JPH11121889A - Circuit board - Google Patents

Circuit board

Info

Publication number
JPH11121889A
JPH11121889A JP28394697A JP28394697A JPH11121889A JP H11121889 A JPH11121889 A JP H11121889A JP 28394697 A JP28394697 A JP 28394697A JP 28394697 A JP28394697 A JP 28394697A JP H11121889 A JPH11121889 A JP H11121889A
Authority
JP
Japan
Prior art keywords
copper
plate
heat
circuit
copper plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28394697A
Other languages
Japanese (ja)
Inventor
Yoshihiko Tsujimura
好彦 辻村
Yoshiyuki Nakamura
美幸 中村
Yasuto Fushii
康人 伏井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP28394697A priority Critical patent/JPH11121889A/en
Publication of JPH11121889A publication Critical patent/JPH11121889A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/053Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an inorganic insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0058Laminating printed circuit boards onto other substrates, e.g. metallic substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal

Landscapes

  • Structure Of Printed Boards (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a circuit board durable against damage due to heat shock or heat record by specifying the mean grain size of copper on the cross-section of a copper circuit and/or a copper heat plate. SOLUTION: A copper plate is bonded to a ceramic board while avoiding adverse effect of As diffusion and the grain size of copper in the copper plate is increased in the vicinity of the ceramic board in order to enhance the reliability of a circuit board. More specifically, a copper plate subjected to high heat- treatment in nonoxidative atmosphere is employed. Alternatively, a plurality of laminates of a copper plate and a ceramic plate sandwiching a paste of brazing material are contained in a carbon heating member comprising a frame body, a pushing plate and a pushing means therefor and then they are heated in an infrared heating furnace and bonded in a short time thus accelerating growth of copper crystal particles. According to the arrangement, the mean grain size of copper on the cross-section of a copper circuit and a copper heat plate can be set at 300 μm or above.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子部品のパワー
モジュール等に使用される回路基板に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a circuit board used for a power module or the like of an electronic component.

【0002】近年、ロボット・モーター等の産業機器の
高性能化に伴い、大電力・高能率インバーター等パワー
モジュールの変遷が進んでおり、半導体素子から発生す
る熱も増加の一途をたどっている。この熱を効率よく放
散するため、パワーモジュール基板では従来より様々な
方法が取られてきた。特に最近、良好な熱伝導を有する
セラミックス基板が利用できるようになったため、基板
上に銅などの銅板を接合し、回路を形成後、そのままあ
るいはメッキ等の処理を施してから回路面に半導体素子
が搭載されている。この場合において、回路の反対側に
は、放熱フィンを取り付けるための放熱銅板が接合され
ている構造のものもある。
[0002] In recent years, power modules such as high-power and high-efficiency inverters have been transitioning with the advancement of the performance of industrial equipment such as robots and motors, and the heat generated from semiconductor elements has been increasing steadily. In order to efficiently dissipate this heat, various methods have conventionally been used for power module substrates. In particular, since ceramic substrates with good heat conduction have become available recently, a copper plate such as copper is bonded on the substrate, and after forming a circuit, the substrate is subjected to a treatment such as plating or plating, and then a semiconductor element is mounted on the circuit surface. Is installed. In this case, there is a structure in which a heat dissipating copper plate for attaching a heat dissipating fin is joined to the opposite side of the circuit.

【0003】このようなモジュールは、当初、簡単な工
作機械に使用されてきたが、ここ数年、溶接機、電車の
駆動部、電気自動車に使用されるようになり、より厳し
い環境下の使用における耐久性と更なる小型化が要求さ
れている。そこで、セラミックス基板に対しても、電流
密度を上げるための回路銅厚の増加、熱衝撃等に対する
耐久性の向上が要求されている。
[0003] Such modules were initially used in simple machine tools, but have been used in welding machines, train drives and electric vehicles in recent years, and have been used in more severe environments. There is a demand for durability and further miniaturization. Therefore, the ceramic substrate is also required to have an increased circuit copper thickness for increasing the current density and an improvement in durability against thermal shock and the like.

【0004】金属とセラミックスを接合する方法には種
々あるが、回路基板の製造という点からは、Mo−Mn
法、活性金属ろう付け法、硫化銅法、DBC法、銅メタ
ライズ法などがあげられる。これらのうち、銅とセラミ
ックス基板との接合については、両者の間に活性金属を
含むろう材を介在させ加熱処理して接合体とする活性金
属ろう付け法(例えば特開昭60−177634号公
報)や、表面を酸化処理したセラミックス基板と銅板を
銅の融点以下でCu−Oの共晶温度以上で加熱接合する
DBC法(例えば特開昭56−163093号公報)が
ある。
There are various methods for joining a metal and a ceramic, but from the viewpoint of manufacturing a circuit board, Mo-Mn
Method, active metal brazing method, copper sulfide method, DBC method, copper metallization method and the like. Of these, for joining copper and a ceramic substrate, an active metal brazing method is used to form a joined body by interposing a brazing material containing an active metal between the two and heating the joint (for example, JP-A-60-177634). ), And a DBC method (for example, JP-A-56-163093) in which a ceramic substrate and a copper plate whose surfaces are oxidized are heated and joined at a temperature lower than the melting point of copper and higher than the eutectic temperature of Cu-O.

【0005】活性金属ろう付け法は、DBC法に比べ
て、(イ)接合体を得るための処理温度が低いので、セ
ラミックス基板と銅の熱膨張差によって生じる残留熱応
力が小さい、(ロ)活性金属を含むろう材が延性金属で
あるので、ヒートショックやヒートサイクルに対する耐
久性が大である、などの利点がある。
In the active metal brazing method, (a) the processing temperature for obtaining the joined body is lower than that of the DBC method, so that the residual thermal stress caused by the difference in thermal expansion between the ceramic substrate and copper is small. Since the brazing filler metal containing the active metal is a ductile metal, there are advantages such as high durability against heat shock and heat cycle.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、活性金
属ろう付け法を用いても、ろうの融点近傍にまで温度を
上げて接合するために、回路基板に接合時の残留応力が
生じてしまうため、ヒートショックやヒートサイクル等
の熱衝撃、熱履歴によって生じる損傷に対して十分な耐
久性があるとはいえず新しい技術の提案が待たれてい
た。
However, even if the active metal brazing method is used, since the temperature is raised to a temperature close to the melting point of the brazing, a residual stress is generated at the time of bonding on the circuit board. Proposals for new technologies have been awaited, although they are not sufficiently durable against damage caused by heat shock and heat history such as heat shock and heat cycle.

【0007】特開平8−139420号公報には、セラ
ミックス基板に銅回路又は銅回路と放熱銅板が形成され
てなる回路基板において、SEM写真を用いインターセ
プト法(コード法)により測定された、銅回路又は放熱
銅板の平均結晶粒子径が400μm以上で平均サブ粒界
密度が20mm/mm2 以下とすることによって、反
り、強度等を改善し、熱衝撃、熱履歴に対する信頼性の
高い回路基板とすることが記載されている。しかしなが
ら、この発明においては、銅回路又は放熱銅板の表面と
セラミックス基板近傍とにおける銅の結晶粒子の状態が
著しく異なることがあり、更なる信頼性を向上させる際
に障害であった。
[0007] Japanese Patent Application Laid-Open No. 8-139420 discloses a copper circuit measured by an intercept method (code method) using a SEM photograph on a circuit board in which a copper circuit or a copper circuit and a heat dissipation copper plate are formed on a ceramic substrate. Alternatively, by setting the average crystal grain size of the heat-dissipating copper plate to 400 μm or more and the average sub-boundary density to 20 mm / mm 2 or less, the warpage, strength, and the like are improved, and the circuit board has high reliability against thermal shock and thermal history. It is described. However, in the present invention, the state of the copper crystal particles on the surface of the copper circuit or the heat-dissipating copper plate and the vicinity of the ceramic substrate may be significantly different, which is an obstacle in further improving the reliability.

【0008】本発明の目的は、更なる信頼性を向上させ
た回路基板を提供することであり、銅回路又は放熱銅板
の銅の平均結晶粒子径が、表面だけではなく、断面にお
いても大きくなるような条件で接合させたことが特徴で
ある。
An object of the present invention is to provide a circuit board with further improved reliability, and the average crystal grain size of copper in a copper circuit or a heat-dissipating copper plate is increased not only in the surface but also in the cross section. The feature is that they are joined under such conditions.

【0009】[0009]

【課題を解決するための手段】すなわち、本発明は、セ
ラミックス基板と、銅回路又は銅回路及び放熱銅板と
が、Ag成分と活性金属成分を含むろう材で接合されて
なるものであって、銅回路及び/又は放熱銅板の断面に
おける銅の平均結晶粒子径が300μm以上であること
を特徴とする回路基板である。
That is, the present invention provides a ceramic substrate and a copper circuit or a copper circuit and a heat-dissipating copper plate which are joined by a brazing material containing an Ag component and an active metal component. A circuit board characterized in that the average crystal particle diameter of copper in a cross section of the copper circuit and / or the heat-dissipating copper plate is 300 μm or more.

【0010】以下、更に詳しく本発明について説明する
と、セラミックス基板に銅回路又は銅回路と放熱銅板が
形成されてなる回路基板の信頼性については、上記のよ
うに、セラミックス基板自体の強度を向上させることの
他に銅側の耐疲労特性を向上させることが重要なことで
ある。つまり、銅の機械的特性を低下させないようにし
て銅回路と放熱銅板をセラミックス基板に接合する必要
がある。
Hereinafter, the present invention will be described in more detail. As to the reliability of a circuit board formed by forming a copper circuit or a copper circuit and a heat-radiating copper plate on a ceramic substrate, the strength of the ceramic substrate itself is improved as described above. Besides that, it is important to improve the fatigue resistance of the copper side. That is, it is necessary to join the copper circuit and the heat-dissipating copper plate to the ceramic substrate without deteriorating the mechanical properties of copper.

【0011】外部応力に対する銅の変形は、銅結晶中の
転移の移動によって伝達される。このとき、銅結晶中の
欠陥密度が小さいと応力による転移の移動がスムーズに
なり変形しやすくなる。逆に、欠陥密度が大きいと転移
の移動がその欠陥によって妨げられ変形しにくくなる。
[0011] The deformation of copper to external stresses is transmitted by the movement of transitions in the copper crystal. At this time, if the defect density in the copper crystal is low, the transition of the transition due to the stress becomes smooth and the copper crystal is easily deformed. Conversely, if the defect density is high, the movement of the dislocation is hindered by the defect, making it difficult to deform.

【0012】銅板とセラミックス基板を加熱接合した後
冷却すると、セラミックス基板の方が収縮率が小さいの
で銅の方が大きく収縮しようとするが、この場合、銅の
降伏強度が小さいと変形しやすくなるのでセラミックス
基板の変形に追従して変形しようとし回路基板の反りは
小さくなる。一方、銅の降伏強度が大きいと変形は追従
しようとせずに収縮応力がそのままセラミックス基板に
かかり回路基板の反りは大きくなる。以上のことから、
銅の降伏強度が小さく変形しやすいような状態にしてお
くと温度変化による応力を銅の変形に分散させることが
できるので、ヒートサイクル試験におけるような熱衝撃
に対しても良好な耐久性を示すことになる(特開平8−
139420号公報参照)。
When the copper plate and the ceramic substrate are heated and cooled after cooling, the ceramic substrate tends to shrink more because the shrinkage ratio of the ceramic substrate is smaller. In this case, if the yield strength of the copper is small, the copper tends to be deformed. Therefore, the circuit board tends to deform following the deformation of the ceramic substrate, and the warpage of the circuit board becomes small. On the other hand, if the yield strength of copper is large, the deformation stress does not try to follow, but the contraction stress is applied to the ceramic substrate as it is, and the warpage of the circuit substrate increases. From the above,
If the yield strength of copper is small and easily deformed, stress due to temperature change can be dispersed in the deformation of copper, so it shows good durability against thermal shock such as in heat cycle tests (Japanese Unexamined Patent Publication No.
139420).

【0013】銅、特に純銅に近い無酸素銅は、加熱処理
すると柔らかく塑性変形しやすいので、熱膨張係数の異
なるセラミックスと接合させてもセラミックスに対して
損傷を与えづらい材料である。しかしながら、銅にわず
かな不純物が入ると硬化しやすくなり、銅本来の特性で
ある塑性変形しやすい性質が失われ、残留応力となって
セラミックスに損傷を与える(丸田隆美:伸銅技術研究
会誌,2 (1963), 89.)。この現象は、銅に不純物が含
まれることによって、銅結晶の粒成長が妨げられるため
である。
[0013] Copper, particularly oxygen-free copper which is close to pure copper, is soft and easily plastically deformed by heat treatment, and therefore is a material which is hardly damaged even when joined to ceramics having a different coefficient of thermal expansion. However, if copper contains a small amount of impurities, it hardens easily and loses its inherent property of being easily plastically deformed, resulting in residual stress and damaging ceramics (Takumi Maruta: Journal of Copper and Copper Research, 2 (1963), 89.). This is because copper contains impurities to hinder the grain growth of copper crystals.

【0014】本発明のように、活性金属ろう付け法によ
り製造された回路基板においては、銅回路又は放熱銅板
中に最も拡散・侵入しやすい物質は、その性質、量から
考えてろう材のAg成分である。その拡散・侵入のメカ
ニズムは、先ずろう材が銅板と接触している部分から溶
融し、次いでAgリッチの組成から共晶組成に移行し、
更に温度が高められエネルギーが加わってAgの拡散が
開始する、と考えられている。
In the circuit board manufactured by the active metal brazing method as in the present invention, the substance which is most likely to diffuse and penetrate into the copper circuit or the heat-dissipating copper plate is the Ag of the brazing material in view of its properties and quantity. Component. The mechanism of the diffusion and intrusion is as follows: first, the brazing material melts from the part in contact with the copper plate, then shifts from the Ag-rich composition to the eutectic composition,
It is believed that the temperature is further increased and energy is added to initiate the diffusion of Ag.

【0015】したがって、銅板とセラミックス基板を活
性金属ろう付け法により接合する場合、過度のエネルギ
ーが与えられると銅板中へのAgの拡散が容易に起こ
り、セラミックス基板近傍の銅板には表面よりも多くの
Agが拡散する。その結果、その銅板部分の銅結晶の粒
成長が妨げられ、銅板は硬化し、回路基板の信頼性の向
上に悪影響を与える。
Therefore, when the copper plate and the ceramic substrate are joined by the active metal brazing method, if excessive energy is applied, the diffusion of Ag into the copper plate easily occurs, and the copper plate near the ceramic substrate has more than the surface. Ag diffuses. As a result, the growth of copper crystal grains in the copper plate portion is hindered, and the copper plate is hardened, which adversely affects the improvement of the reliability of the circuit board.

【0016】本発明では、このようなAg拡散による悪
影響を極力回避して銅板とセラミックス基板を接合し、
セラミックス基板近傍における銅板の銅の結晶粒径を大
きくし、回路基板の信頼性を更に向上させたものであ
る。具体的には、圧延された銅板を非酸化雰囲気中、高
熱処理好ましくは800℃以上の温度で数時間熱処理し
た銅板を用いることである。あるいは、ろう材ペースト
を介在させた銅板とセラミックス基板との積層体の複数
個を、枠体と押し板と該押し板の押圧手段とから構成さ
れてなるカーボン製加熱部材に収納し(特願平9−21
6219号の図1参照)、これを赤外線加熱式炉により
加熱して短時間で接合を行い、銅の結晶粒子の成長を促
すことである。
In the present invention, the copper plate and the ceramics substrate are joined while minimizing the adverse effects of such Ag diffusion.
This is to increase the crystal grain size of copper in the copper plate near the ceramic substrate to further improve the reliability of the circuit board. Specifically, a rolled copper sheet is heat-treated in a non-oxidizing atmosphere at a high heat treatment, preferably at a temperature of 800 ° C. or more for several hours. Alternatively, a plurality of laminates of a copper plate and a ceramics substrate with a brazing material paste interposed are housed in a carbon heating member composed of a frame, a push plate, and a pressing means for the push plate (Japanese Patent Application No. 2002-214,878). Hei 9-21
No. 6219), which is heated in an infrared heating furnace to perform bonding in a short time to promote the growth of copper crystal particles.

【0017】以上の方法によって、銅回路及び放熱銅板
の断面における銅の平均結晶粒子径を300μm以上と
することができる。本発明において、銅の平均結晶粒子
径が300μm未満であると銅板の断面の粒界密度が高
くなるため、銅の塑性変形が妨げられ、更なる信頼性の
向上は認められない。
According to the above method, the average crystal particle diameter of copper in the cross section of the copper circuit and the heat-dissipating copper plate can be made 300 μm or more. In the present invention, when the average crystal particle diameter of copper is less than 300 μm, the grain boundary density of the cross section of the copper plate increases, so that plastic deformation of copper is hindered, and no further improvement in reliability is observed.

【0018】また、銅回路及び放熱銅板の表面における
銅の平均結晶粒子径については、特開平8−13942
0号公報に記載のように、SEM写真を用いインターセ
プト法(コード法)による測定値が400μm以上で平
均サブ粒界密度が20mm/mm2 以下であることが好
ましい。
The average crystal grain size of copper on the surface of the copper circuit and the heat-dissipating copper plate is described in JP-A-8-13942.
As described in Japanese Patent Publication No. 0, it is preferable that a value measured by an intercept method (code method) using an SEM photograph is 400 μm or more and an average sub-grain density is 20 mm / mm 2 or less.

【0019】本発明で使用されるセラミックス基板とし
ては、アルミナ、窒化珪素、窒化アルミニウム等があげ
られるが、窒化アルミニウムが望ましい。セラミックス
基板の厚みとしては、厚すぎると熱抵抗が大きくなり、
薄すぎると耐久性がなくなるため、0.5〜2mm程度
が好ましい。
Examples of the ceramic substrate used in the present invention include alumina, silicon nitride, and aluminum nitride. Aluminum nitride is preferable. If the thickness of the ceramic substrate is too large, the thermal resistance will increase,
If it is too thin, the durability will be lost, so it is preferably about 0.5 to 2 mm.

【0020】セラミックス基板の一方の面に銅回路、他
方の面に放熱銅板を形成する方法としては、セラミック
ス基板と銅板との接合体をエッチングする方法、銅板か
ら打ち抜かれた銅回路及び/又は放熱銅板のパターンを
セラミックス基板に接合する方法等によって行うことが
でき、これらの際における銅板又はパターンとセラミッ
クス基板との接合には、活性金属ろう付け法が採用され
る。
As a method of forming a copper circuit on one surface of the ceramic substrate and a heat-dissipating copper plate on the other surface, a method of etching a joined body of the ceramic substrate and the copper plate, a copper circuit punched from the copper plate and / or a heat-dissipating copper plate A method of joining a pattern of a copper plate to a ceramic substrate or the like can be used, and an active metal brazing method is employed for joining the copper plate or pattern and the ceramic substrate in these cases.

【0021】活性金属ろう付け法におけるろう材の金属
成分は、銀又は銀と銅を主成分とし、溶融時のセラミッ
クス基板との濡れ性を確保するために活性金属を副成分
とする。この活性金属成分は、セラミックス基板と反応
して酸化物や窒化物を生成させ、それらの生成物がろう
材とセラミックス基板との結合を強固なものにする。活
性金属の具体例をあげれば、チタン、ジルコニウム、ハ
フニウム、ニオブ、タンタル、バナジウムやこれらの化
合物である。これらの比率としては、銀80〜100重
量部好ましくは85〜95重量部と、銅20〜0重量部
好ましくは15〜5重量部との合計量100重量部に対
し、活性金属1〜7重量部である。
The metal component of the brazing material in the active metal brazing method contains silver or silver and copper as main components, and uses the active metal as a sub-component in order to ensure wettability with the ceramic substrate during melting. The active metal component reacts with the ceramic substrate to generate oxides and nitrides, and these products strengthen the bond between the brazing material and the ceramic substrate. Specific examples of the active metal include titanium, zirconium, hafnium, niobium, tantalum, vanadium, and compounds thereof. These ratios are as follows: 80 to 100 parts by weight of silver, preferably 85 to 95 parts by weight, and 20 to 0 parts by weight of copper, preferably 15 to 5 parts by weight; Department.

【0022】接合温度は、高すぎると銅回路又は放熱銅
板中へのAgの拡散が進み、また低すぎると十分に銅板
とセラミックス基板が接合しないため、780〜830
℃の範囲が望ましい。
If the bonding temperature is too high, the diffusion of Ag into the copper circuit or the heat-dissipating copper plate proceeds, and if the bonding temperature is too low, the copper plate and the ceramics substrate are not sufficiently bonded.
C. is desirable.

【0023】本発明の効果は、回路基板の信頼性の向上
であり、その評価をヒートサイクル試験後の3点曲げ強
度、及び銅回路又は放熱銅板とセラミックス基板との接
合界面より生じるクラック(水平クラック)の進展度合
いで行うと、本発明品のヒートサイクル30回後の強度
は従来品よりも約20kg/mm2 向上し、また水平ク
ラックの進展度合いは約0.65倍のスピードとなる。
The effect of the present invention is to improve the reliability of the circuit board. The evaluation is based on the three-point bending strength after the heat cycle test and the crack (horizontal level) generated from the joint interface between the copper circuit or the heat-radiating copper plate and the ceramic substrate. When the cracks are developed, the strength of the product of the present invention after 30 heat cycles is improved by about 20 kg / mm 2 compared to the conventional product, and the rate of development of the horizontal crack is about 0.65 times the speed.

【0024】[0024]

【実施例】以下、本発明を実施例と比較例をあげて具体
的に説明する。
The present invention will be specifically described below with reference to examples and comparative examples.

【0025】実施例1〜5 銀粉末89重量部、銅粉末5重量部、ジルコニウム粉末
3重量部、チタン粉末3重量部、テルピネオール15重
量部、及びポリイソブチルメタアクリレートのトルエン
溶液を固形分で5重量部加えてよく混練し、ろう材ペー
ストを調整した。
Examples 1 to 5 89 parts by weight of silver powder, 5 parts by weight of copper powder, 3 parts by weight of zirconium powder, 3 parts by weight of titanium powder, 15 parts by weight of terpineol, and a toluene solution of polyisobutyl methacrylate at a solid content of 5 parts A weight part was added and kneaded well to prepare a brazing filler metal paste.

【0026】このろう材ペーストを、窒化アルミニウム
基板(60mm×36mm×0.65mm:熱伝導率1
70W/mK)の回路面にスクリーン印刷によってパタ
ーン率=0.20のL字型パターンに塗布し、放熱面
(裏面)には全面塗布した。その際の塗布量(乾燥後)
は9mg/cm2 とした。
An aluminum nitride substrate (60 mm × 36 mm × 0.65 mm: heat conductivity: 1)
An L-shaped pattern having a pattern ratio of 0.20 was applied to the circuit surface of 70 W / mK) by screen printing, and the entire surface was applied to the heat radiation surface (back surface). Application amount at that time (after drying)
Was 9 mg / cm 2 .

【0027】次いで、回路面に60mm×36mm×
0.3〜0.5mmの銅板を、また反対面に60mm×
36mm×0.15mmの銅板を接触配置し、その積層
体の30個を、枠体と押し板と該押し板の押圧手段とか
ら構成されてなるカーボン製加熱部材(特願平9−21
6219号の図1参照)に押圧5kg/cm2 をかけて
収納し、赤外線加熱式炉を用い、真空度1×10-5To
rr以下、表1に示す接合温度で30分加熱した後、2
℃/分の速度で冷却して接合体を製造した。
Next, a 60 mm × 36 mm ×
0.3-0.5mm copper plate, and 60mm ×
A copper plate having a size of 36 mm × 0.15 mm is placed in contact therewith, and 30 of the laminates are made of a carbon heating member (Japanese Patent Application No. 9-21) composed of a frame, a pressing plate, and pressing means for the pressing plate.
No. 6219) under pressure of 5 kg / cm 2 and stored in an infrared heating furnace at a degree of vacuum of 1 × 10 −5 To.
After heating at the bonding temperature shown in Table 1 for 30 minutes or less,
The joined body was manufactured by cooling at a rate of ° C./min.

【0028】次いで、この接合体の銅板上にUV硬化タ
イプのエッチングレジストをスクリーン印刷で塗布後、
塩化第2銅溶液を用いてエッチング処理を行って銅板不
要部分を溶解除去し、更にエッチングレジストを5%苛
性ソーダ溶液で剥離した。このエッチング処理後の接合
体には、銅回路パターン間に残留不要ろう材や活性金属
成分と窒化アルミニウム基板との反応物があるので、そ
れを除去するため、温度60℃、10%フッ化アンモニ
ウム溶液に10分間浸漬した。
Next, after applying an UV-curable etching resist by screen printing on the copper plate of the joined body,
Unnecessary portions of the copper plate were dissolved and removed by performing an etching treatment using a cupric chloride solution, and the etching resist was peeled off with a 5% sodium hydroxide solution. In the joined body after the etching process, there is a residual unnecessary brazing material or a reactant between the active metal component and the aluminum nitride substrate between the copper circuit patterns. Dipped in the solution for 10 minutes.

【0029】比較例1〜2 実施例において、銅板と窒化アルミニウム基板の積層体
の30個をカーボン製加熱部材に収納しそれを赤外線加
熱式炉で真空加熱するかわりに、該積層体の30個をカ
ーボンヒーターによる加熱炉のカーボン板に上積み配置
し、その上面に500gのタングステン製重しを載せて
真空加熱したこと以外は、実施例に準じて回路基板を製
造した。
Comparative Examples 1 and 2 In the example, instead of storing 30 pieces of the laminate of the copper plate and the aluminum nitride substrate in a heating member made of carbon and heating it by vacuum in an infrared heating furnace, 30 pieces of the laminate were used. Was placed on a carbon plate of a heating furnace using a carbon heater, and a 500 g tungsten weight was placed on the upper surface thereof, and a vacuum heating was carried out according to the example, except that a circuit board was manufactured.

【0030】これら一連の処理を経て製作された回路基
板について、断面における銅の平均結晶粒子径を測定し
た。測定は、回路基板を切断後、切断片を樹脂包埋、研
磨し、露出した銅板の断面を5%希硝酸に5分間浸漬し
て酸化被膜を除去した後、マイクロスコープにて行っ
た。
The average crystal grain size of copper in the cross section of the circuit board manufactured through these series of processes was measured. The measurement was performed using a microscope after cutting the circuit board, embedding the cut piece with a resin, polishing the cut piece, immersing the cross section of the exposed copper plate in 5% diluted nitric acid for 5 minutes to remove the oxide film, and then using a microscope.

【0031】また、回路基板の初期及びヒートサイクル
試験30サイクル後の3点曲げ強度を測定した。測定
は、スパン30mm、クロスヘッドスピード0.5mm
/minとし、放熱側から押して行った。
The three-point bending strength of the circuit board at the initial stage and after 30 cycles of the heat cycle test was measured. Measurement is 30mm span, 0.5mm crosshead speed
/ Min, and pushed from the heat radiation side.

【0032】更に、耐ヒートサイクル性試験を行い、銅
回路又は放熱銅板の銅板が剥離開始したヒートサイクル
回数を測定した。ヒートサイクル試験は、気中、−40
℃×30分保持後、25℃×10分間放置、更に125
℃×30分保持後、25℃×10分間放置を1サイクル
として行った。
Further, a heat cycle resistance test was performed, and the number of heat cycles at which the copper plate of the copper circuit or the heat radiating copper plate started to peel was measured. The heat cycle test was performed in the air at -40.
After maintaining the temperature for 30 minutes at 25 ° C for 10 minutes,
After holding at 30 ° C. for 30 minutes, one cycle of standing at 25 ° C. for 10 minutes was performed.

【0033】以上の結果を表1に示した。The above results are shown in Table 1.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【発明の効果】本発明によれば、耐ヒートサイクル性が
向上した高信頼性の回路基板が提供される。
According to the present invention, a highly reliable circuit board having improved heat cycle resistance is provided.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 セラミックス基板と、銅回路又は銅回路
及び放熱銅板とが、Ag成分と活性金属成分を含むろう
材で接合されてなるものであって、銅回路及び/又は放
熱銅板の断面における銅の平均結晶粒子径が300μm
以上であることを特徴とする回路基板。
A ceramic substrate and a copper circuit or a copper circuit and a heat-dissipating copper plate are joined by a brazing material containing an Ag component and an active metal component, and are formed in a cross section of the copper circuit and / or the heat-dissipating copper plate. Average crystal grain size of copper is 300μm
A circuit board characterized by the above.
JP28394697A 1997-10-16 1997-10-16 Circuit board Pending JPH11121889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28394697A JPH11121889A (en) 1997-10-16 1997-10-16 Circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28394697A JPH11121889A (en) 1997-10-16 1997-10-16 Circuit board

Publications (1)

Publication Number Publication Date
JPH11121889A true JPH11121889A (en) 1999-04-30

Family

ID=17672279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28394697A Pending JPH11121889A (en) 1997-10-16 1997-10-16 Circuit board

Country Status (1)

Country Link
JP (1) JPH11121889A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003051647A (en) * 2001-08-06 2003-02-21 Sumitomo Metal Ind Ltd Ceramic circuit board and manufacturing method therefor
JP2006128286A (en) * 2004-10-27 2006-05-18 Kyocera Corp Metal ceramic composite, its bonding method, and heat dissipation substrate using composite
JP2007066995A (en) * 2005-08-29 2007-03-15 Hitachi Metals Ltd Ceramic wiring board and its manufacturing method, and semiconductor module
JP2011124585A (en) * 2011-01-07 2011-06-23 Hitachi Metals Ltd Ceramic wiring board and manufacturing method and semiconductor module of the same
WO2011149065A1 (en) * 2010-05-27 2011-12-01 京セラ株式会社 Circuit board and electronic device using the same
JP2012023404A (en) * 2011-10-28 2012-02-02 Hitachi Metals Ltd Circuit substrate, and semiconductor module using the same
WO2016121660A1 (en) * 2015-01-29 2016-08-04 京セラ株式会社 Circuit board and electronic device
KR20180091011A (en) * 2015-12-07 2018-08-14 아우루비스 슈톨베르그 게엠베하 운트 컴파니 카게 Copper ceramic substrate, a copper semi-finished product for manufacturing a copper ceramic substrate and a method for manufacturing a copper ceramic substrate
WO2018180965A1 (en) * 2017-03-30 2018-10-04 株式会社 東芝 Ceramic-copper circuit substrate and semiconductor device using same
US20200137924A1 (en) * 2018-10-25 2020-04-30 Mikros Technologies Llc Active device with heat sink and low mechanical stress
JP2021503433A (en) * 2017-11-29 2021-02-12 ロジャーズ ジャーマニー ゲーエムベーハーRogers Germany GmbH How to make metal semi-finished products, how to make metal-ceramic substrates and metal-ceramic substrates
WO2021187201A1 (en) * 2020-03-18 2021-09-23 株式会社 東芝 Laminate, ceramic-copper circuit board, method for manufacturing laminate, and method for manufacturing ceramic-copper circuit board

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003051647A (en) * 2001-08-06 2003-02-21 Sumitomo Metal Ind Ltd Ceramic circuit board and manufacturing method therefor
JP4644989B2 (en) * 2001-08-06 2011-03-09 株式会社村田製作所 Manufacturing method of ceramic circuit board
JP2006128286A (en) * 2004-10-27 2006-05-18 Kyocera Corp Metal ceramic composite, its bonding method, and heat dissipation substrate using composite
JP2007066995A (en) * 2005-08-29 2007-03-15 Hitachi Metals Ltd Ceramic wiring board and its manufacturing method, and semiconductor module
WO2011149065A1 (en) * 2010-05-27 2011-12-01 京セラ株式会社 Circuit board and electronic device using the same
JP5474188B2 (en) * 2010-05-27 2014-04-16 京セラ株式会社 Circuit board and electronic device using the same
JP2011124585A (en) * 2011-01-07 2011-06-23 Hitachi Metals Ltd Ceramic wiring board and manufacturing method and semiconductor module of the same
JP2012023404A (en) * 2011-10-28 2012-02-02 Hitachi Metals Ltd Circuit substrate, and semiconductor module using the same
WO2016121660A1 (en) * 2015-01-29 2016-08-04 京セラ株式会社 Circuit board and electronic device
KR20180091011A (en) * 2015-12-07 2018-08-14 아우루비스 슈톨베르그 게엠베하 운트 컴파니 카게 Copper ceramic substrate, a copper semi-finished product for manufacturing a copper ceramic substrate and a method for manufacturing a copper ceramic substrate
JP2019500303A (en) * 2015-12-07 2019-01-10 アルビス シュトルベルグ ゲーエムベーハー アンド シーオー ケイジー Copper ceramic substrate, copper semi-finished product for producing copper ceramic substrate, and method for producing copper ceramic substrate
WO2018180965A1 (en) * 2017-03-30 2018-10-04 株式会社 東芝 Ceramic-copper circuit substrate and semiconductor device using same
JPWO2018180965A1 (en) * 2017-03-30 2020-02-06 株式会社東芝 Ceramic copper circuit board and semiconductor device using the same
US11013112B2 (en) 2017-03-30 2021-05-18 Kabushiki Kaisha Toshiba Ceramic copper circuit board and semiconductor device based on the same
JP2021503433A (en) * 2017-11-29 2021-02-12 ロジャーズ ジャーマニー ゲーエムベーハーRogers Germany GmbH How to make metal semi-finished products, how to make metal-ceramic substrates and metal-ceramic substrates
JP2022087102A (en) * 2017-11-29 2022-06-09 ロジャーズ ジャーマニー ゲーエムベーハー Method for producing semi-finished metal product, method for producing metal-ceramic substrate, and metal-ceramic substrate
US20200137924A1 (en) * 2018-10-25 2020-04-30 Mikros Technologies Llc Active device with heat sink and low mechanical stress
US11729945B2 (en) * 2018-10-25 2023-08-15 Mikros Technologies Llc Active device with heat sink and low mechanical stress
WO2021187201A1 (en) * 2020-03-18 2021-09-23 株式会社 東芝 Laminate, ceramic-copper circuit board, method for manufacturing laminate, and method for manufacturing ceramic-copper circuit board

Similar Documents

Publication Publication Date Title
JP3211856B2 (en) Circuit board
JP3012835B2 (en) Substrate and its manufacturing method, metal joined body suitable for substrate
JPH11121889A (en) Circuit board
KR100374379B1 (en) Substrate
JP4674983B2 (en) Manufacturing method of joined body
JP2911644B2 (en) Circuit board
JP3308883B2 (en) Board
JPH08102570A (en) Ceramic circuit board
JP2004055576A (en) Circuit board and power module using it
JP3933287B2 (en) Circuit board with heat sink
JP3182354B2 (en) Circuit board and its evaluation method
JP3419620B2 (en) Method for manufacturing ceramic circuit board having metal circuit
JP4057436B2 (en) Copper base alloy and heat sink material using the copper base alloy
JP3537320B2 (en) Circuit board
JP3190282B2 (en) Circuit board manufacturing method
JPH06310822A (en) Ceramic substrate and usage thereof
JP2001267447A (en) Ceramic circuit board and semiconductor device
JP4326706B2 (en) Circuit board evaluation method, circuit board and manufacturing method thereof
JP2002137974A (en) Method of bonding ceramic body and copper plate
JP3219545B2 (en) Method for manufacturing aluminum oxide substrate having copper circuit
JP3585338B2 (en) Aluminum nitride substrate and its use
JP4685245B2 (en) Circuit board and manufacturing method thereof
JP2001135902A (en) Ceramic circuit board
JPH10167804A (en) Ceramic substrate, circuit board using same and its production
JP2000031609A (en) Circuit board