JPS58119148A - Ion source of mass spectrograph - Google Patents

Ion source of mass spectrograph

Info

Publication number
JPS58119148A
JPS58119148A JP57002177A JP217782A JPS58119148A JP S58119148 A JPS58119148 A JP S58119148A JP 57002177 A JP57002177 A JP 57002177A JP 217782 A JP217782 A JP 217782A JP S58119148 A JPS58119148 A JP S58119148A
Authority
JP
Japan
Prior art keywords
belt
ionization
neutral particle
argon
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57002177A
Other languages
Japanese (ja)
Inventor
Fumio Kunihiro
国広 文夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK filed Critical Jeol Ltd
Priority to JP57002177A priority Critical patent/JPS58119148A/en
Publication of JPS58119148A publication Critical patent/JPS58119148A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/14Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers
    • H01J49/142Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers using a solid target which is not previously vapourised

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

PURPOSE:To cause an ion to promptly appear when reaching an ionization range without causing a time lag, by previously irradiating the second neutral particle beam to a sample before the ionization range. CONSTITUTION:A metallic rotating belt 6 is tensibly bridged on pulleys 7, 8 approximately arranged to a drawing out electrode 2 and a pulley 9 out of a vacuum, and outflowing fluid from a liquid chromatograph 10 is allowed to continuously adhere to the belt 6 in a sample attaching part 11, then a solvent is removed by a heater 12, thus the belt holding the residual sample component on its surface is transferred into an ionization chamber 1 through a difference pressure exhaust means 13. A fast neutral particle beam 19 is irradiated from a neutral particle source 18 in an ionizing part 17, and the sample component held on a surface of the belt 6 is ionized and guided to a mass spectrographing system through the electrode 2, focus electrode 3 and main slit 4. The an argon ion Ar<+> deflected by an applicable deflector 23 passes through the second collision chamber 24 introduced with argon gas and is mostly converted into an argon atom, and this argon atomic beam 25 is irradiated as the second neutral particle beam to the belt before the part 17.

Description

【発明の詳細な説明】 本発明は液体クロマトグラフで分離された試料溶液を質
量分析装置で分析する際に用いて好適なイオン源に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ion source suitable for use when a sample solution separated by a liquid chromatograph is analyzed by a mass spectrometer.

従来液体クロマトグラフで分離された試料溶液を質量分
析装置のイオン源へ導入する方式としてベルト方式が知
られている。これは液体クロマトグラフからの流出液を
ベルト上に角開保持させ、このベルトをイオン源内に導
入し、イオン化位置においてベルトを加熱して試料を蒸
発させてイオン化するものである。ところがこの様な従
来の方式では加熱により試料を蒸発させた後電子衝撃イ
オン化あるいは化学イオン化するため、不安定な試料は
蒸発の段階で熱分解してしまい又難揮発性試料は十分蒸
発せず、測定可能な試料は極めて限られたものとなって
いた。
Conventionally, a belt method is known as a method for introducing a sample solution separated by a liquid chromatograph into an ion source of a mass spectrometer. In this method, the liquid effluent from the liquid chromatograph is held open on a belt, the belt is introduced into an ion source, and the belt is heated at the ionization position to vaporize and ionize the sample. However, in this conventional method, the sample is evaporated by heating and then subjected to electron impact ionization or chemical ionization, so unstable samples are thermally decomposed during the evaporation stage, and non-volatile samples are not evaporated sufficiently. The number of samples that could be measured was extremely limited.

一方近時試料に高速の中性粒子を照射してイオン化する
イオン化方式が注目を浴びている。この方式はイオン化
のエネルギーが小さくソフトなイオン化であること、正
イオンば、かりでなく負イオンの生成率も高いこと、更
には中性粒子を使用することからチャージアップがなく
絶縁物試料でも容易にイオン化できる等多くの優れた特
徴を有している。ところが、このイオン化方式を前記ベ
ルト方式と組合わせようとすると以下の様な問題がある
。即ち、上記イオン化方式では中性粒子を照射してから
イオンが出現するまでにタイムラグがあり、−料によっ
ては5秒以上を要することもある。これに対しベルト方
式では液体クロマトグラフからの流出液をベルト上に展
開することから、ベルトを数号1程度の速度で移動させ
てイオン源内へ導入する必要があるので、タイムラグの
大きい試料ではイオン化される前に中性粒子ビームが照
射されるイオン化領域を出てしまうといった不都合が生
じる。
On the other hand, ionization methods that ionize samples by irradiating them with high-speed neutral particles have recently been attracting attention. This method has low ionization energy and soft ionization, high generation rate of negative ions as well as positive ions, and since it uses neutral particles, there is no charge-up and it is easy to use with insulating samples. It has many excellent features such as being able to be ionized. However, when this ionization method is combined with the belt method, the following problems arise. That is, in the above ionization method, there is a time lag between irradiation of neutral particles and the appearance of ions, and depending on the material, it may take 5 seconds or more. On the other hand, in the belt method, since the liquid effluent from the liquid chromatograph is spread on the belt, it is necessary to move the belt at a speed of approximately one order of magnitude before introducing it into the ion source. This causes the inconvenience that the neutral particle beam leaves the ionization region to which it is irradiated before the neutral particle beam is irradiated.

本発明はこの点に鑑みてなされたものであり、イオン化
領域の手前で試料に第2の中性粒子ビームを予め照射し
ておくことにより、イオン化領域に到達した時イオンを
タイムラグなく速やかに出現させ得るようにしたことを
特徴としている。以下図面を用いて本発明を詳説する。
The present invention has been made in view of this point, and by irradiating the sample with the second neutral particle beam before the ionization region, ions can appear quickly without any time lag when the sample reaches the ionization region. It is characterized by the fact that it is possible to do so. The present invention will be explained in detail below using the drawings.

図面は本発明の一実施例の構成を示す断面図で、1は質
量分析装置のイオン化室である。このイオン化室内には
イオン引出し電極2.フォーカス電極3.主スリット4
が置かれ、その内部は真空ポンプ5によって高真空に保
たれている。6は屈曲可能な金属製回転ベルトで無端に
され、上記引出し電極2に近接して配置されたブーIJ
 ”I 、 8及び真空外のブー99に張架されている
。プーリ9の近傍には液体クロマトグラフ10からの流
出液を上記ベルト6に連続的に付着させるための試料添
着部11及びベルトに付着し′た流出液から試料成分の
みを残し溶媒成分を蒸発させるためのヒータ12が配置
されている。該ヒータ12により溶媒が除去されて残っ
た試料成分を表面に保持したベルトは差圧排気手段13
を介してイオン化室1内へ移送される。この差圧排気手
段は隔壁14a、14B)。
The drawing is a sectional view showing the configuration of an embodiment of the present invention, and 1 is an ionization chamber of a mass spectrometer. This ionization chamber contains an ion extraction electrode 2. Focus electrode 3. Main slit 4
is placed, and its interior is maintained at a high vacuum by a vacuum pump 5. 6 is an endless bendable metal rotary belt, and is arranged close to the extraction electrode 2.
8 and a boolean 99 outside the vacuum. Near the pulley 9, there is a sample attachment part 11 for continuously adhering the effluent from the liquid chromatograph 10 to the belt 6, and a sample attachment part 11 to the belt 6. A heater 12 is arranged to evaporate the solvent component from the adhering effluent, leaving only the sample component.The heater 12 removes the solvent and the belt holding the remaining sample component on the surface is evacuated by differential pressure. Means 13
is transferred into the ionization chamber 1 via the ionization chamber 1. This differential pressure exhaust means is the partition walls 14a, 14B).

14cによって形成された部屋151.15bを有し、
各部屋は真空度に応じた適宜な真空ポンプ1iisa。
having a chamber 151.15b formed by 14c;
Each room is equipped with an appropriate vacuum pump 1IISA depending on the degree of vacuum.

18bに接続されている。そして、ベルト6は各隔壁に
設けた通路を通ってイオン化室に或いは大気中に移送さ
れるが、この部分における空気の流通は極めて少くされ
ており、従ってイオン化室の真空度を悪化させることな
くベルトの移送を行うことができる。
18b. The belt 6 is then transferred to the ionization chamber or into the atmosphere through passages provided in each partition wall, but the air circulation in this section is extremely small, so that the degree of vacuum in the ionization chamber is not deteriorated. Belt transfer can be performed.

この様くしてイオン化室1内へ移送されたベルト6には
プーリ1,8間に設定されるイオン化部17において、
後述する中性粒子源18からの高速中性粒子ビーム19
が照射され、該ビームの照射によりベルト6の表面に保
持されている試料成分はイオン化され、引出し電極2.
フォーカス電極3.主スリット4を介して質量分析系へ
導かれる。
The belt 6 transferred into the ionization chamber 1 in this way has an ionization section 17 set between the pulleys 1 and 8.
High-speed neutral particle beam 19 from a neutral particle source 18 to be described later
The sample components held on the surface of the belt 6 are ionized by the irradiation of the beam, and the sample components held on the surface of the belt 6 are ionized.
Focus electrode 3. It is guided through the main slit 4 to the mass spectrometry system.

上記中性粒子源1sは高速度が与えられた中性粒子ビー
ム例えばアルゴン原子ビームを作成するもので、アルゴ
ンガスを導入して電子衝撃によりイオン化して加速しア
ルゴンイオンビーム20を得るためのアルゴンイオン銃
21と、該アルゴンイオンビーム2eを浮遊アルゴンガ
スlζ衝突させアルゴンイオンから電荷を奪うための衝
突室22と、該衝突室22から出射したアルゴン原子ビ
ーム中に混在する電荷を奪われなかったアルゴンイオン
Arを敗出す偏向器23とから構成される。
The above-mentioned neutral particle source 1s is for creating a neutral particle beam given a high velocity, for example, an argon atomic beam. Argon gas is introduced, and argon gas is ionized and accelerated by electron impact to obtain an argon ion beam 20. An ion gun 21, a collision chamber 22 for colliding the argon ion beam 2e with floating argon gas lζ to deprive the argon ions of charge, and the charge mixed in the argon atomic beam emitted from the collision chamber 22 not being taken away. It is composed of a deflector 23 for rejecting argon ions Ar.

そして該偏向器23によって偏向を受けたアルゴンイオ
ンArはアルゴンガスが導入される第2の衝突室24を
通過して大部分がアルゴン原子に変換され、このアルゴ
ン原子ビーム25が第2の中性粒子ビームとして前記イ
オン1ヒ部1Tの手前のベルト上に照射される。
The argon ions Ar deflected by the deflector 23 pass through the second collision chamber 24 into which argon gas is introduced, and most of them are converted into argon atoms, and this argon atomic beam 25 becomes a second neutral A particle beam is irradiated onto the belt in front of the ion 1 section 1T.

尚アルゴン原子ビーム19の照射とイオンの引出しを容
易にするため、プーリ1,8間におけるベルト面が引出
し電極2に対して傾斜する(例えば45°程度)°よう
番ζ該プーリ7.8の位置が配慮されている。又26は
イオン化されずに残った試料成分を蒸発させて除去する
ためのヒータである。
In order to facilitate the irradiation of the argon atomic beam 19 and the extraction of ions, the belt surface between the pulleys 1 and 8 is inclined (for example, about 45 degrees) with respect to the extraction electrode 2. Location is taken into account. Further, 26 is a heater for evaporating and removing sample components remaining without being ionized.

上述の如き構成においてブー’)7.8.9を矢印方向
に回転させベルトを差圧排気手段13を通して一定速度
で移送しながら試料添着部11にセいて液体クロマトグ
ラフ10からの流出液をベルトに付着せしめれば、該流
出液はベルート上に液体クロマトグラムとして展開され
る。展開された流出液からはヒータ12により溶媒成分
が除かれ、残った試料成分のみがベルトに保持奄れて順
次イオン化部1γへ移送され、そこでアルゴン原子ビ−
ム19の照射を受けてイオン化されて質量分析されるが
、本発明ではイオン化部11に到達する前に試料成分は
第2のアルゴン原子ビーム25の照射により予備的なイ
オン化を受けてイオン化直前又はイオン化され始めた状
態になっている。従ってイオン化部に到達してアルゴン
原子ビーム19の照射を受けた試料成分は即座にイオン
化され、タイムラグは生じない。
In the above-described configuration, the belt is rotated in the direction of the arrow, and the belt is transferred at a constant speed through the differential pressure evacuation means 13, and the effluent from the liquid chromatograph 10 is placed on the sample attachment part 11, and the effluent from the liquid chromatograph 10 is transferred to the belt. The effluent is developed as a liquid chromatogram on Belut. The solvent component is removed from the developed effluent by the heater 12, and only the remaining sample components are held on the belt and transferred to the ionization section 1γ, where they are treated with argon atomic beams.
However, in the present invention, before reaching the ionization unit 11, the sample components undergo preliminary ionization by irradiation with the second argon atomic beam 25, and then the sample components are ionized immediately before ionization or before reaching the ionization unit 11. It has started to become ionized. Therefore, the sample components that reach the ionization section and are irradiated with the argon atomic beam 19 are immediately ionized, and no time lag occurs.

又イオン化部では高速のアルゴン原子(中性粒子)を試
料化衝突させて試料のイオン化を行っているため、従来
の様な加熱による気化過程が不要であり、試料の熱分解
をなくすことが可能である。
In addition, in the ionization section, the sample is ionized by colliding high-speed argon atoms (neutral particles) with the sample, so the vaporization process by heating, which is conventional, is not necessary, making it possible to eliminate thermal decomposition of the sample. It is.

従って不安定な試料であっても正確な測定を行うことが
できる。又同じく高速のアルゴン原子を衝突させて試料
をイオン化させているため、難揮発性物質あるいは絶縁
物であっても効率良くイオン化させることができ、測定
可能な試料の範囲も拡大されることになる。
Therefore, accurate measurements can be made even with unstable samples. Also, since the sample is ionized by colliding with high-speed argon atoms, even non-volatile substances or insulators can be efficiently ionized, expanding the range of samples that can be measured. .

尚上述した実施例では偏向器23によって分離されたア
ルゴンイオンを利用して第2のアルゴン原子ビーム25
を作成したため構成が簡単になったが、これに限らず第
2の中性粒子源を別個に設けるようにしても良いことは
言うまでもない。更に第2のアルゴン原子ビーム25の
ビーム巾を可変できるようにすれば予備的なイオン化の
程度を試料に応じて調節することができる。そのために
は偏向器23と衝突室24の間に可変レンズ手段を配置
すれば良い。
In the embodiment described above, the argon ions separated by the deflector 23 are used to generate the second argon atomic beam 25.
Although the configuration is simplified by creating a source, it goes without saying that the configuration is not limited to this, and a second neutral particle source may be provided separately. Furthermore, by making the beam width of the second argon atomic beam 25 variable, the degree of preliminary ionization can be adjusted depending on the sample. For this purpose, variable lens means may be placed between the deflector 23 and the collision chamber 24.

又上述した実施例では中性粒子としてアルゴン原子を用
いたが、それに限らず他の原子あるいは中性粒子を珀い
ることが可能である。
Furthermore, although argon atoms were used as the neutral particles in the above-described embodiments, the present invention is not limited to this, and other atoms or neutral particles may be included.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例の構成を示す断面図である。 1:イオン化室、2:イオンぢ[出し電極、5゜163
.16b:真空ポンプ、6=ベルト、7,8゜9:プー
リ、10:液体クロマトグラフ、11:試料添着部、1
3:差圧排気手段、1T:イオン化部、18:中性粒子
源、19,25:高連中性粒子ビーム、22,24:衝
突室、23:偏向器。
The drawing is a sectional view showing the configuration of an embodiment of the present invention. 1: Ionization chamber, 2: Ion extraction electrode, 5°163
.. 16b: Vacuum pump, 6=belt, 7,8°9: Pulley, 10: Liquid chromatograph, 11: Sample attachment part, 1
3: differential pressure exhaust means, 1T: ionization section, 18: neutral particle source, 19, 25: high continuous neutral particle beam, 22, 24: collision chamber, 23: deflector.

Claims (1)

【特許請求の範囲】[Claims] 真空排気されたイオン化室と、該イオン化室へ真空外か
ら連続的に移送されるベルトと、該ベルトのイオン化室
への導入部に設けられた差圧排気手段と、該ベルトに真
空外において試料溶液を付着させるための手段と、イオ
ン化室内のイオン化部において前記ベルト上に照射する
中性粒子ビームを作成するための中性粒子源と、中性粒
子照射により前記イオン化部で発生した試料イオンを引
出して加速するための電極とを備え、前記イオン化部へ
到達する前のベルト上に第2の中性粒子ビームを照射す
るよう〈構成したことを特徴とする質量分析装置のイオ
ン源。
An evacuated ionization chamber, a belt that continuously transfers the sample to the ionization chamber from outside the vacuum, a differential pressure evacuation means provided at the introduction part of the belt to the ionization chamber, and a sample that is transferred to the belt outside the vacuum. means for depositing a solution; a neutral particle source for creating a neutral particle beam to be irradiated onto the belt in an ionization section in an ionization chamber; An ion source for a mass spectrometer, comprising an electrode for extracting and accelerating the particles, and configured to irradiate a second neutral particle beam onto the belt before reaching the ionization section.
JP57002177A 1982-01-09 1982-01-09 Ion source of mass spectrograph Pending JPS58119148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57002177A JPS58119148A (en) 1982-01-09 1982-01-09 Ion source of mass spectrograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57002177A JPS58119148A (en) 1982-01-09 1982-01-09 Ion source of mass spectrograph

Publications (1)

Publication Number Publication Date
JPS58119148A true JPS58119148A (en) 1983-07-15

Family

ID=11522077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57002177A Pending JPS58119148A (en) 1982-01-09 1982-01-09 Ion source of mass spectrograph

Country Status (1)

Country Link
JP (1) JPS58119148A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61500866A (en) * 1983-12-23 1986-05-01 エス・ア−ル・アイ・インタ−ナシヨナル Surface inspection method and device
WO1993013541A1 (en) * 1986-07-04 1993-07-08 Yoshiaki Kato Mass spectroscope

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61500866A (en) * 1983-12-23 1986-05-01 エス・ア−ル・アイ・インタ−ナシヨナル Surface inspection method and device
WO1993013541A1 (en) * 1986-07-04 1993-07-08 Yoshiaki Kato Mass spectroscope

Similar Documents

Publication Publication Date Title
EP0404934A1 (en) A method of preparing samples for mass analysis by desorption from a frozen solution.
JPS6353259A (en) Method for forming thin film
JPH07120516B2 (en) Low energy electron irradiation method and irradiation device
JPS6353211B2 (en)
JPS58119148A (en) Ion source of mass spectrograph
JPH089774B2 (en) Thin film forming equipment
JPS592144B2 (en) Mass spectrometer ion source
JP3752259B2 (en) Cluster ion beam sputtering method
JPS6235255A (en) Liquid chromatograph mass spectrometer
JPS58197646A (en) Method of ionization
JPH0734926Y2 (en) Ion processing device
JPS60125368A (en) Vapor deposition device for thin film
JPS61248428A (en) Apparatus for neutral high-speed particle beam
JPS5868856A (en) Ion source
JPS5842770A (en) Device for blocking vapor flow from evaporating source
JPS61170564A (en) Method and device for reforming surface layer of work
JP3525134B2 (en) Cluster ion beam mass separation method
JPH01259162A (en) Equipment for producing thin film
JP4134312B2 (en) Molecular beam equipment
JPS5871549A (en) Ion source
JPS63176463A (en) Formation of thin film
JPH0541698B2 (en)
JPH0613018A (en) Ion implantation device
JPS60121662A (en) Mass spectrometer
JPS6329925A (en) Forming device for compound thin-film