b) 洗浄された基盤に触媒を付与する工程。 20 前記活性化処理方法は、下記の(a)〜(e)各工
程を1回以上行うことを特徴とする特許請求の範
囲第17項記載の方法: (a) 前記いずれか1種もしくは2種のめつき浴か
ら引き上げられた基板を水で洗浄する工程、 (b) 洗浄された基板を1種もしくは2種以上の無
機酸からなる溶液中に浸漬する工程、 (c) 浸漬された基板を溶液中から引き上げる工
程、 (d) 引き上げられた基板を水で洗浄する工程、 および (e) 洗浄された基板に活性化処理を施す工程。 21 前記無機酸は、酸化銅を溶解することので
きる無機酸の中から選ばれるいずれか少なくとも
1種の酸であることを特徴とする特許請求の範囲
第18項記載の方法。 22 前記無機酸は、硫酸および塩酸の中から選
ばれるいずれか少なくとも1種の酸であることを
特徴とする特許請求の範囲第18項記載の方法。 23 溶液中の前記無機酸の濃度は0.5N〜10N
の範囲内であることを特徴とする特許請求の範囲
第18項記載の方法。 24 前記溶液中への基板の1回の浸漬時間は、
1分〜10分間の範囲内であることを特徴とする特
許請求の範囲第18項記載の方法。 25 前記溶液の温度は、5℃〜40℃の範囲内で
あることを特徴とする特許請求の範囲第18項記
載の方法。 26 前記触媒の付与方法は、下記(a)〜(e)の工程
からなることを特徴とする特許請求の範囲第19
項記載の方法: (a) 前記いずれか1種もしくは2種のめつき浴か
ら引き上げられた基板を水で洗浄する工程、 (b) 触媒機能を有する金属イオンを含む水溶液に
基板を浸漬する工程、 (c) 浸漬された基板を溶液から引き上げる工程、 (d) 金属イオンを金属に還元することのできる還
元液に引き上げられた基板を浸漬する工程、お
よび (e) 基板を還元液から引き上げる工程。 27 触媒機能を有する金属イオンを含む前記水
溶液は、PdCl2−SnCl2−HClコロイド水溶液、
PbCl2−SnCl2−NaClコロイド水溶液、パラジウ
ム有機錯塩化合物の水溶液、銅イオンを含む中性
水溶液の中から選ばれるいずれか1種であること
を特徴とする特許請求の範囲第26項記載の方
法。 28 前記水溶液中の触媒機能を有する金属イオ
ンの濃度は20ppm〜2500ppmの範囲内であること
を特徴とする特許請求の範囲第27項記載の方
法。 29 前記水溶液の温度は20℃〜60℃の範囲内で
あることを特徴とする特許請求の範囲第26〜2
8項のいずれか1つに記載の方法。 30 金属イオン含む前記水溶液中への基板の1
回の浸漬時間は、1分〜10分間の範囲内であるこ
とを特徴とする特許請求の範囲第26〜29項の
いずれかに記載の方法。 31 前記還元液は、硫酸、シユウ酸、水酸化ナ
トリウム、炭酸ナトリウム、ほう水素化合物の中
から選ばれるいずれか少なくとも1種を含む水溶
液であることを特徴とする特許請求の範囲第26
項記載の方法。 32 前記還元液中の溶質の濃度は、0.01mol/
〜1mol/の範囲内であることを特徴とする
特許請求の範囲第26または31項のいずれかに
記載の方法。 33 前記還元液の温度は、10℃〜50℃の範囲内
であることを特徴とする特許請求の範囲第26ま
たは31項のいずれかに記載の方法。 34 前記還元液への基板の浸漬時間は、2分〜
10分間の範囲内であることを特徴とする特許請求
の範囲第26または31項のいずれかに記載の方
法。 35 プリント配線板の無電解銅めつき方法にお
いて、下記(a)〜(g)の工程;すなわち (a) 被めつき用基板を、数種の溶質を含む浴温が
50℃以上の1番目の無電解銅めつき浴に浸漬す
ることにより、基板上に第1種無電解めつき膜
を形成する工程、 (b) 前記1番目のめつき浴から第1種無電解めつ
き膜を形成した前記基板を引き上げ、常温下で
水洗する工程、 (c) 上記(b)工程で得られた基板に活性化処理を施
す工程、 (d) 上記(c)工程で得られた基板を、前記1番目の
めつき浴中に含まれるものと同種の溶質を含み
かつ50℃以上の浴温であるが、溶質の濃度およ
び/または浴温を前記1番目のめつき浴とは異
ならしめた2番目の無電解銅めつき浴中に浸漬
することにより、前記第1種無電解めつき膜と
は異なる第2種無電解めつき膜を異なる析出速
度で析出させてめつきする工程、 (e) 上記(d)工程を経ためつき基板を、前記2番目
のめつき浴から引き上げ、水洗する工程、 (f) 前記(e)工程を経て引き上げられた基板に活性
化処理を施す工程、 (g) さらに、上記(f)工程を経ためつき基板に対
し、上記(a)と(b)の工程だけを1回繰返すか、ま
たは上記(a)〜(f)の各工程のうちの(f)と(a)と(b)の
工程については2回以上そして(c)と(d)と(e)の工
程については1回以上繰返すことにより、 基板上に、隣接する各層が異なる析出速度で形成
された3層以上のものであつて、仕上り全厚に対
する各層の厚さがそれぞれ1/100〜1/2の層状の無
電解銅めつき膜を形成させることを特徴とするプ
リント配線板の無電解銅めつき方法。 36 前記活性化処理方法は、下記の(a)〜(d)の工
程の少なくとも1回の繰返しからなることを特徴
とする特許請求の範囲第35項記載の方法: (a) 前記いずれか1種もしくは2種のめつき浴か
ら引き上げられた基板を水で洗浄する工程、 (b) 洗浄された基板を1種もしくは2種以上の無
機酸からなる溶液に浸漬する工程、 (c) 浸漬された基板を溶液から引き上げる工程、 および (d) 引き上げられた基板を水で洗浄する工程。 37 前記活性化処理方法は、下記の(a)〜(b)各工
程を1回以上行うことを特徴とする特許請求の範
囲第35項記載の方法: (a) 前記いずれか1種もしくは両方のめつき浴か
ら引き上げられた基板を水で洗浄する工程、お
よび (b) 洗浄された基板に触媒を付与する工程。 38 前記活性化処理方法は、下記の(a)〜(e)各工
程を1回以上行うことを特徴とする特許請求の範
囲第35項記載の方法: (a) 前記いずれか1種もしくは2種のめつき浴か
ら引き上げられた基板を水で洗浄する工程、 (b) 洗浄された基板を1種もしくは2種以上の無
機酸からなる溶液中に浸漬する工程、 (c) 浸漬された基板を溶液中から引き上げる工
程、 (d) 引き上げらた基板を水で洗浄する工程、 および (e) 洗浄された基板に活性化処理を施す工程。 39 前記無機酸は、酸化銅を溶解することので
きる無機酸の中から選ばれるいずれか少なくとも
1種の酸であることを特徴とする特許請求の範囲
第36項記載の方法。 40 前記無機酸は、硫酸および塩酸の中から選
ばれるいずれか少なくとも1種の酸であることを
特徴とする特許請求の範囲第36項記載の方法。 41 溶液中の前記無機酸の濃度は、0.5N〜
10Nの範囲内であることを特徴とする特許請求の
範囲第36項記載の方法。 42 前記溶液中への基板の1回の浸漬時間は、
1分〜10分間の範囲内であることを特徴とする特
許請求の範囲第36項記載の方法。 43 前記溶液の温度は、5℃〜40℃の範囲内で
あることを特徴とする特許請求の範囲第36項記
載の方法。 44 前記触媒の付与方法は、下記(a)〜(e)の工程
からなることを特徴とする特許請求の範囲第37
項記載の方法: (a) 前記いずれか1種もしくは2種のめつき浴か
ら引き上げられた基板を水で洗浄する工程、 (b) 触媒機能を有する金属イオンを含む水溶液に
基板を浸漬する工程、 (c) 浸漬された基板を溶液から引き上げる工程、 (d) 金属イオンを金属に還元することのできる還
元液に引き上げられた基板を浸漬する工程、お
よび (e) 基板を還元液から引き上げる工程。 45 触媒機能を有する金属イオンを含む前記水
溶液は、PdCl2−SnCl2−HClコロイド水溶液、
PbCl2−SnCl2−NaClコロイド水溶液、パラジウ
ム有機錯塩化合物の水溶液、銅イオンを含む中性
水溶液の中から選ばれるいずれか1種であること
を特徴とする特許請求の範囲第44項記載の方
法。 46 前記水溶液中の触媒機能を有する金属イオ
ンの濃度は20ppm〜2500ppmの範囲内であること
を特徴とする特許請求の範囲第45項記載の方
法。 47 前記水溶液の温度は、20℃〜60℃の範囲内
であることを特徴とする特許請求の範囲第44〜
46項のいずれかに記載の方法。 48 金属イオンを含む前記水溶液中への基板の
1回の浸漬時間は、1分〜10分間の範囲内である
ことを特徴とする特許請求の範囲第44〜47項
のいずれかに記載の方法。 49 前記還元液は、硫酸、シユウ酸、水酸化ナ
トリウム、炭酸ナトリウム、ほう水素化合物の中
から選ばれるいずれか少なくとも1種を含む水溶
液であることを特徴とする特許請求の範囲第44
項記載の方法。 50 前記還元液中の溶質の濃度は、0.01mol/
〜1mol/の範囲内であることを特徴とする
特許請求の範囲第44または49項のいずれかに
記載の方法。 51 前記還元液の温度は、10℃〜50℃の範囲内
であることを特徴とする特許請求の範囲第44ま
たは49項記載の方法。 52 前記還元液への基板の浸漬時間は、2分〜
10分間の範囲内であることを特徴とする特許請求
の範囲第44または49項のいずれかに記載の方
法。
[Claims] 1. In an electroless copper plating method performed when manufacturing a printed wiring board, the following steps (a) to (e); namely, (a) several types of plating substrates are used. The bath temperature containing solute is
forming a first type electroless plating film on the substrate by immersing it in a first electroless copper plating bath at 50°C or higher; (b) forming a first type electroless copper plating film on the substrate from the first electroless copper plating bath; a step of pulling up the substrate on which the electrolytically plated film has been formed and washing it with water at room temperature; Immersion in a second electroless copper plating bath that contains a solute and has a bath temperature of 50°C or higher, but that is different from the first plating bath in terms of solute concentration and/or bath temperature. a step of depositing and plating a second type electroless plated film different from the first type electroless plated film at a different deposition rate; (d) a plated substrate that has undergone the above step (c); (e) Further, the plating substrate that has undergone the above step (d) is subjected to only the above steps (a) and (b) once. or by repeating steps (a) and (b) of the steps (a) to (d) above two or more times and steps (c) and (d) one or more times. , A layered electroless copper plating film having three or more layers on a substrate, in which adjacent layers are formed at different deposition rates, and each layer has a thickness of 1/100 to 1/2 of the total finished thickness. A method for electroless copper plating of a printed wiring board, characterized by forming. 2. The concentration of each solute in the first plating bath is the same as that in the second plating bath,
A method according to claim 1, characterized in that the temperature of the first plating bath is different from that of the second. 3. A patent characterized in that the concentration of each solute in the first plating bath is different from that in the second plating bath, but the temperature of the first plating bath is the same as that of the second plating bath. The method according to claim 1. 4. The concentration of each solute in the first plating bath is different from that in the second plating bath, and
2. The method according to claim 1, wherein the temperature of the second plating bath is also different from that of the second plating bath. 5. The concentration of each solute in the two types of plating baths,
By controlling the temperature of the two types of plating baths and the immersion time in the two types of plating baths, the copper plate deposited on the substrate each time it is immersed in the first plating bath can be controlled. The thickness of the copper plating should be within the range of 1/30 to 1/2 of the final finished copper plating thickness, and the thickness of the copper plating to be deposited on the substrate each time when immersed in the second plating bath should be 2. The method according to claim 1, wherein the plating thickness is within the range of 1/100 to 1/30 of the final finished plating thickness. 6. The method according to claim 1, wherein the two types of electroless copper plating baths contain a copper salt, a reducing agent, a PH adjuster, and a complexing agent as solutes. 7 The copper salts include copper sulfate, cupric chloride, copper acetate,
7. The method according to claim 1, wherein at least one selected from copper nitrate is used. 8 The concentration of copper salt in the two types of plating baths is
The method according to any one of claims 1, 6 and 7, characterized in that the amount is in the range of 0.01 mol/~0.15 mol/. 9. According to claim 1 or 6, the reducing agent is at least one selected from hydrazine, formalin, a borohydride compound, and sodium hypophosphite. Method described. 10 The concentration of the reducing agent in the two types of plating baths is
10. The method according to any one of claims 1, 6, and 9, each in a range of 0.1 mol/ to 1 mol/. 11. According to claim 1 or 6, the PH adjuster is at least one selected from sodium hydroxide, calcium hydroxide, sodium carbonate, and aqueous ammonia. Method described. 12. Claims 1, 6, and 11, characterized in that the concentrations of the PH regulators in the two types of plating baths are each in the range of 0.1 mol/ to 1 mol/.
The method described in any one of paragraphs. 13. The method according to claim 1 or 6, wherein the complexing agent is at least one selected from sodium potassium tartrate and sodium ethylenediaminetetraacetic acid. 14 The molar concentration of the complexing agent in the two types of plating baths is within a range of 1 to 3 times the molar concentration of copper ions in the two types of plating baths. A method according to any one of Ranges 1, 6, and 13. 15 The temperature of the two types of plating baths is 30℃~
15. A method according to any one of claims 1 to 14, characterized in that the temperature is within the range of 80<0>C. 16. Claims 1 to 14, characterized in that the time until the substrate lifted from the first plating bath is immersed in the second plating bath is within 45 minutes. Any one of the methods. 17 In the method for electroless copper plating of printed wiring boards, the following steps (a) to (f) are carried out; namely, (a) the plating substrate is heated to a temperature of 50°C in a bath containing several kinds of solutes.
a step of forming a first type electroless copper plating film on the substrate by immersing it in a first electroless copper plating bath at a temperature of at least ℃; a step of pulling up the substrate on which the plating film has been formed and washing it with water at room temperature; (c) a step of subjecting the substrate obtained in step (b) above to activation treatment; The plated substrate contains the same kind of solute as that contained in the first plating bath and has a bath temperature of 50°C or higher, but the concentration of the solute and/or the bath temperature is different from that of the first plating bath. A second type electroless plating film different from the first type electroless plating film is deposited at a different deposition rate by immersion in a second electroless copper plating bath having a different temperature. (e) removing the plating substrate that has gone through the step (d) above from the second plating bath and washing it with water at room temperature; (f) further adding On the other hand, repeat only the steps (a) and (b) above once, or repeat steps (a) and (b) of the steps (a) to (e) above two or more times, and ( By repeating steps c), (d), and (e) one or more times, three or more layers are formed on the substrate with each adjacent layer formed at a different deposition rate, and each layer has a thickness relative to the total finished thickness. A method for electroless copper plating of a printed wiring board, characterized by forming a layered electroless copper plating film each having a thickness of 1/100 to 1/2. 18. The method according to claim 17, characterized in that the activation treatment method includes performing each of the following steps (a) to (d) one or more times: (a) any one or two of the above steps; (b) immersing the cleaned substrate in a solution consisting of one or more inorganic acids; (c) immersing the immersed substrate in a solution. and (d) cleaning the lifted substrate with water. 19. The method according to claim 17, characterized in that the activation treatment method includes performing each of the following steps (a) to (b) one or more times: (a) any one or both of the above steps; a step of cleaning the substrate taken out of the plating bath with water; and (b) a step of applying a catalyst to the cleaned substrate. 20. The method according to claim 17, characterized in that the activation treatment method includes performing each of the following steps (a) to (e) one or more times: (a) any one or two of the above steps; (b) immersing the cleaned substrate in a solution of one or more inorganic acids; (c) immersed substrate; (d) cleaning the lifted substrate with water; and (e) subjecting the cleaned substrate to activation treatment. 21. The method according to claim 18, wherein the inorganic acid is at least one acid selected from inorganic acids that can dissolve copper oxide. 22. The method according to claim 18, wherein the inorganic acid is at least one acid selected from sulfuric acid and hydrochloric acid. 23 The concentration of the inorganic acid in the solution is 0.5N to 10N
19. A method according to claim 18, characterized in that it is within the scope of. 24 The time for one immersion of the substrate into the solution is:
19. The method according to claim 18, wherein the duration is within the range of 1 minute to 10 minutes. 25. The method of claim 18, wherein the temperature of the solution is within the range of 5°C to 40°C. 26 Claim 19, characterized in that the method for applying the catalyst comprises the following steps (a) to (e):
The method described in Section 1: (a) a step of washing the substrate taken up from any one or two of the above plating baths with water, (b) a step of immersing the substrate in an aqueous solution containing metal ions having a catalytic function. (c) lifting the immersed substrate from the solution; (d) immersing the immersed substrate in a reducing solution capable of reducing metal ions to metal; and (e) lifting the substrate from the reducing solution. . 27 The aqueous solution containing metal ions having a catalytic function is a PdCl 2 -SnCl 2 -HCl colloidal aqueous solution,
The method according to claim 26, characterized in that the method is any one selected from a colloidal aqueous solution of PbCl 2 -SnCl 2 -NaCl, an aqueous solution of a palladium organic complex salt compound, and a neutral aqueous solution containing copper ions. . 28. The method according to claim 27, wherein the concentration of metal ions having a catalytic function in the aqueous solution is within a range of 20 ppm to 2500 ppm. 29 Claims 26 to 2, characterized in that the temperature of the aqueous solution is within the range of 20°C to 60°C.
The method according to any one of Clause 8. 30 1 of the substrate into the aqueous solution containing metal ions
30. A method according to any one of claims 26 to 29, characterized in that the immersion time for each cycle is in the range of 1 minute to 10 minutes. 31. Claim 26, wherein the reducing liquid is an aqueous solution containing at least one selected from sulfuric acid, oxalic acid, sodium hydroxide, sodium carbonate, and borohydride compounds.
The method described in section. 32 The concentration of solute in the reducing solution is 0.01 mol/
32. The method according to claim 26 or 31, characterized in that the amount is within the range of ~1 mol/. 33. The method according to claim 26 or 31, wherein the temperature of the reducing solution is within a range of 10°C to 50°C. 34 The immersion time of the substrate in the reducing solution is 2 minutes to
32. A method according to claim 26 or 31, characterized in that the duration is within 10 minutes. 35 In the method for electroless copper plating of printed wiring boards, the following steps (a) to (g) are performed; namely, (a) the substrate to be plated is heated to a bath temperature containing several kinds of solutes.
forming a first type electroless plating film on the substrate by immersing it in a first electroless copper plating bath at 50°C or higher; (b) forming a first type electroless copper plating film on the substrate from the first electroless copper plating bath; (c) a step of subjecting the substrate obtained in step (b) above to activation treatment; (d) The plated substrate contains the same kind of solute as that contained in the first plating bath and has a bath temperature of 50°C or higher, but the solute concentration and/or bath temperature is lower than that of the first plating bath. A second type electroless plating film different from the first type electroless plating film is deposited at a different deposition rate by immersion in a second electroless copper plating bath different from the first type electroless plating film. (e) removing the plating substrate that has passed through step (d) above from the second plating bath and washing it with water; (f) activating the substrate that has been pulled up through step (e) above; (g) Further, the steps (a) and (b) above are repeated once for the matted substrate that has undergone the step (f) above, or the steps (a) to (f) above are repeated once. By repeating steps (f), (a), and (b) of each step two or more times, and steps (c), (d), and (e) one or more times, on the substrate, To form a layered electroless copper plating film having three or more layers in which adjacent layers are formed at different deposition rates, and each layer has a thickness of 1/100 to 1/2 of the total finished thickness. A method for electroless copper plating of printed wiring boards, characterized by: 36. The method according to claim 35, characterized in that the activation treatment method consists of repeating the following steps (a) to (d) at least once: (a) Any one of the above. (b) immersing the cleaned substrate in a solution containing one or more inorganic acids; (c) immersing the substrate in a solution containing one or more inorganic acids; and (d) cleaning the lifted substrate with water. 37. The method according to claim 35, characterized in that the activation treatment method includes performing each of the following steps (a) to (b) one or more times: (a) any one or both of the above steps; A step of washing the substrate taken out of the plating bath with water, and (b) a step of applying a catalyst to the cleaned substrate. 38 The method according to claim 35, characterized in that the activation treatment method includes performing each of the following steps (a) to (e) one or more times: (a) any one or two of the above steps; (b) immersing the cleaned substrate in a solution of one or more inorganic acids; (c) immersed substrate; (d) cleaning the lifted substrate with water; and (e) subjecting the cleaned substrate to activation treatment. 39. The method according to claim 36, wherein the inorganic acid is at least one acid selected from inorganic acids that can dissolve copper oxide. 40. The method according to claim 36, wherein the inorganic acid is at least one acid selected from sulfuric acid and hydrochloric acid. 41 The concentration of the inorganic acid in the solution is 0.5N ~
37. A method according to claim 36, characterized in that it is within the range of 10N. 42 The time for one immersion of the substrate into the solution is:
37. A method according to claim 36, characterized in that the duration is within the range of 1 minute to 10 minutes. 43. The method of claim 36, wherein the temperature of the solution is within the range of 5°C to 40°C. 44 Claim 37, characterized in that the method for applying the catalyst comprises the following steps (a) to (e):
The method described in Section 1: (a) a step of washing the substrate taken up from any one or two of the above plating baths with water, (b) a step of immersing the substrate in an aqueous solution containing metal ions having a catalytic function. (c) lifting the immersed substrate from the solution; (d) immersing the immersed substrate in a reducing solution capable of reducing metal ions to metal; and (e) lifting the substrate from the reducing solution. . 45 The aqueous solution containing metal ions having a catalytic function is a PdCl 2 -SnCl 2 -HCl colloidal aqueous solution,
The method according to claim 44, wherein the method is any one selected from a PbCl 2 -SnCl 2 -NaCl colloidal aqueous solution, an aqueous solution of a palladium organic complex salt compound, and a neutral aqueous solution containing copper ions. . 46. The method according to claim 45, wherein the concentration of metal ions having a catalytic function in the aqueous solution is within a range of 20 ppm to 2500 ppm. 47 Claims 44 to 47, characterized in that the temperature of the aqueous solution is within a range of 20°C to 60°C.
46. The method according to any of paragraphs 46. 48. The method according to any one of claims 44 to 47, wherein the time for one immersion of the substrate in the aqueous solution containing metal ions is within a range of 1 minute to 10 minutes. . 49. Claim 44, wherein the reducing liquid is an aqueous solution containing at least one selected from sulfuric acid, oxalic acid, sodium hydroxide, sodium carbonate, and borohydride compounds.
The method described in section. 50 The concentration of solute in the reducing solution is 0.01 mol/
50. The method according to claim 44 or 49, characterized in that the amount is within the range of ~1 mol/. 51. The method according to claim 44 or 49, wherein the temperature of the reducing solution is within a range of 10°C to 50°C. 52 The immersion time of the substrate in the reducing solution is 2 minutes to
50. A method according to claim 44 or 49, characterized in that the duration is within 10 minutes.
JP22675882A 1982-12-27 1982-12-27 Method of electrolessly plating copper for printed circuit board Granted JPS59119786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22675882A JPS59119786A (en) 1982-12-27 1982-12-27 Method of electrolessly plating copper for printed circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22675882A JPS59119786A (en) 1982-12-27 1982-12-27 Method of electrolessly plating copper for printed circuit board

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP1100289A Division JPH02191393A (en) 1989-01-21 1989-01-21 Electroless copper plating of printed wiring board

Publications (2)

Publication Number Publication Date
JPS59119786A JPS59119786A (en) 1984-07-11
JPH0376599B2 true JPH0376599B2 (en) 1991-12-05

Family

ID=16850148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22675882A Granted JPS59119786A (en) 1982-12-27 1982-12-27 Method of electrolessly plating copper for printed circuit board

Country Status (1)

Country Link
JP (1) JPS59119786A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9951433B2 (en) 2014-01-27 2018-04-24 Okuno Chemical Industries Co., Ltd. Conductive film-forming bath
US10036097B2 (en) 2012-12-21 2018-07-31 Okuno Chemical Industries Co., Ltd. Conductive coating film forming bath

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6063987A (en) * 1983-09-17 1985-04-12 沖電気工業株式会社 Method of producing printed circuit board
JPS61199692A (en) * 1985-02-28 1986-09-04 日立コンデンサ株式会社 Manufacture of full aditive wiring board
JPS6457799A (en) * 1987-08-28 1989-03-06 Nippon Sanmo Deying Ferrite with conductive metal film and manufacture thereof
JPH01238094A (en) * 1988-03-18 1989-09-22 Elna Co Ltd Plating of printed board
JPH02191393A (en) * 1989-01-21 1990-07-27 Ibiden Co Ltd Electroless copper plating of printed wiring board
JP3392873B2 (en) * 1994-12-27 2003-03-31 イビデン株式会社 Pretreatment solution for electroless plating, electroless plating bath and electroless plating method
AU3275699A (en) 1998-03-13 1999-09-27 Nikon Corporation Method of manufacturing linear motor, linear motor, stage provided with the linear motor, and exposure system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55117299A (en) * 1979-03-05 1980-09-09 Hitachi Ltd Method of fabricating printed circuit board by noovoltage copper plating
JPS56163256A (en) * 1980-05-21 1981-12-15 Hitachi Ltd Plating method for printed wiring substrate having iron core
JPS57192099A (en) * 1981-05-22 1982-11-26 Hitachi Ltd Method of producing printed board
JPS58128790A (en) * 1982-01-27 1983-08-01 株式会社日立製作所 Method of producing printed board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55117299A (en) * 1979-03-05 1980-09-09 Hitachi Ltd Method of fabricating printed circuit board by noovoltage copper plating
JPS56163256A (en) * 1980-05-21 1981-12-15 Hitachi Ltd Plating method for printed wiring substrate having iron core
JPS57192099A (en) * 1981-05-22 1982-11-26 Hitachi Ltd Method of producing printed board
JPS58128790A (en) * 1982-01-27 1983-08-01 株式会社日立製作所 Method of producing printed board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10036097B2 (en) 2012-12-21 2018-07-31 Okuno Chemical Industries Co., Ltd. Conductive coating film forming bath
US9951433B2 (en) 2014-01-27 2018-04-24 Okuno Chemical Industries Co., Ltd. Conductive film-forming bath

Also Published As

Publication number Publication date
JPS59119786A (en) 1984-07-11

Similar Documents

Publication Publication Date Title
JP3009326B2 (en) Method for applying metallization to non-conductive substrates
CA1229266A (en) Process for preparing a substrate for subsequent electroless deposition of a metal
US5648125A (en) Electroless plating process for the manufacture of printed circuit boards
EP0176736B1 (en) Process for selective metallization
WO2011149019A1 (en) Method for manufacturing base material having gold-plated metal fine pattern, base material having gold-plated metal fine pattern, printed wiring board, interposer, and semiconductor device
EP0170414B1 (en) Process for treating metal surface
US4358479A (en) Treatment of copper and use thereof
US3959523A (en) Additive printed circuit boards and method of manufacture
EP0328263B1 (en) Catalyst for electroless plating
US4666739A (en) Process for the production of metal patterns on insulating substrates as well as insulating substrates with metal patterns, especially printed circuits
US4160050A (en) Catalyzation processes for electroless metal deposition
US5474798A (en) Method for the manufacture of printed circuit boards
JPH0376599B2 (en)
US5770032A (en) Metallizing process
EP1807549B1 (en) Method for coating substrates containing antimony compounds with tin and tin alloys
US4693907A (en) Process or non-electrolytic copper plating for printed circuit board
US4222778A (en) Liquid seeders for electroless metal deposition
EP0139233B1 (en) Method for conditioning a surface of a dielectric substrate for electroless plating
JP2648729B2 (en) Electroless copper plating solution and electroless copper plating method
US5108786A (en) Method of making printed circuit boards
JPH0455550B2 (en)
JPH0714107B2 (en) Method for manufacturing metal pattern on insulating substrate
JPH04231473A (en) Preliminary treatment composition and method for tin-lead immersion plating
WO2000050230A1 (en) Board with nickel-plated thru-holes and/or blind vias
JP3465016B2 (en) Method for improving adhesion of resin to copper surface and high adhesion electroless copper plating bath used for the method