JPS5811065A - Nozzle for gas wiping of coating liquid for steel strip - Google Patents
Nozzle for gas wiping of coating liquid for steel stripInfo
- Publication number
- JPS5811065A JPS5811065A JP10879181A JP10879181A JPS5811065A JP S5811065 A JPS5811065 A JP S5811065A JP 10879181 A JP10879181 A JP 10879181A JP 10879181 A JP10879181 A JP 10879181A JP S5811065 A JPS5811065 A JP S5811065A
- Authority
- JP
- Japan
- Prior art keywords
- nozzle
- gas
- angle
- steel strip
- strip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Application Of Or Painting With Fluid Materials (AREA)
- Coating Apparatus (AREA)
- Coating With Molten Metal (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、銅帯の表面に連続的に塗布された塗布型化
成処理液あるいは塗料液の余剰分をガスワイピングして
付着量すなわち塗膜厚さヲ訓整するためのノズル装置の
改良に関する。DETAILED DESCRIPTION OF THE INVENTION This invention is for adjusting the amount of adhesion, that is, the thickness of the coating film, by gas wiping the surplus of the coating type chemical conversion treatment liquid or coating liquid that has been continuously applied to the surface of the copper strip. This invention relates to improvements in nozzle devices.
従来、塗布型クロメート処理液などによる溶融亜鉛メッ
キ銅帯の塗布型化成処理或いはカラー鉄板用塗料液によ
る塗装を銅帯の走行中に連続的に行なう場合、それら塗
布液の付着量の調整には、走行ライン中に配置された絞
シロールによるロールワイピング法が採用されているの
が一般的である。しかしながらこのようなロールワイピ
ング法はラインスピードの高速化に不利であシ、高速ラ
インで鋼帯の塗布液の付着量金絞シロールで連続的に調
整する場合、銅帯巾方向の付着量の均一性の低下や、銅
帯の板厚変更時及び速度低下時の付着量制御の追従性の
低下、さ、らにはロール磨耗に対するメンテナンス対策
やライン停止時にロールに付着して固化した塗材による
絞シ性の低下など、種々の解決すべき問題点が目立って
くる。Conventionally, when coating a hot-dip galvanized copper strip with a coating-type chromate treatment solution or painting with a colored iron plate coating solution continuously while the copper strip is running, there is a method to adjust the adhesion amount of the coating solution. Generally, a roll wiping method using a squeeze roll placed in the running line is adopted. However, such a roll wiping method is disadvantageous in increasing the line speed, and when continuously adjusting the coating amount of the coating liquid on the steel strip with a metal drawing roll on a high-speed line, it is difficult to maintain a uniform coating amount in the width direction of the copper strip. In addition, there is a decrease in the followability of coating amount control when changing the thickness of the copper strip or when the speed decreases.In addition, maintenance measures against roll wear and paint material that adheres to the roll and hardens when the line is stopped. Various problems that need to be solved, such as a decrease in wringability, become noticeable.
このような問題点を解決する方策のひとつとして、走行
する銅帯に非接触であシ、しかも付着量のコン)0−ル
が容易であるという、所謂ガスワイピング(気体絞シ)
法の適用が考えられる。このガスワイピング法は銅帯の
溶融金属メッキラインにおいて広く利用され、その典型
的な例全第1図に示す。第1図において鋼帯(1)は溶
融金属メッキ浴(2)から連続的に引き出され、浴(2
)の上方にて両面の巾方向にわたってスリーット状に開
口する気体数多ノズル(31、(3’ ) から噴射
されるガスによって表面の余剰の溶融金属が払拭され、
これによってメッキ厚みがコントロールされるものであ
る。このような溶融金属メツキラインに用いられるガス
ワイピング用ノズル(3)(3’)は、第2図に拡大し
て示すように、上下のノズル肩部(4) (4’ )に
よって形成されるノズル先端の断面外形線のがす角【θ
1が鈍角であシ、また矢印(5)で示すガス噴射方向と
銅帯(1)とのなす角(α)も90〜85°とほぼ直角
である。One way to solve these problems is to use so-called gas wiping, which does not contact the running copper strip and can easily control the amount of adhesion.
Application of law may be considered. This gas wiping method is widely used in hot dip metal plating lines for copper strips, a typical example of which is shown in FIG. In FIG. 1, a steel strip (1) is continuously drawn from a molten metal plating bath (2);
) Excess molten metal on the surface is wiped away by gas injected from multiple gas nozzles (31, (3')) that open in a slit shape across the width of both sides.
This controls the plating thickness. The gas wiping nozzle (3) (3') used in such a molten metal plating line is a nozzle formed by upper and lower nozzle shoulders (4) (4'), as shown enlarged in Fig. 2. The cutting angle of the cross-sectional outline of the tip [θ
1 is an obtuse angle, and the angle (α) between the gas injection direction shown by the arrow (5) and the copper strip (1) is also approximately a right angle of 90 to 85°.
しかしながら、このようなノズル(31(3’ )をそ
のまま鋼帯の塗布型化成処理液や塗料液などのガスワイ
ピンクに使用すると、走行する鋼帯(1)に対してノズ
ル(3)(3’)の上流側に第2図で矢印(7)で示す
: ような二次空気の巻き込みが生じているので、
これによる渦流の発生等の乱れによって、はげしい/(
フラッシュ(6)の発生とそのノズル肩部(4) (4
)への付着が起シ、さらに付着スプラッシュがノズルス
リット部(8)へ引込まれてスリットが詰まり、巾方向
のワイピング効果にむら音生じたシ、付着スプラッシュ
がノズル噴射ガスによって再び鋼帯に付きつけられて製
品汚染を生じたシする。However, if such a nozzle (31 (3')) is used as it is for gas wipe coating such as coating type chemical conversion treatment liquid or paint liquid for steel strips, the nozzle (3) (3') As shown by the arrow (7) in Figure 2, the entrainment of secondary air occurs on the upstream side of the
The disturbances caused by this, such as the generation of vortices, cause severe damage.
Occurrence of flash (6) and its nozzle shoulder (4) (4
), and the adhesion splash was drawn into the nozzle slit (8), clogging the slit, causing uneven noise in the width direction wiping effect, and the adhesion splash was attached to the steel strip again by the nozzle jet gas. product contamination caused by contact with the product.
これは、塗布型化成処理液や塗料液などの液物性が溶融
金属に比べて高粘度でしかも低密度であってスプラッシ
ュを発生しやすいことによるものと考えられる。すなわ
ちこれら塗布型化成処理液や塗料液は粘度が1〜数百C
pb密度が1t/−程度であし、溶融金属と比較した場
合、粘度において同程度から約百倍、密度において数分
の−である。その結果、走行する鋼帯に付着して持ち上
げられるこれら塗布液の量は、ラインスピードヲ一定と
した場合に溶融金属のそれより格段に多くなシ、従って
付着液膜のだぶつきによってもたらされるスプラッシュ
の発生が激しくなる。走行する銅帯に付着して持ち上げ
られる塗布液の量は、理論的に粘度とラインスピードの
積の平方根に比例し、密度の平方根に反比例することが
知られている。このことから考えて、前記ノズル(4)
(4’)によるガスワイピンクをこれら塗布液のガ2ワ
イ・ピングに適用する場合#−i′、溶融金属メッキの
場合に比べてその銅帯の走行速度をかなシ低速にしなけ
ればならず、経験的に30m/−以下でなければスプラ
ッシュの発生のない操業は不可能である。This is thought to be due to the fact that the physical properties of coating-type chemical conversion treatment liquids and coating liquids are higher in viscosity and lower in density than molten metal, and are more likely to generate splashes. In other words, these coating type chemical conversion treatment liquids and coating liquids have a viscosity of 1 to several hundred C.
The pb density is about 1 t/-, and when compared with molten metal, the viscosity is about the same to about 100 times, and the density is several minutes lower. As a result, the amount of these coating liquids that adhere to and lift up the running steel strip is much larger than that of molten metal when the line speed is constant, and therefore the amount of the coating liquid that is lifted up by adhering to the steel strip is much larger than that of the molten metal. occurrence becomes more intense. It is known that the amount of coating liquid that adheres to and is lifted by a running copper strip is theoretically proportional to the square root of the product of viscosity and line speed, and inversely proportional to the square root of density. Considering this, the nozzle (4)
When applying gas wipe pink according to (4') to the gas wipe pin of these coating liquids #-i', the running speed of the copper strip must be much lower than in the case of molten metal plating. According to my experience, it is impossible to operate without splashing unless the distance is 30 m/- or less.
更に溶融金属に比べて走行鋼帯に付着して持ち上げられ
るこれら塗布液の表面張力が小さいこともスプラッシュ
発生の一因と々つでいる。すなわちこれら塗布液はその
表面張力が溶融金属のそれの十分の一以下のものが殆ど
で、また発生するスプラッシュの液滴径も小さく、更に
密度が小さいこともあって、ノズル先端での二次空気の
巻き込みおよび乱れの影響を受は易く、ノズル汚染やノ
ズルスリットの目詰シ、或いは製品品質の低下を招いて
しまう。このような現象は特に速乾性の塗布液において
は極めて重要視すべき点である。Furthermore, the fact that the surface tension of these coating liquids that adhere to and are lifted by the running steel strip is lower than that of molten metal is also one of the causes of splash generation. In other words, most of these coating liquids have a surface tension that is less than one-tenth of that of molten metal, and the droplet diameter of the generated splash is small and the density is also small, so secondary particles at the nozzle tip are It is easily affected by air entrainment and turbulence, leading to nozzle contamination, nozzle slit clogging, or deterioration of product quality. Such a phenomenon should be extremely important, especially in the case of quick-drying coating liquids.
従来、溶融金属メッキの分野ではそのガスワイピング用
ノズルについて銅帯全巾のスプラッシュについては考慮
対象外で、わずかに銅帯両縁でのスプラッシュ発生がノ
ズル両端部の汚染を起すことについて対策がたてられ、
たとえば鋼帯の両縁部にアスベスト材や固型カーボン等
の当て板金当接し、両縁部からのスプラッシュの発生を
抑制する技術が知られている程度で、これとても当て板
が当接する部分のメッキ付着量が減少するとか、或いは
該当て板が鋼帯の巾方向の揺れに完全に追従できないと
きは当て板が全くない場合と同じとなってしまうなどの
欠点をもっている。4iだ発生したスプラッシュからノ
ズル汚染を防ぐ方法として、気体絞シノズル上方の銅帯
両側縁付近に補助ノズルを取付け、鋼帯にその進行方向
の上流へ向けて気体を吹きつけることによシ、鋼帯両側
縁から発生したスプラッシュを吹き落す技術もあるが、
気体絞シノズルと補助ノズルの微妙な空気圧コントロー
ルが困難であシ、銅帯巾方向のメッキ付着量の均一性が
悪くなるなどの問題があるため実用化には至っておらず
、ましてや溶融金属よυスプラッシュの発生が起き易い
前述塗布液のガスワイビングには適用困難である。Conventionally, in the field of molten metal plating, splash from the entire width of the copper strip was not considered for gas wiping nozzles, and countermeasures were taken to prevent the slight occurrence of splash on both edges of the copper strip from contaminating both ends of the nozzle. Terasure,
For example, there is a known technique for suppressing the occurrence of splash from both edges by abutting plate metal such as asbestos material or solid carbon on both edges of the steel strip. There are disadvantages such as a decrease in the amount of plating deposited, or if the plate cannot completely follow the swinging of the steel strip in the width direction, it becomes the same as if there were no patch plate at all. As a method to prevent nozzle contamination from the splash generated during 4i, auxiliary nozzles are installed near both edges of the copper strip above the gas throttling nozzle, and the gas is blown onto the steel strip in the upstream direction of the steel strip. There is a technique to blow away the splash generated from both sides of the belt, but
It is difficult to delicately control the air pressure of the gas throttle nozzle and the auxiliary nozzle, and there are problems such as poor uniformity in the amount of plating deposited in the width direction of the copper strip, so it has not been put into practical use, much less for molten metal. It is difficult to apply this method to gas wiping of the above-mentioned coating liquid, which tends to generate splashes.
このように、溶融金属メッキの分野においてさえ鋼帯両
側縁からのスプラッシュ発生によるノズル汚染の問題が
完全に解決していないことや、更に塗布型化成処理液や
塗料液などの塗布液のガスワイピングの場合には、ライ
ン速度が高速になると鋼帯の巾方向にわたシ全中部分で
スプラッシュが発生することを考えると、溶融金属メッ
キ分野で使用されているようなタイプの構造形式のガス
ワイピングノズルを塗布型化成処理液やン塗料液などの
塗布液のワイピングにそのまま適用することは、操業面
やメンテナンス、或いは製品品質の面で不可能であるこ
とが明らかである。As described above, even in the field of molten metal plating, the problem of nozzle contamination due to splash generated from both sides of the steel strip has not been completely resolved, and furthermore, gas wiping of coating liquids such as coated chemical conversion treatment liquids and paint liquids has not been completely solved. In the case of gas wiping of the type of structure used in the field of molten metal plating, considering that when the line speed increases, splash occurs in the entire widthwise direction of the steel strip. It is clear that it is impossible to directly apply the nozzle to wiping coating liquids such as coated chemical conversion treatment liquids and paint liquids in terms of operation, maintenance, or product quality.
この発明は、塗布型クロメート処理液などの塗布型化成
処理液、或いはカラー鉄板用などの塗料液をはじめとす
る、高粘度、低密度、低界面張力の物性を有し、しかも
塗膜自体が銅帯表面に皮膜を形成する塗布液に対し、そ
の銅帯表面への塗布後にガスワイピングを施すノズル装
置を提供しようとするもので、特にガスワイピング時に
おけるスプラッシュ発生の低減と、スプラッシュによる
ノズル汚染やノズルスリットの目詰υの防止と、製品品
質の低下の防止とを達成し、同時に例えば200m/m
i超えるライン速度の高速化を達成することを目的とし
ている。This invention has physical properties of high viscosity, low density, and low interfacial tension, such as coating type chemical conversion treatment liquids such as coating type chromate treatment liquids, or coating liquids for colored steel plates, and moreover, the coating film itself is The purpose is to provide a nozzle device that performs gas wiping after applying a coating solution that forms a film on the surface of a copper strip.In particular, it aims to reduce the occurrence of splash during gas wiping and to reduce nozzle contamination due to splash. This prevents clogging of nozzle slits and nozzle slits, and prevents deterioration of product quality.
The aim is to achieve a line speed exceeding i.
すなわちこの発明の銅帯塗布液のガスワイピング用ノズ
ル装置は、断面形状において両ノズル肩部の外形線のな
す角度が45〜90度で且つ一方のノズル唇部先端にま
で達する平担が外壁面會肩するスリット型気体噴出ノズ
ルを、塗布液をガスワイピングすべき鋼帯の走行ライン
に対し前記外壁面を銅帯進行方向の上流側に向けて該外
壁面と前記走行ラインとのなす角度が90度以上となる
ように配置し、且つ前記ノズルからの気体噴射方向を銅
帯進行方向の上流側へ向けると共に銅帯上への気体衝突
入射角を70〜30度の範囲内としたことを特徴として
いる。That is, in the nozzle device for gas wiping of a copper band coating liquid of the present invention, in the cross-sectional shape, the angle formed by the contour lines of both nozzle shoulders is 45 to 90 degrees, and the outer wall surface is flat and extends to the tip of one nozzle lip. A slit-type gas jet nozzle is positioned so that the outer wall surface faces upstream in the traveling direction of the copper strip with respect to the traveling line of the steel strip where the coating solution is to be gas-wiped, so that the angle between the outer wall surface and the traveling line is 90 degrees or more, and the gas jet direction from the nozzle is directed upstream in the copper strip traveling direction, and the gas collision incidence angle on the copper strip is within the range of 70 to 30 degrees. It is a feature.
この発明によれば、ガスワイピングのノズルとその配置
を最適化することによって例えば200m/−以上の高
速う・インスピードでも、高粘度、低密度、低界面張力
の塗布液のガスワイピング全スプラッシュの発生による
ノズル汚染或いはノズルスリットの目詰りおよび製品品
質の低下なく行なえるものであシ、噴射流量ないし噴射
角の調整等によシ塗布液の付着iを全中一様に所望に調
整できるものである。According to this invention, by optimizing the gas wiping nozzle and its arrangement, even at high wiping speeds of 200 m/- or more, the entire gas wiping splash of coating liquids with high viscosity, low density, and low interfacial tension can be reduced. This can be done without contaminating the nozzle or clogging the nozzle slit or degrading the product quality due to the occurrence of spraying, and the adhesion of the coating liquid can be adjusted as desired by adjusting the injection flow rate or injection angle, etc. It is.
この発明を実施例に基づいて図面と共に説明すれは以下
の通シである。The present invention will be described below based on embodiments and with drawings.
第3図はこの発明のガスワイピング用ノズル装置の片側
の基本構成単位を断面で示す図で、図面の表裏方向が銅
帯(1)の巾方向に相当し、ノズルGO)はこの巾方向
にわたってノズルスリット(8)1にもちノスルスリッ
)(8)U上下のノズル唇!(91(9’ )ノ薄刃状
縁部向士の対向間隙により形成されている。Fig. 3 is a cross-sectional view of one side of the basic structural unit of the gas wiping nozzle device of the present invention, where the front and back directions of the drawing correspond to the width direction of the copper strip (1), and the nozzle GO Nozzle slit (8) 1 (nozzle slit) (8) U upper and lower nozzle lips! (91 (9')) are formed by opposing gaps between the thin blade-like edges.
第3図に示すノズル構造は、前述二次空気の巻き込みと
乱れに注目して行彦った水モデルによるシミュレート実
験によシこれら巻き込みと乱れを極力低減できるように
ノズル先端断面列形線のなす角(θ′)およびノズル底
面とライン中の銅帯とのなす角け)、そして気体噴射方
向(角度β)を最適化して得たものである。The nozzle structure shown in Fig. 3 was developed based on a simulation experiment using a water model that focused on the entrainment and turbulence of the secondary air mentioned above. This was obtained by optimizing the angle (θ') formed between the nozzle bottom surface and the copper strip in the line), and the gas injection direction (angle β).
すなわちこのスリット型気体噴射ノズル00)は、ヘッ
ダ部側の外周面と接線状に外面が連ら々る一対のノズル
肩部(9) (9’ )からなシ、一方のノズル肩部(
9′)はその外面によって先端まで達する平担な外壁面
(11’)’に形成すると共に、もう一方のノズル肩部
(9)のテーパ一端面0υと外壁面(11’)とのなす
角、すなわち両ノズル肩部の外形線のなりノズル先端の
角腰二(θ′)が45〜90度の鋭角となっておシ、ま
たラインに対して銅帯(1)の進行方向の上流側に前記
外壁面(11’)を向けて、外壁面(11’)とライン
とのなす角(γ)が90度以上の鈍角となるようにライ
ンに配置し、さらにノズルスリット(8)からの気体噴
射方向を鋼帯進行方向の上流側へ向けて鋼帯(1)上へ
の気体衝突入射角φ)を70〜60度の範囲内としてい
る。In other words, this slit-type gas injection nozzle 00) consists of a pair of nozzle shoulders (9) (9') whose outer surfaces are tangential to the outer peripheral surface on the header side, and one nozzle shoulder (9').
9') is formed into a flat outer wall surface (11')' that reaches the tip by its outer surface, and the angle formed between the tapered end surface 0υ of the other nozzle shoulder (9) and the outer wall surface (11'). That is, the outline of both nozzle shoulders and the angle θ' at the nozzle tip are at an acute angle of 45 to 90 degrees, and the upstream side in the direction of movement of the copper strip (1) with respect to the line The outer wall surface (11') is directed to the line, and the outer wall surface (11') is arranged in a line so that the angle (γ) between the line and the outer wall surface is an obtuse angle of 90 degrees or more. The gas injection direction is directed toward the upstream side in the steel strip traveling direction, and the gas collision incidence angle φ) onto the steel strip (1) is set within a range of 70 to 60 degrees.
前記角#(γ)は90度未満であると二次空気(1〜の
巻き込みが大きくなってノズル先端付近で気流の乱れを
生じるので90度以上の鈍角とし、また前記角度(θ′
)は、90度を超えると前記角度(γ)との関連でノズ
ル底面(9)のテーパ一端面0υがライン走行中の銅帯
表面に近づくことになシ、干渉によって銅帯表面に疵を
付けたシノズル金損傷したジするので90度以下とし、
また45度よシ小さいとノズル底面(9)(9’)によ
シスリットノズルの形状保持及び成形加工か困難となる
ので45度以上とする。If the angle #(γ) is less than 90 degrees, the entrainment of the secondary air (1 to 1) will increase, causing airflow turbulence near the nozzle tip.
) exceeds 90 degrees, the tapered end surface 0υ of the nozzle bottom (9) will approach the surface of the copper strip running on the line in relation to the angle (γ), and interference will cause scratches on the surface of the copper strip. Since the attached metal nozzle may be damaged, keep it under 90 degrees.
Also, if the angle is smaller than 45 degrees, it will be difficult to maintain the shape of the slit nozzle and form it due to the nozzle bottom surface (9) (9'), so the angle should be 45 degrees or more.
気体衝突入射角φ)4−t、鋼帯(1)の進行方向に逆
らってワイピングガスを鋼帯表面に斜めに轟て、かくし
てその噴射流量・流速と共に30〜70度の範囲内で適
宜設定することによυ、ワイピングすべき塗布液の物性
・付着量に応じた適正なガスワイピング効果が得られる
ものである。Gas collision incidence angle φ) 4-t, the wiping gas is ejected diagonally onto the steel strip surface against the advancing direction of the steel strip (1), and thus the injection flow rate and flow velocity are appropriately set within the range of 30 to 70 degrees. By doing so, an appropriate gas wiping effect can be obtained depending on the physical properties and adhesion amount of the coating liquid to be wiped.
第3図において下方のノズル底面(9′)の先端内面(
14’)は丸くなっているが、これはヘッダ部(Iのに
与えられるガス圧力を噴射に有効に使うためであシ、先
端寄)部分において上方のノズル底面(9)の平担な内
面側と平行部を形成してもよいが、この平行部の長宮が
長くなると噴射ガスの層流性や直進性の向上が得られる
反面、圧損が太きくなるので、平行部を設ける場合はそ
の長さをノズルと鋼帯との間隔によって選ぶ必要がある
。尚、第3図の例では、ヘッダ部Qaとノズル底面(9
7(9’ )とを別部材で作って組合せてあシ、ノズル
底面(9)(9′)は例えばステンレス等の硬質材をそ
のまま或いは母材表面の仕上げ後に窒化加工やクロムメ
ッキ等によシ表面硬化させたものによって構成できる。In Fig. 3, the inner surface of the tip of the lower nozzle bottom (9')
14') is rounded, but this is because the gas pressure applied to I is used effectively for injection, and the flat inner surface of the upper nozzle bottom (9) in the header part (near the tip). It is also possible to form a part parallel to the side, but if the length of this parallel part becomes long, the laminar flow and straightness of the injected gas will be improved, but the pressure drop will increase, so if a parallel part is provided, it is necessary to The length must be selected depending on the distance between the nozzle and the steel strip. In the example shown in FIG. 3, the header part Qa and the nozzle bottom surface (9
7 (9') are made from separate parts and assembled together.The nozzle bottom (9) (9') may be made of a hard material such as stainless steel as it is, or by nitriding or chrome plating after finishing the base material surface. It can be constructed from a surface-hardened material.
第4図(a)はこの発明のノズル装置(15) (15
’ )による噴射ガスa8によってワイピングする場合
の縦型ライン構成を示し、同図(b)は同じく横型ライ
ンを示している。第4図(a)においてQ6)は前述の
塗布液、第4図(b)においてα7)は塗布液αωを散
布するノズルである。FIG. 4(a) shows the nozzle device (15) (15) of the present invention.
' ) shows a vertical line configuration in the case of wiping with the injection gas a8, and FIG. In FIG. 4(a), Q6) is a nozzle for spraying the aforementioned coating liquid, and in FIG. 4(b), α7) is a nozzle for spraying the coating liquid αω.
以下にこれら縦型又は横型ラインでのこの発明の実施例
および比較例を示す。Examples and comparative examples of the present invention using these vertical or horizontal lines are shown below.
〔実施例1〕
板厚0.27調、板巾1219mの溶融亜鉛メッキ鋼帯
(1)全第4図(a)のような縦型ライン中で有機系塗
布型化成処理液αe中全全浸漬通過せたのち上方で本発
明に孫るノズル装置α5)(15’)によって両面対向
方式にてガスワイピングした。この場合の塗布型化成処
理液aOの粘度は4cp、@度は1.06t / Ca
表面張力は56 dyn/αであシ、ノズル先端の角度
(θ′)は75度、ノズルと鋼帯との間@は15調ずつ
、ノズルスリット中は1.5 m 、外壁面(11’)
と銅帯とのなす角(γ)は90度、空気噴射方向は水平
よシ下方へ45度方向、ヘッダ空気圧0、8 Kg /
* 、であったが、ライン速度f 600 ml−h
にしてもスプラッシュ発生によるノズル汚染は無く、最
終的に皮膜付着量が約59/n?で均一の両面塗装下地
処理鋼帯を得ることができた。[Example 1] A hot-dip galvanized steel strip (1) with a plate thickness of 0.27 mm and a plate width of 1219 m was coated in an organic coating type chemical conversion treatment liquid αe in a vertical line as shown in Figure 4 (a). After passing through the immersion, gas wiping was performed above using a nozzle device α5) (15') based on the present invention in a double-sided facing manner. In this case, the viscosity of the coating type chemical conversion treatment liquid aO is 4 cp, @degree is 1.06 t/Ca
The surface tension is 56 dyn/α, the angle (θ') at the nozzle tip is 75 degrees, the distance between the nozzle and the steel strip is 15 degrees, the inside of the nozzle slit is 1.5 m, and the outer wall surface (11' )
The angle (γ) between the copper strip and the copper strip is 90 degrees, the air injection direction is 45 degrees downward from the horizontal, and the header air pressure is 0.8 kg/
*, but the line speed f 600 ml-h
However, there was no nozzle contamination due to splash generation, and the final film adhesion amount was approximately 59/n? It was possible to obtain a uniform coated steel strip on both sides.
〔実施例2〕
板厚0.27 wn、板巾1219−の溶融亜鉛メッキ
鋼帯(1)全第4図(1))のような1横型ライン中で
ノズルαDによるスプレィ塗料液αe中を通過させたの
ち上下両面から本発明によるノズル装置a■(15’)
でガスワイピングしたFJIJの1場合11上記塗料液
の粘度は12Dcp 、密度は2.1r/d、表面張力
は52 dyn/mであシ、ノズル先端の角度(θ′)
は45度、ノズルと銅帯との間隔ilt15mずつ、ノ
ズルスリット中は1.2 tm 、外壁面(11’)と
鋼帯とのなす角(γ)は90度、空気噴射方向は鋼帯進
行方向の上流 。[Example 2] A hot-dip galvanized steel strip (1) with a plate thickness of 0.27 wn and a plate width of 1219 mm was sprayed in a spray paint liquid αe by a nozzle αD in a horizontal line such as (1) in Figure 4 (1)). After passing, the nozzle device a (15') according to the present invention is inserted from both upper and lower surfaces.
In the case of FJIJ gas-wiped with
is 45 degrees, the distance between the nozzle and the copper strip is 15 m, the inside of the nozzle slit is 1.2 tm, the angle (γ) between the outer wall surface (11') and the steel strip is 90 degrees, and the air injection direction is the direction of steel strip advancement. Direction upstream.
へ向けて鋼帯上への噴射空気衝突入射角’t22.5度
とし、ヘッダ空気圧#′i1.OKf/iであったが、
ライン速度が200 m /−hにおいてもスプラッシ
ュ発生によるノズル汚染が無く、塗装膜厚28μの均一
なカラー鉄板とすることができた。The collision incidence angle of the injected air onto the steel strip 't is 22.5 degrees, and the header air pressure is #'i1. It was OKf/i, but
Even at a line speed of 200 m/-h, there was no nozzle contamination due to splash generation, and a uniform colored iron plate with a coating thickness of 28 μm could be obtained.
〔比較例〕
板厚0.27m、板巾1219簡の溶融亜鉛メッキ鋼帯
の表面に実施例1と同様にして同じ塗布型化成処理液を
浸漬塗布したのち、ノズル先端角度(θ′)が120度
の溶融金属メツキライン用ガスワイピングノズルを用い
て、ノズルと鋼帯との間隔115mm、ノズルスリット
中f 1.51111、ノズル底面と銅帯とのなす角度
を30度、空気噴射方向を水平方向とし、ヘッダ空気圧
0.8に9/−にてガスワイピングを行なったところ、
90m/―のライン速度でスプラッシュ発生によるノズ
ル汚染が生じ、約10分間の連続運転でノズルスリット
の目詰りを起したため以後の操業を停止せざるを得なか
った。[Comparative Example] After applying the same coated chemical conversion treatment liquid to the surface of a hot-dip galvanized steel strip with a thickness of 0.27 m and a width of 1219 strips in the same manner as in Example 1, the nozzle tip angle (θ') was Using a 120 degree gas wiping nozzle for molten metal plating line, the distance between the nozzle and the steel strip is 115 mm, f in the nozzle slit is 1.51111, the angle between the bottom of the nozzle and the copper strip is 30 degrees, and the air jet direction is horizontal. When gas wiping was performed at header air pressure of 0.8 to 9/-,
Nozzle contamination occurred due to splash generation at a line speed of 90 m/-, and the nozzle slit became clogged after about 10 minutes of continuous operation, so subsequent operations had to be stopped.
以上に述べたように、この発明によれば200m/−以
上の高速ラインでも、高粘度、低密度、低表面張力の物
性をもつ途布型化成処理液ないし箪料液などの塗布液に
対して2スプラツシユの発生によるノズル汚染或いはノ
ズルスリットの目詰り、更にけ製品品質の低下を招くこ
となく塗膜の厚さや塗布液の付着量を均一に所望に調整
できるものである。またこの発明においてノズル先端を
硬化処理した材料ないし硬質材で構成することによシ鋼
帯の振動時の干渉によってもノズル先端が変形【7たシ
損傷を受けたりしなくなシ従って長期の安定したガスワ
イピンクが果せる。As described above, according to the present invention, even on high-speed lines of 200 m/- or more, coating liquids such as off-the-shelf chemical conversion treatment liquids or coating liquids having physical properties of high viscosity, low density, and low surface tension can be used. The thickness of the coating film and the amount of coating liquid deposited can be uniformly adjusted to a desired value without contaminating the nozzle or clogging the nozzle slit due to the occurrence of splashes, and without causing any deterioration in product quality. In addition, in this invention, by configuring the nozzle tip with a hardened material or a hard material, the nozzle tip will not be deformed or damaged even by interference during vibration of the steel strip, and therefore, it will be stable for a long time. You can achieve the gasy pink color.
尚、この発明によるノズル装置は勿論のことながら溶融
金属メッキの付着量コントロール用のガスワイピンクに
適用できるが、その場合はノズル要部(9) (9’
)をチタン材などで構成して熱による変形を防止するこ
とが望ましい。It should be noted that the nozzle device according to the present invention can of course be applied to a gas wiping device for controlling the amount of deposited molten metal plating, but in that case, the main part of the nozzle (9) (9'
) is preferably made of titanium or the like to prevent deformation due to heat.
第1閣は従来公知の溶融金属メツキラインにおけるガス
ワイピング装置を示す模式図、第2図はそのノズル部の
拡大図、第3図はこの発明の一実施例に係る基本構成単
位全示す断面図、第4図(a)←)はこの発明のノズル
装置による縦型および横型のがスワイビングラインの模
式図である。
1・・・鋼帯、9 、9’・・・ノズル要部、10・・
・ノズル装置、11・・・テーパ一端面、11′・・・
外壁面、12・・・ヘッダ部。
代理人 弁理士 佐 藤 正 年The first panel is a schematic diagram showing a gas wiping device in a conventionally known molten metal plating line, FIG. 2 is an enlarged view of its nozzle part, and FIG. 3 is a sectional view showing all the basic structural units according to an embodiment of the present invention. FIG. 4(a) is a schematic diagram of vertical and horizontal swiving lines produced by the nozzle device of the present invention. 1... Steel strip, 9, 9'... Nozzle main part, 10...
・Nozzle device, 11... Tapered end surface, 11'...
Outer wall surface, 12...header part. Agent Patent Attorney Masatoshi Sato
Claims (1)
5〜90度で且つ一方のノズル唇部先端にまで達する平
担な外壁面を有するスリット型気体噴出ノズルを、塗布
液をガスワイピングすべき銅帯の走行ラインに対し前記
外壁面を銅帯進行方向の上流側に向けて該外壁面と前記
走行ラインとのなす角が90度以上となるように配置し
、且つ前記ノズルからの気体噴射方向を銅帯進行方向の
上流側へ向けると共に鋼帯上への気体衝突入射角を70
〜30度の範囲内としたこと?特徴とする鋼帯塗布液の
ガスワイピング用ノズル装置。In the cross-sectional shape, the angle formed by the outline of both nozzle lips is 4
A slit-type gas jetting nozzle having a flat outer wall surface at an angle of 5 to 90 degrees and reaching the tip of one nozzle lip is used to move the outer wall surface of the copper strip along the running line of the copper strip where the coating liquid is to be gas-wiped. The steel strip is disposed so that the angle between the outer wall surface and the traveling line is 90 degrees or more toward the upstream side of the copper strip, and the gas jet direction from the nozzle is directed toward the upstream side of the copper strip traveling direction. The upward gas collision incidence angle is 70
Did you mean it was within the range of ~30 degrees? Features: Nozzle device for gas wiping of steel strip coating liquid.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10879181A JPS5811065A (en) | 1981-07-14 | 1981-07-14 | Nozzle for gas wiping of coating liquid for steel strip |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10879181A JPS5811065A (en) | 1981-07-14 | 1981-07-14 | Nozzle for gas wiping of coating liquid for steel strip |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5811065A true JPS5811065A (en) | 1983-01-21 |
JPS6216139B2 JPS6216139B2 (en) | 1987-04-10 |
Family
ID=14493566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10879181A Granted JPS5811065A (en) | 1981-07-14 | 1981-07-14 | Nozzle for gas wiping of coating liquid for steel strip |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5811065A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011105987A (en) * | 2009-11-17 | 2011-06-02 | Nisshin Steel Co Ltd | Gas-wiping device for hot-dip galvanizing |
JP2022169936A (en) * | 2021-04-28 | 2022-11-10 | Jfeスチール株式会社 | Application method of surface treatment liquid and manufacturing method of coated metal strip |
-
1981
- 1981-07-14 JP JP10879181A patent/JPS5811065A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011105987A (en) * | 2009-11-17 | 2011-06-02 | Nisshin Steel Co Ltd | Gas-wiping device for hot-dip galvanizing |
JP2022169936A (en) * | 2021-04-28 | 2022-11-10 | Jfeスチール株式会社 | Application method of surface treatment liquid and manufacturing method of coated metal strip |
Also Published As
Publication number | Publication date |
---|---|
JPS6216139B2 (en) | 1987-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6410591B2 (en) | ||
JP2009062563A (en) | Apparatus for manufacturing hot-dip metal plated coated steel strip | |
JP5470932B2 (en) | Hot-dip metal-plated steel strip manufacturing equipment and hot-metal-plated steel strip manufacturing method | |
JPS5811065A (en) | Nozzle for gas wiping of coating liquid for steel strip | |
JPH06292854A (en) | Device for peeling off liquid coating film | |
JP5444730B2 (en) | Molten metal plating steel strip production equipment | |
JP3498613B2 (en) | Gas wiping nozzle | |
JPH042756A (en) | Gas wiping method for continuous hot dipping | |
JPS6240350A (en) | Method for controlling plating deposition of molten metal | |
JP2000070796A (en) | Method and device for controlling thickness of coating film | |
JPS6048587B2 (en) | Melt plating equipment | |
JPH0724384A (en) | Coating application method and roll coater used in the method | |
JPH10204599A (en) | Method for controlling hot-dip coating amount and gas wiping nozzle | |
JPH10306359A (en) | Method for preventing adhesion of splash in continuous hot dip metal coating line | |
JPH0434906Y2 (en) | ||
GB2095290A (en) | Solder coating metallised vitreous sheet margins | |
JPH02163358A (en) | Production of zero spangle steel sheet | |
CA1082912A (en) | Apparatus for liquid coating thickness control, fluid nozzle and method of removing excess liquid coating from web edges | |
JPH06346211A (en) | High-speed hot-dip metal coating device | |
JPH10265930A (en) | Adjusting method for quantity of adhesion of molten metal and device for the same in continuos hot-dip coating | |
JPH08356Y2 (en) | Gas wiping device | |
JPS6210263A (en) | Metal hot dipping method | |
JPS5826057Y2 (en) | Fluid nozzle shutter | |
JPH0434907Y2 (en) | ||
JPH03287752A (en) | Continuous hot dipping device for band steel |