JPH0541698B2 - - Google Patents

Info

Publication number
JPH0541698B2
JPH0541698B2 JP13750988A JP13750988A JPH0541698B2 JP H0541698 B2 JPH0541698 B2 JP H0541698B2 JP 13750988 A JP13750988 A JP 13750988A JP 13750988 A JP13750988 A JP 13750988A JP H0541698 B2 JPH0541698 B2 JP H0541698B2
Authority
JP
Japan
Prior art keywords
crucible
crucible body
evaporation source
aluminum
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13750988A
Other languages
Japanese (ja)
Other versions
JPH01306555A (en
Inventor
Kenichiro Yamanishi
Takashi Tsukasaki
Masashi Yasunaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP13750988A priority Critical patent/JPH01306555A/en
Publication of JPH01306555A publication Critical patent/JPH01306555A/en
Publication of JPH0541698B2 publication Critical patent/JPH0541698B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、例えば真空蒸着、クラスタ・イオ
ンビーム蒸着等において蒸着材料を加熱し蒸発さ
せるために用いられる蒸発源用るつぼに関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a crucible for an evaporation source used for heating and evaporating a deposition material in, for example, vacuum evaporation, cluster ion beam evaporation, or the like.

〔従来の技術〕[Conventional technology]

従来の蒸発源用るつぼが用いられているクラス
タ・イオンビーム蒸着法による薄膜形成方法とし
ては、例えば特公昭54−9592号公報に記載された
ものがある。この種の薄膜蒸着方法は真空槽内に
おいて、蒸着すべき物質の蒸気を基板に噴出し
て、この蒸気中の多数の原子が緩く結合したクラ
スタ(塊状原子集団)を生成し、クラスタに電子
のシヤワーを浴びせてクラスタをそのうちの1個
の原子がイオン化されたクラスタ・イオンにし、
さらにクラスタ・イオンを加速して基板に衝突さ
せ、これにより基板に薄膜を蒸着形成するもので
ある。
An example of a thin film forming method using a cluster ion beam evaporation method using a conventional evaporation source crucible is described in Japanese Patent Publication No. 54-9592. In this type of thin film deposition method, the vapor of the substance to be vaporized is ejected onto the substrate in a vacuum chamber, and a large number of atoms in this vapor form loosely bonded clusters (massive atomic groups), and the clusters are filled with electrons. Shower the cluster to form a cluster ion in which one atom is ionized,
The cluster ions are further accelerated to collide with the substrate, thereby depositing a thin film on the substrate.

このような薄膜形成方法を実施するための蒸発
源用るつぼとしては第3図に示すものがあつた。
また第4図は従来の蒸発源用るつぼが用いられて
いる薄膜形成装置を示す概略構成図、第5図は第
4図に示した薄膜形成装置の主要部を一部断面で
示す分解斜視図である。第3図〜第5図におい
て、1は直径1mm〜2mmのノズル1a、蓋1b及
び拡散遮蔽壁1cが設けられたるつぼ本体、2は
るつぼ本体1に充填されているアルミニウムAl
等の蒸着物質、4は所定の真空度に保持された真
空槽、5は図示しない真空排気装置に接続されて
おり、真空槽4内の排気を行なう排気通路、6は
排気通路5を開閉する真空用バルブ、7はるつぼ
本体1に熱電子を照射してるつぼ本体1を加熱す
る蒸発源加熱用フイラメント、8は蒸発源加熱フ
イラメント7からの輻射熱を遮断する熱シールド
板であり、るつぼ本体1、蒸発源加熱フイラメン
ト7及び熱シールド板8から基板18に蒸着すべ
き物質の蒸気を真空槽4内に噴出してクラスタを
生成する蒸気発生源9が構成されている。又、1
0はイオン化用の熱電子13を放出するイオン化
電子放出フイラメント、11はイオン化電子放出
フイラメント10から放出された熱電子13を加
速する電子引き出し電極である。熱シールド板8
はイオン化電子放出フイラメント10からの輻射
熱を遮断する働きもあり、イオン化電子放出フイ
ラメント10、電子引き出し電極11及び熱シー
ルド板8から蒸気発生源9からのクラスタをイオ
ン化するイオン化手段12が構成されている。1
4は電子引き出し電極11との間に電圧が印加さ
れ、イオン化されたクラスタ・イオンを加速して
これをイオン化されていない中性クラスタ15と
ともに基板18に衝突させて薄膜を蒸着させる加
速電極、17はクラスタ・イオン16と中性クラ
スタ15とからなるクラスタビームである。19
は熱シールド板8を支持する絶縁支持部材、20
はるつぼ本体1を支持するるつぼ支持部材、21
は基板ホルダ22を支持する絶縁支持部材、22
は基板18を支持する基板ホルダ、23は熱シー
ルド板8を支持する絶縁支持部材、24は加速電
極14を支持する絶縁支持部材である。
A crucible for use as an evaporation source for carrying out such a thin film forming method was shown in FIG.
Furthermore, FIG. 4 is a schematic configuration diagram showing a thin film forming apparatus using a conventional evaporation source crucible, and FIG. 5 is an exploded perspective view partially showing a main part of the thin film forming apparatus shown in FIG. 4 in cross section. It is. In FIGS. 3 to 5, 1 is a crucible body provided with a nozzle 1a having a diameter of 1 mm to 2 mm, a lid 1b, and a diffusion shielding wall 1c, and 2 is an aluminum Al filled in the crucible body 1.
4 is a vacuum chamber maintained at a predetermined degree of vacuum, 5 is connected to a vacuum evacuation device (not shown), and is an exhaust passage for evacuating the inside of the vacuum chamber 4; 6 is an opening and closing of the exhaust passage 5; A vacuum valve 7 is an evaporation source heating filament that heats the crucible body 1 by irradiating the crucible body 1 with thermoelectrons, 8 is a heat shield plate that blocks radiant heat from the evaporation source heating filament 7, and the crucible body 1 , a vapor generation source 9 is configured that ejects vapor of a substance to be evaporated onto a substrate 18 from an evaporation source heating filament 7 and a heat shield plate 8 into a vacuum chamber 4 to generate clusters. Also, 1
0 is an ionized electron emitting filament that emits thermionic electrons 13 for ionization, and 11 is an electron extraction electrode that accelerates thermionic electrons 13 emitted from the ionized electron emitting filament 10. Heat shield plate 8
has the function of blocking radiant heat from the ionized electron emitting filament 10, and the ionization means 12 that ionizes the clusters from the steam generation source 9 is constituted by the ionized electron emitting filament 10, the electron extraction electrode 11, and the heat shield plate 8. . 1
4 is an accelerating electrode 17 to which a voltage is applied between the electron extraction electrode 11 and the ionized cluster ions to cause them to collide with the substrate 18 together with the non-ionized neutral clusters 15 to deposit a thin film; is a cluster beam consisting of cluster ions 16 and neutral clusters 15. 19
is an insulating support member 20 that supports the heat shield plate 8;
Crucible support member 21 that supports the crucible body 1
22 is an insulating support member that supports the substrate holder 22;
23 is an insulating support member that supports the heat shield plate 8; and 24 is an insulating support member that supports the accelerating electrode 14.

次に、従来の蒸発源用るつぼを用いた薄膜形成
装置の動作について説明する。まず、アルミニウ
ム(蒸着物質)2をるつぼ本体1内に充填し、真
空排気装置(図示せず)により真空槽4内の空気
を排気して、真空槽4内を10-6Torr程度の真空
度にする。次いで、蒸発源加熱用フイラメント7
に通電して発熱させ、蒸発源加熱用フイラメント
7からの輻射熱をるつぼ本体1に照射することに
より、又は蒸発源加熱用フイラメント7から放出
される熱電子をるつぼ本体1に衝突させること
(電子衝撃)により、るつぼ本体1内のアルミニ
ウム2を加熱して溶融し蒸発させる。るつぼ本体
1内のアルミニウム2の蒸気圧が0.1〜10Torr程
度になるように昇温すると、ノズル1aからアル
ミニウムの蒸気が噴出する。この蒸気はるつぼ本
体1と真空槽4との圧力差により断熱膨張してク
ラスタと呼ばれる多数の原子が緩く結合した塊状
原子集団となる。次いで、電子引き出し電極11
がクラスタビーム17にイオン化電子放出フイラ
メント10から放出された熱電子13を衝突さ
せ、一部のクラスタを一個の原子がイオン化され
たクラスタ・イオン16にする。このクラスタ・
イオン16は加速電極14と電子引き出し電極1
1とにより形成された電界により適度に加速さ
れ、イオン化されていない中性クラスタ15はる
つぼ本体1から噴出されるときの運動エネルギで
基板18に衝突し、これにより基板18上にアル
ミニウムの薄膜が蒸着形成される。
Next, the operation of a thin film forming apparatus using a conventional evaporation source crucible will be explained. First, aluminum (vapor deposition material) 2 is filled into the crucible body 1, and the air in the vacuum chamber 4 is evacuated using a vacuum evacuation device (not shown), so that the vacuum level in the vacuum chamber 4 is approximately 10 -6 Torr. Make it. Next, the filament 7 for heating the evaporation source
By applying electricity to generate heat and irradiating the crucible body 1 with radiant heat from the evaporation source heating filament 7, or by causing thermoelectrons emitted from the evaporation source heating filament 7 to collide with the crucible body 1 (electron impact). ), the aluminum 2 in the crucible body 1 is heated to melt and evaporate. When the temperature of the aluminum 2 in the crucible body 1 is raised to about 0.1 to 10 Torr, aluminum vapor is ejected from the nozzle 1a. This vapor expands adiabatically due to the pressure difference between the crucible body 1 and the vacuum chamber 4, and becomes a lumpy atomic group called a cluster, in which a large number of atoms are loosely bonded. Next, the electron extraction electrode 11
makes the cluster beam 17 collide with thermionic electrons 13 emitted from the ionized electron emitting filament 10, and some of the clusters become cluster ions 16 in which one atom is ionized. This cluster
The ions 16 are connected to the acceleration electrode 14 and the electron extraction electrode 1
The non-ionized neutral clusters 15 are moderately accelerated by the electric field formed by the crucible body 1 and collide with the substrate 18 with the kinetic energy when they are ejected from the crucible body 1. As a result, a thin aluminum film is formed on the substrate 18. Formed by vapor deposition.

高蒸着速度を得るため、るつぼ本体1は蒸着物
質2であるアルミニウムと濡れ性が強くかつ反応
性の弱い材質、例えば窒化硅素(BN)などで構
成され、蒸着物質2の蒸発表面積が大きくとれる
構造となつている。このため、るつぼ本体1内の
アルミニウム2を加熱して蒸発させた時に、るつ
ぼ本体1の急激な昇温や降温等により、アルミニ
ウム2がるつぼ本体1内面をはい上り、ノズル1
aよりあふれ出す場合がある。
In order to obtain a high evaporation rate, the crucible body 1 is made of a material that has strong wettability and low reactivity with aluminum, which is the evaporation substance 2, such as silicon nitride (BN), and has a structure that allows a large evaporation surface area for the evaporation substance 2. It is becoming. Therefore, when the aluminum 2 in the crucible body 1 is heated and evaporated, the aluminum 2 crawls up the inner surface of the crucible body 1 due to the rapid temperature rise or fall of the crucible body 1, and the nozzle 1
It may overflow from a.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のような構成の従来の薄膜蒸着装置に用い
る蒸発源用るつぼは、るつぼ材としてアルミニウ
ム等の蒸着物質2と反応性が弱く、濡れ性が強い
ものを用いていたため、アルミニウム2がノズル
1aからあるれ出した場合に、るつぼ本体1の外
側表面を濡らし、このアルミニウム2が蒸発する
ことで蒸気発生源9の動作が不安定になると共
に、蒸気発生源9の構成部品とアルミニウム2の
蒸気が反応し、蒸気発生源9の寿命が劣化すると
いう問題点があつた。またるつぼ本体1の外側表
面を濡らした蒸気が蒸発することにより、クラス
タ内に単原子が混入し膜質及び膜厚分布に影響を
与える等の問題点もあつた。
The crucible for the evaporation source used in the conventional thin film deposition apparatus configured as described above uses a crucible material that is weakly reactive with the vapor deposition substance 2 such as aluminum and has strong wettability. If the aluminum 2 leaks out, the outer surface of the crucible body 1 will be wetted, and the aluminum 2 will evaporate, making the operation of the steam generation source 9 unstable, and causing the vapor from the components of the steam generation source 9 and the aluminum 2 to evaporate. There was a problem in that the reaction occurred and the life of the steam generation source 9 was deteriorated. There were also other problems, such as evaporation of the steam that wetted the outer surface of the crucible body 1, which caused monatomic atoms to be mixed into the clusters, which affected the film quality and film thickness distribution.

この発明は上記のような問題点を解消するため
になされたもので、蒸着物質2がるつぼ本体1の
内面をはい上り、ノズル1aからあるれ出した場
合でも、蒸気発生源9の動作の安定性と蒸気発生
源9の長寿命化を図ると共に、蒸着膜の膜質及び
膜厚分布が一定にできる蒸発源用るつぼを得るこ
とを目的とする。
This invention was made to solve the above-mentioned problems, and even when the vapor deposition substance 2 crawls up the inner surface of the crucible body 1 and comes out from the nozzle 1a, the operation of the steam generation source 9 is stabilized. It is an object of the present invention to obtain a crucible for an evaporation source, which can improve the performance and the life of the vapor generation source 9, and can make the quality and thickness distribution of the evaporated film constant.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る蒸発源用るつぼは、るつぼ本体
の外側表面に蒸着物質と濡れ性が弱いか又は反応
性の強い材料によるコーテイン層を備えたもので
ある。
The crucible for evaporation source according to the present invention is provided with a coatein layer made of a material that has weak wettability or strong reactivity with the vapor deposition substance on the outer surface of the crucible body.

〔作用〕[Effect]

この発明における蒸発源用るつぼは、るつぼ本
体の外側表面に設けられたコーテイング層が蒸着
物質と濡れ性の弱い場合には、蒸着物質がるつぼ
本体の外側表面を覆うことがなく、又コーテイン
グ層が蒸着物質と反応性の強い場合には蒸着物質
がるつぼ本体の外側表面を覆つた時点でコーテイ
ング層と急激に反応を起こすため、蒸着物質が蒸
発を起こすこともない。
In the crucible for evaporation source according to the present invention, when the coating layer provided on the outer surface of the crucible body has weak wettability with the vapor deposition substance, the vapor deposition substance does not cover the outer surface of the crucible body, and the coating layer If the material is highly reactive with the deposition material, it will react rapidly with the coating layer once it covers the outer surface of the crucible body, so that the deposition material will not evaporate.

〔実施例〕〔Example〕

以下、この発明の一実施例による蒸発源用るつ
ぼを図について詳細に説明する。
Hereinafter, a crucible for an evaporation source according to an embodiment of the present invention will be described in detail with reference to the drawings.

第1図はこの発明の一実施例に係る蒸発源用る
つぼを示す概略構成図、第2図はこの蒸発源用る
つぼを用いた薄膜形成装置を示す概略構成図であ
る。なお、第1図、第2図において、第3図〜第
5図と同様の機能を果たす部分については同一の
符号を付し、その説明は省略する。3はるつぼ本
体1の外側表面の全体に施されたコーテイング層
であり、るつぼ本体1内に充填された蒸着物質2
と濡れ性が弱いか又は反応性が強い材料で構成さ
れている。この実施例では蒸着物質2がアルミニ
ウムでるつぼ本体1が窒化硅素(BN)、コーテ
イング層3がアルミニウム2と反応性の強いタン
グステン(W)で構成されている。
FIG. 1 is a schematic configuration diagram showing an evaporation source crucible according to an embodiment of the present invention, and FIG. 2 is a schematic configuration diagram showing a thin film forming apparatus using this evaporation source crucible. Note that in FIGS. 1 and 2, parts that perform the same functions as those in FIGS. 3 to 5 are designated by the same reference numerals, and explanations thereof will be omitted. 3 is a coating layer applied to the entire outer surface of the crucible body 1, and a coating layer 3 is a coating layer applied to the entire outer surface of the crucible body 1;
and materials with weak wettability or strong reactivity. In this embodiment, the vapor deposition material 2 is made of aluminum, the crucible body 1 is made of silicon nitride (BN), and the coating layer 3 is made of tungsten (W), which is highly reactive with the aluminum 2.

次に、この発明の一実施例に係る蒸発源用るつ
ぼを用いた薄膜形成装置の動作について説明す
る。まず、アルミニウム(蒸着物質)2をるつぼ
本体1内に充填し、真空排気装置(図示せず)に
より真空槽4内の空気を排気して、真空槽4内を
10-6Torr程度の真空度にする。次いで、蒸発源
加熱用フイラメント7に通電して発熱させ、蒸発
源加熱用フイラメント7からの輻射熱をるつぼ本
体1に照射することにより、又は蒸発源加熱用フ
イラメント7から放出される熱電子をるつぼ本体
1に衝突させること(電子衝撃)により、るつぼ
本体1内のアルミニウム2を加熱して溶融し蒸発
させる。るつぼ本体1内のアルミニウム2の蒸気
圧が0.1〜10Torr程度になるように昇温すると、
ノズル1aからアルミニウムの蒸気が噴出する。
この蒸気はるつぼ本体1と真空槽4との圧力差に
より断熱膨張してクラスタと呼ばれる多数の原子
が緩く結合した塊状原子集団となる。次いで、電
子引き出し電極11がクラスタビーム17にイオ
ン化電子放出フイラメント10から放出された熱
電子13を衝突させ、一部のクラスタを一個の原
子がイオン化されたクラスタ・イオン16にす
る。このクラスタ・イオン16は加速電極14と
電子引き出し電極11とにより形成された電界に
より適度に加速され、イオン化されていない中性
クラスタ15はるつぼ本体1から噴出されるとき
の運動エネルギで基板18に衝突し、これにより
基板18上にアルミニウムの薄膜が蒸着形成され
る。従来例と同様、高蒸着速度を得るため、るつ
ぼ本体1は蒸着物質2であるアルミニウムと濡れ
性が強くかつ反応性の弱い材質、例えば窒化硅素
(BN)で構成されている。さらに、この実施例
ではるつぼ本体1の外側表面にアルミニウム2と
反応性の強いタングステン3がコーテイングされ
ている。このため、るつぼ本体1内のアルミニウ
ム2を加熱して蒸発させた時にるつぼ本体1の急
激な昇温や降温等により、アルミニウム2がるつ
ぼ本体1内面をはい上り、ノズル1aよりあふれ
出した場合でも、アルミニウム2がコーテイング
層3のタングステン3と急激に反応するため、あ
ふれ出したアルミニウム2が蒸発することはな
い。
Next, the operation of a thin film forming apparatus using an evaporation source crucible according to an embodiment of the present invention will be described. First, aluminum (vapor deposition material) 2 is filled into the crucible body 1, and the air inside the vacuum chamber 4 is evacuated using a vacuum evacuation device (not shown).
Create a vacuum of about 10 -6 Torr. Next, the filament 7 for heating the evaporation source is energized to generate heat, and the crucible body 1 is irradiated with radiant heat from the filament 7 for heating the evaporation source, or thermionic electrons emitted from the filament 7 for heating the evaporation source are transferred to the crucible body 1. 1 (electronic impact), the aluminum 2 in the crucible body 1 is heated, melted, and evaporated. When the temperature of the aluminum 2 in the crucible body 1 is raised to about 0.1 to 10 Torr,
Aluminum vapor is ejected from the nozzle 1a.
This vapor expands adiabatically due to the pressure difference between the crucible body 1 and the vacuum chamber 4, and becomes a lumpy atomic group called a cluster, in which a large number of atoms are loosely bonded. Next, the electron extracting electrode 11 causes the cluster beam 17 to collide with the hot electrons 13 emitted from the ionized electron emitting filament 10, so that some of the clusters become cluster ions 16 in which one atom is ionized. These cluster ions 16 are moderately accelerated by the electric field formed by the accelerating electrode 14 and the electron extraction electrode 11, and the unionized neutral clusters 15 are blown onto the substrate 18 by the kinetic energy when ejected from the crucible body 1. collision, which causes a thin film of aluminum to be deposited on the substrate 18. Similar to the conventional example, in order to obtain a high deposition rate, the crucible body 1 is made of a material that has strong wettability and low reactivity with aluminum, which is the deposition substance 2, such as silicon nitride (BN). Furthermore, in this embodiment, the outer surface of the crucible body 1 is coated with tungsten 3, which is highly reactive with aluminum 2. Therefore, even if the aluminum 2 inside the crucible body 1 is heated and evaporated and the aluminum 2 crawls up the inner surface of the crucible body 1 and overflows from the nozzle 1a due to a sudden temperature rise or fall of the crucible body 1, etc. Since the aluminum 2 rapidly reacts with the tungsten 3 of the coating layer 3, the overflowing aluminum 2 does not evaporate.

従つて、蒸発発生源9の動作が不安定になるこ
とが防止でき、さらに蒸発発生源9の構成部品と
蒸発物質の蒸気が反応して蒸発発生源9の寿命が
劣化するのを防止できる。また、従来例のように
クラスタ内に蒸着物質の単原子が混入するのを防
止し、膜質及び膜厚分布に影響を与えることがな
い。
Therefore, it is possible to prevent the operation of the evaporation source 9 from becoming unstable, and furthermore, it is possible to prevent the component parts of the evaporation source 9 from reacting with the vapor of the evaporation substance, thereby preventing the life of the evaporation source 9 from deteriorating. Further, unlike the conventional example, single atoms of the vapor-deposited substance are prevented from being mixed into the cluster, and the film quality and film thickness distribution are not affected.

なお、上記実施例では蒸着物質2がアルミニウ
ム、るつぼ本体1の材質が窒化硅素(BN)、コ
ーテイング層3がタングステン(W)である、蒸
着物質2とコーテイング層3との反応性の強い場
合の例を示したが、他の蒸着物質2、るつぼ本体
1、コーテイング層3の組み合わせで、蒸着物質
2とコーテイング層3との反応性が強い場合であ
つてもよく、上記実施例と同様の効果を奏する。
In the above example, the vapor deposition substance 2 is aluminum, the material of the crucible body 1 is silicon nitride (BN), and the coating layer 3 is tungsten (W). Although an example has been shown, the combination of another vapor deposition substance 2, the crucible body 1, and the coating layer 3 may be used, and the reactivity between the vapor deposition substance 2 and the coating layer 3 may be strong, and the same effect as in the above embodiment can be obtained. play.

また、蒸着物質2が銅、るつぼ本体1の材質が
タングステン、コーテイング層3がカーボンとい
つた、蒸着物質2とコーテイング層3との濡れ性
が弱い組み合わせの場合には、るつぼ本体1内の
銅2の加熱時の急激な昇温や降温等により、銅2
がるつぼ本体1の内面をはい上り、ノズル1aよ
りあふれ出しても、銅2がコーテイング層3を濡
らさない。このため、るつぼ本体1の外側表面を
銅2が覆うことがなく、上記実施例と同様の効果
を奏する。
In addition, in the case of a combination in which the vapor deposition substance 2 is copper, the material of the crucible body 1 is tungsten, and the coating layer 3 is carbon, and the wettability of the vapor deposition substance 2 and the coating layer 3 is weak, the copper in the crucible body 1 is Due to rapid temperature rise or fall during heating of copper 2,
Even if the copper 2 crawls up the inner surface of the crucible body 1 and overflows from the nozzle 1a, the coating layer 3 is not wetted by the copper 2. Therefore, the outer surface of the crucible body 1 is not covered with the copper 2, and the same effect as in the above embodiment is achieved.

また、上記実施例ではるつぼ本体1の外側表面
全体にコーテイング層3を設けているが、場合に
よつては全体にコーテイング層3を設ける必要は
なく、少くともるつぼ本体1におけるノズル1a
や蓋1bの周辺部の外側表面に設ければ、上記実
施例と同様の効果を奏する。
Further, in the above embodiment, the coating layer 3 is provided on the entire outer surface of the crucible body 1, but in some cases, it is not necessary to provide the coating layer 3 on the entire surface, and at least the nozzle 1a of the crucible body 1
If it is provided on the outer surface of the periphery of the lid 1b, the same effect as in the above embodiment can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、基板に蒸着す
べき蒸着物質が内部に充填され、蒸着物質と濡れ
性の強い材料で構成されるるつぼ本体を備える蒸
発源用るつぼにおいて、るつぼ本体の外側表面に
蒸着物質と反応性の強い材料又は濡れ性の弱い材
料で構成されるコーテイング層を備えたことによ
り、蒸着物質がるつぼ本体からあふれ出した場合
にも蒸着物質がコーテイング材と反応するか又は
蒸着物質がるつぼ本体の外側表面を覆うのを防止
でき、あふれ出した蒸着物質が蒸発することもな
く、ICB源動作の安定性とICB源の長寿命化を図
るとともに、蒸着膜の膜質及び膜厚分布が一定に
できる蒸発源用るつぼが得られるという効果があ
る。
As described above, according to the present invention, in a crucible for an evaporation source, which is filled with a vapor deposition substance to be deposited on a substrate and includes a crucible body made of a material having strong wettability with the vapor deposition substance, the outer surface of the crucible body is By equipping the crucible with a coating layer made of a material that is highly reactive with the evaporation material or a material that has weak wettability, even if the evaporation material overflows from the crucible body, the evaporation material will react with the coating material or the deposition will be prevented. This prevents substances from covering the outer surface of the crucible body, prevents overflowing deposition materials from evaporating, and improves the stability of ICB source operation and the long life of the ICB source, as well as improving the quality and thickness of the deposited film. This has the effect of providing a crucible for an evaporation source that can have a constant distribution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例に係る蒸発源用
るつぼを示す概略構成図、第2図は一実施例に係
る蒸発源用るつぼを使用した薄膜形成装置を示す
概略構成図、第3図は従来の蒸発源用るつぼを示
す概略構成図、第4図は従来の蒸発源用るつぼを
使用した薄膜形成装置を示す概略構成図、第5図
は第4図に示した薄膜形成装置の主要部分を一部
断面で示す分解斜視図である。 1はるつぼ本体、2は蒸着物質、3はコーテイ
ング層、18は基板である。なお、図中、同一符
号は同一、又は相当部分を示す。
FIG. 1 is a schematic configuration diagram showing an evaporation source crucible according to an embodiment of the present invention, FIG. 2 is a schematic configuration diagram showing a thin film forming apparatus using the evaporation source crucible according to an embodiment, and FIG. The figure is a schematic block diagram showing a conventional evaporation source crucible, FIG. 4 is a schematic block diagram showing a thin film forming apparatus using a conventional evaporation source crucible, and FIG. 5 is a schematic block diagram showing a thin film forming apparatus using the conventional evaporation source crucible. FIG. 2 is an exploded perspective view showing a main part partially in section. 1 is a crucible body, 2 is a vapor deposition material, 3 is a coating layer, and 18 is a substrate. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 1 基板に蒸着すべき蒸着物質が内部に充填さ
れ、上記蒸着物質と濡れ性の強い材料で構成され
るるつぼ本体を備える蒸発源用るつぼにおいて、
上記るつぼ本体の外側表面に、上記蒸着物質と反
応性の強い材料又は濡れ性の弱い材料で構成され
るコーテイング層を備えたことを特徴とする蒸発
源用るつぼ。
1. In a crucible for an evaporation source, the crucible is filled with a vapor deposition substance to be deposited on a substrate and includes a crucible body made of a material with strong wettability with the vapor deposition substance,
A crucible for an evaporation source, characterized in that the outer surface of the crucible body is provided with a coating layer made of a material having strong reactivity with the vapor deposition substance or a material having weak wettability with the vapor deposition substance.
JP13750988A 1988-06-06 1988-06-06 Crucible for evaporation source Granted JPH01306555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13750988A JPH01306555A (en) 1988-06-06 1988-06-06 Crucible for evaporation source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13750988A JPH01306555A (en) 1988-06-06 1988-06-06 Crucible for evaporation source

Publications (2)

Publication Number Publication Date
JPH01306555A JPH01306555A (en) 1989-12-11
JPH0541698B2 true JPH0541698B2 (en) 1993-06-24

Family

ID=15200332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13750988A Granted JPH01306555A (en) 1988-06-06 1988-06-06 Crucible for evaporation source

Country Status (1)

Country Link
JP (1) JPH01306555A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG10201608496UA (en) * 2016-10-11 2018-05-30 Au Optronics Corp Crucible

Also Published As

Publication number Publication date
JPH01306555A (en) 1989-12-11

Similar Documents

Publication Publication Date Title
US5180477A (en) Thin film deposition apparatus
JP2710670B2 (en) Crucible for steam source
JPH0541698B2 (en)
JPH0236673B2 (en)
JPS60262963A (en) Device for vapor-depositing compound thin film
JPS60125368A (en) Vapor deposition device for thin film
JPH0830265B2 (en) Thin film forming equipment
JPS6329925A (en) Forming device for compound thin-film
JPH0215630B2 (en)
JPS62287617A (en) Apparatus for forming thin film
JPS60158619A (en) Thin film evaporating device
JPS60124929A (en) Device for vapor deposition of thin film
JPH0735569B2 (en) Thin film forming equipment
JPS60124923A (en) Device for vapor deposition of thin film
JPH0510423B2 (en)
JPS60124915A (en) Thin film deposition equipment
JPH03158458A (en) Cluster ion beam device
JPS634060A (en) Thin film forming device
JPS6320820A (en) Vapor deposition apparatus for thin film
JPH05311407A (en) Thin film forming device
JPH0351087B2 (en)
JPH0443412B2 (en)
JPH0447969B2 (en)
JPS60125369A (en) Vapor deposition device for thin film
JPH0215629B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term