JPS58111327A - Preparation of semiconductor power module - Google Patents

Preparation of semiconductor power module

Info

Publication number
JPS58111327A
JPS58111327A JP20915481A JP20915481A JPS58111327A JP S58111327 A JPS58111327 A JP S58111327A JP 20915481 A JP20915481 A JP 20915481A JP 20915481 A JP20915481 A JP 20915481A JP S58111327 A JPS58111327 A JP S58111327A
Authority
JP
Japan
Prior art keywords
alloy
power module
semiconductor power
heat
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20915481A
Other languages
Japanese (ja)
Inventor
Yoshihiro Suzuki
鈴木 芳博
Tadashi Minagawa
皆川 忠
Komei Yatsuno
八野 耕明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20915481A priority Critical patent/JPS58111327A/en
Publication of JPS58111327A publication Critical patent/JPS58111327A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/492Bases or plates or solder therefor
    • H01L23/4924Bases or plates or solder therefor characterised by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Die Bonding (AREA)

Abstract

PURPOSE:To remove the warpage or crack of substrate due to thermal fatigue by using a hard Cu alloy as an electrode plate or heat-sink. CONSTITUTION:A Cu 75%-Zn 25% alloy with hardness of 155Hv and a nickel plated alumina insulating plate in purity of 96% are soldered under the hydrogen ambient being heated up to 380 deg.C for five minutes using the solder of Pb95%- Sn5%. A semiconductor element, electrode plate, insulator and heat-sink are soldered at a time as described above. Thereby, even when module temperature rises after a module is operated and heat is generated on an element, any warpage or separation of substrate are not generated and crack is not generated on the insulator and accordingly a highly reliable module can be obtained.

Description

【発明の詳細な説明】 本発明は半導体パワーモジュールの製造法に係り、特に
、150Hv以上の硬度を有するCu合金を電極板もし
くはヒートシンク板として用いることによプ、熱疲労に
よる基板のそりを除去した高信頼性のモジュールの製造
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor power module, and in particular, by using a Cu alloy having a hardness of 150 Hv or more as an electrode plate or a heat sink plate, warpage of a substrate due to thermal fatigue is eliminated. The present invention relates to a method for manufacturing highly reliable modules.

従来、半導体モジュールに使用されている電極板あるい
はヒートシンク板には銅板もしくはニッケルめっきされ
た銅板が用いられている。しかし、周知のように、半導
体素子の高出力化が進むにつれて、素子の形状が大きく
なシ、それにと4ない、銅などの金属板あるいは絶縁板
などの形状も次第に大型化し、その結果、金属板の硬度
が低いと、動作時のヒートサイクルにより、これらの基
板や半導体素子の熱膨張率の差によシ、基板がはく離し
九シ、あるいは、クラックなどが生じたりする問題があ
り、そのため金属板としてCu−C板またはCu −I
n Warなどの適用が検討されている。
Conventionally, copper plates or nickel-plated copper plates have been used as electrode plates or heat sink plates used in semiconductor modules. However, as is well known, as the output power of semiconductor devices progresses, the shape of the device becomes larger, and the shape of metal plates such as copper or insulating plates also gradually becomes larger. If the hardness of the board is low, there is a problem that the heat cycle during operation may cause the board to peel or crack due to the difference in thermal expansion coefficient between the board and semiconductor elements. Cu-C plate or Cu-I as metal plate
Applications such as n War are being considered.

本発明の目的は基板のそりあるいは割れをなく゛すため
に、ヒートシンク板あるいは電極板用として硬度の高い
Cu合金を用いる半導体パワーモジュールの製造法を提
供するにある。
An object of the present invention is to provide a method for manufacturing a semiconductor power module using a Cu alloy with high hardness for the heat sink plate or electrode plate in order to eliminate warping or cracking of the substrate.

硬度が150Hマ以上のCu合金を電極板あるイtiヒ
ートシンク板として用いることにより、使用時に半導体
モジュールの温度が上昇しても、基板のそりを低減し、
クツツクなどの発生を防止することができる。
By using a Cu alloy with a hardness of 150H or higher as the heat sink plate with the electrode plate, even if the temperature of the semiconductor module rises during use, the warpage of the board can be reduced.
It is possible to prevent the occurrence of scratches and the like.

〈実施例1〉 硬度155)IVのCu75%−2n25%合金(25
,0X25.0XLO■)と、ニッケルめっきされた純
度96%のアル建す絶縁板(25,0X25、OXo、
6m)とをpb95%−Bn5%のハンダを用い、水素
雰囲気中で380Cで5m1n7JII+熱して、ハン
ダ接着した。その後、熱衝撃試験条件は一65C〜12
5Cでそれぞれ36 min保持し、試料を低温から高
温く交互に移動する際、室温でその都度5m1n保持し
た。まえ、基板のそりは単位長さく1)あた夛の鋼板の
凹の深さくsw)で表示した。熱衝撃試験後のそヤは0
.05■/cmであシ、アルミナ基板にクラックの発生
は認められなかった。ただし、ハンダ接着前の銅板の凹
は0、03 wm/IMIであつ九。
<Example 1> Cu75%-2n25% alloy (25%) with hardness 155) IV
,0X25.0XLO■) and nickel-plated 96% purity aluminum insulation board (25,0X25,OXo,
6m) and 5m1n7JII+ were soldered together using 95% Pb-5% Bn solder and heated at 380C in a hydrogen atmosphere. After that, the thermal shock test conditions were 165C to 12C.
Each sample was held at 5C for 36 min, and when the sample was moved alternately from low temperature to high temperature, it was held at room temperature for 5 ml each time. Previously, the warpage of the board was expressed by the unit length (1) depth of the recess in the steel plate (sw). Soar after thermal shock test is 0
.. No cracks were observed on the alumina substrate at 0.05 cm/cm. However, the concavity of the copper plate before soldering is 0.03 wm/IMI.

〈実施例2〉 硬[110HVのCu93%−N1%合金ヲ用いて、実
施例1と同じようKして、耐熱衝撃性を調べ九。その結
果、熱衝撃試験後の凹はαo3■/cmでらシ1アルミ
ナ基板にクラックの発生は認められなかった。
<Example 2> Using a hard [110 HV Cu93%-N1% alloy], the thermal shock resistance was examined in the same manner as in Example 1. As a result, the concavity after the thermal shock test was αo3/cm, and no cracks were observed in the alumina substrate.

〈実施例3〉 硬度170HVのcuao%−Ni25%−Zn15%
合金を用いて、実施例1と同じようにして、耐熱衝撃性
を調べた。その結果、熱衝撃試験後の凹はα05寵/c
ngであシ、アルミナ基板にクラックの発生は紹められ
なかった。
<Example 3> Cuao%-Ni25%-Zn15% with hardness 170HV
Thermal shock resistance was examined in the same manner as in Example 1 using the alloy. As a result, the concavity after the thermal shock test was α05/c
No cracks were observed on the alumina substrate using NG.

〈実施例4〉 硬ff154HV(7)CuQ&83%−0r1.17
%合金合金いて、実施例1と同じようにして、耐熱衝撃
性を調べた。その結果、熱衝撃試験後の凹は0゜06■
/3であり、アルζす基板にクラックの発生は認められ
なかった。
<Example 4> Hard ff154HV (7) CuQ&83%-0r1.17
% alloy, and the thermal shock resistance was examined in the same manner as in Example 1. As a result, the concavity after the thermal shock test was 0°06■
/3, and no cracks were observed on the aluminum substrate.

〈実施例5〉 実施例1〜4における各鋼合金にニッケルめっきした基
板を用いて、以下実施例1と同じようにして、耐熱衝撃
性を調べた。その結果、各基板とも熱衝撃試験後の凹は
0.03〜0.05■/cmでめシ、アルミナ基板にク
ラックの発生は認められなかった。
<Example 5> Thermal shock resistance was examined in the same manner as in Example 1 using the nickel-plated substrates of each of the steel alloys in Examples 1 to 4. As a result, the concavities of each substrate after the thermal shock test were 0.03 to 0.05 .mu./cm, and no cracks were observed in the alumina substrate.

〈比較例1〉 硬1f110Hマの鋼板を用いて、実施例1と同様にし
て、耐熱衝撃性を−ぺ九。その結果、熱衝撃試験後の凹
は0.55wa/cmでおり、アルξす基板にクラック
が発生した。
<Comparative Example 1> Using a steel plate with a hardness of 1f110H, the thermal shock resistance was tested in the same manner as in Example 1. As a result, the concavity after the thermal shock test was 0.55 wa/cm, and cracks occurred in the aluminum substrate.

Claims (1)

【特許請求の範囲】 1、メタライズされた半導体素子および絶縁板と金属板
とをPb90%以上含むハンダにょシ、一度に積層接着
することを%黴とする半導体パワーモジュールの製造法
。 2、特許請求の範囲第1項において、金属板として、C
u合金を便用することを特徴とする半導体パワーモジュ
ールの製造法。 3、特#’F!+111求の範囲第2項においてCu合
金がCuを主成分とし、Ni、znおよびCrの少なく
ともl種類の元素を含むことを特徴とする半導体パワー
モジュールの製造法。 4、特許請求の範囲$2項において、金属板の表面がN
iめっきされていることを特徴とする半導体パワーモジ
ュールの製造法。
[Scope of Claims] 1. A method for manufacturing a semiconductor power module in which a metallized semiconductor element, an insulating plate, and a metal plate are laminated and bonded all at once using a solder containing 90% or more of Pb. 2. In claim 1, as the metal plate, C
A method for manufacturing a semiconductor power module characterized by convenient use of a u-alloy. 3.Special #'F! A method for manufacturing a semiconductor power module, characterized in that the Cu alloy has Cu as a main component and contains at least l elements of Ni, zn, and Cr in the second term of the range of +111. 4. In claim $2, the surface of the metal plate is N
A method for manufacturing a semiconductor power module characterized by being i-plated.
JP20915481A 1981-12-25 1981-12-25 Preparation of semiconductor power module Pending JPS58111327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20915481A JPS58111327A (en) 1981-12-25 1981-12-25 Preparation of semiconductor power module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20915481A JPS58111327A (en) 1981-12-25 1981-12-25 Preparation of semiconductor power module

Publications (1)

Publication Number Publication Date
JPS58111327A true JPS58111327A (en) 1983-07-02

Family

ID=16568204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20915481A Pending JPS58111327A (en) 1981-12-25 1981-12-25 Preparation of semiconductor power module

Country Status (1)

Country Link
JP (1) JPS58111327A (en)

Similar Documents

Publication Publication Date Title
US7128979B2 (en) Circuit board, method of producing same, and power module
EP3595001B1 (en) Substrate for power module having heat sink
US10834823B2 (en) Producing metal/ceramic circuit board by removing residual silver
JPH10125821A (en) High-reliability substrate for semiconductors
JP2003163315A (en) Module
CN102950350A (en) Process for welding electronic microcomponents based on multi-temperature gradient
JP2016051778A (en) Metal-ceramic bonded substrate
KR20020070827A (en) Insulating substrate boards for semiconductor and power modules
JP2002043482A (en) Member for electronic circuit, its manufacturing method and electronic component
EP3664585B1 (en) Ceramic circuit board
JP4910113B2 (en) Method for producing metal / ceramic bonding substrate
EP0036113B1 (en) Solution for dissolving noble metal alloys which include tin and re-work method of removing said alloys from a substrate
JP2013055237A (en) Manufacturing method of substrate for power module
JPH11121889A (en) Circuit board
JP7369508B2 (en) ceramic circuit board
JPH10247763A (en) Circuit board and manufacture thereof
JPS58111327A (en) Preparation of semiconductor power module
JP4543275B2 (en) Aluminum-ceramic bonding substrate and manufacturing method thereof
JP3722573B2 (en) Ceramic substrate, circuit board using the same, and manufacturing method thereof
JP4057436B2 (en) Copper base alloy and heat sink material using the copper base alloy
JP4779178B2 (en) Insulating substrate for semiconductor mounting and power module
JP2815504B2 (en) Ceramic-metal bonded substrate with excellent thermal shock resistance
JP3932343B2 (en) Semiconductor substrate and manufacturing method thereof
JP7299671B2 (en) ceramic circuit board
JPH05327139A (en) Copper plate bonded alumina board