JPS6339250Y2 - - Google Patents

Info

Publication number
JPS6339250Y2
JPS6339250Y2 JP9341282U JP9341282U JPS6339250Y2 JP S6339250 Y2 JPS6339250 Y2 JP S6339250Y2 JP 9341282 U JP9341282 U JP 9341282U JP 9341282 U JP9341282 U JP 9341282U JP S6339250 Y2 JPS6339250 Y2 JP S6339250Y2
Authority
JP
Japan
Prior art keywords
nozzle
steel strip
amount
tip
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9341282U
Other languages
Japanese (ja)
Other versions
JPS58195673U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9341282U priority Critical patent/JPS58195673U/en
Publication of JPS58195673U publication Critical patent/JPS58195673U/en
Application granted granted Critical
Publication of JPS6339250Y2 publication Critical patent/JPS6339250Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Nozzles (AREA)
  • Coating Apparatus (AREA)
  • Coating With Molten Metal (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は、鋼帯の連続溶融めつきにおいて鋼帯
表面のめつき金属付着量を制御するための吹拭ノ
ズルの改良に関する。 連続溶融めつきでは、鋼帯を溶融めつき金属浴
に送通し、浴の上方に引出したのち、その表面に
付着しためつき金属の過剰分を除去して所定の付
着量に制御する方法として、近年ロールワイピン
グに代え、吹拭ノズルを用いたガスワイピング法
が用いられている。これは、第3図に示すように
めつき浴1の上方で、鋼帯sの表裏両面に吹拭ノ
ズル2,3を指向させ、ノズルからの噴射ガスに
て過剰のめつき金属を吹拭するものであり、この
ガスワイピングにより、めつき鋼板のライン速度
は年々上昇してきた。 しかし、ライン速度が上昇するにつれ、鋼帯に
よるめつき金属の持ち上り量が増すために、製品
におけるめつき金属付着量が増加する傾向にあ
る。その一方、めつき鋼板用途の多様化が進み、
例えば溶接性の問題等から、めつき金属付着量の
より少い鋼板が要求されている。 めつき金属付着量を少くするだけならば、ライ
ン速度を下げることにより目的を達することがで
きるが、それでは製造能率の低下、製造コストの
上昇を招く。その他の方法として吹拭ノズルの噴
射ガス圧力を高めるか、ノズル噴射口(スリツ
ト)幅を拡大して風量を増すか、あるいは吹拭ノ
ズルを鋼帯表面に近接させるなどの方法が考えら
れる。しかし、噴射ガスの圧力・風量の増加に
は、高圧・大容量の装置を必要とし、設備費が高
くなるばかりか、ノズル騒音が激しく作業環境の
悪化を招く。吹拭ノズルを鋼帯に近接設備するの
は簡便な方策ではあるが、ノズル部を通過する鋼
帯は板厚方向(矢印x)に振動しているので、ノ
ズルと鋼帯の間隔を余り狭めると両者の接触が生
じ、鋼帯表面のめつき層の毀損やノズルスリツト
の目詰りなどにより、製品不良を惹起する。ライ
ン速度が速くなるほど、鋼帯の振動振幅が増大す
るので、それだけノズルと鋼帯の間隔を広げねば
ならない。間隔を広げるほど、噴射ガスの吹拭力
が弱まるので付着量を少くすることは一そう困難
となる。 このため、高速製造下ではめつき金属付着量の
少いめつき鋼板を製造することができず、付着量
を少くするにはライン速度を犠性にせねばならな
いのが実情である。 本考案は上記問題を解消したものであり、ノズ
ル形状の改良により吹拭力を著しく高め、高速製
造下にも付着量の少いめつき鋼板を得ることを可
能にした。 第1図に本考案の実施例を示す。本考案ノズル
3は、その先端部肉厚aが薄く、かつ該先端部か
ら連続してノズル後方に傾斜する側面bとノズル
スリツトからのガス噴射方向Cのなす角度αが小
さい点に特徴がある。その先端部肉厚aは2mm以
下、傾斜角度αは30〜60゜であるのが好ましい。
これを従来の吹拭ノズルと比べると、従来のノズ
ルは第4図に示すごとき形状を有し、その前壁部
肉厚aは約5mm前後、傾斜角αは約65〜80゜であ
る。 かかる従来の吹拭ノズルでは、ノズルスリツト
2,1から噴射されたガスGが鋼帯表面に衝突し
たのち、ノズル近傍でよどみを生じて後続する噴
射ガス流を妨害するため、その吹拭力が弱められ
ている。これに対し、本考案ノズルは先端部が鋭
角状に形成されているので、鋼帯に衝突後のガス
流はスムースに散逸し、ノズル近傍でのよどみや
噴射ガス流との干渉が効果的に解消される結果、
噴射ガス圧力や鋼帯との間隔が同一の条件でも、
従来ノズルより強い吹拭力を鋼帯表面に作用さ
せ、めつき金属付着量をより少くすることができ
る。この効果は、傾斜角αが小さい程強化され
る。この点からαは45゜以下であることがより好
ましい。もつとも、あまりαを小さくするとノズ
ルの構造上、先端の肉厚がうすくなり過ぎ強度不
足や熱影響による変形などの不具合を生じるの
で、αの下限を30゜とするのである。 第2図は、連続溶融亜鉛めつきにおける本考案
と従来の吹拭ノズルの吹拭効果を比較したもので
ある。図中、曲線〜は本考案ノズル(但し、
先端部肉厚a:2mm、傾斜角度α:60゜、
45°、30゜)、は従来ノズル(但し、先端部肉
厚a:5mm、傾斜角度α:60゜)であり、いづれ
もガス噴射圧力0.6Kgf/cm2・G、ノズル先端と
鋼帯表面の間隔は15mmである。図から明らかなと
おり、本考案ノズルは吹拭力がすぐれ、従来ノズ
ルに比べてめつき金属付着量を少くすることがで
き、その吹拭力は先端形状を鋭角化する程強化さ
れることがわかる。 本考案吹拭ノズルのガス噴射口(スリツト)
3,1の形状・寸法は特別のものである必要はな
いが、むろんそのスリツト幅は鋼帯の板幅より広
く、その全幅にわたつて噴射ガスの吹拭力を作用
させ得るものであることを要する。また、ノズル
の先端部は、表面窒化加工、クロムめつき、焼入
れあるいは硬質材の肉盛溶接などにて耐摩耗性を
付与して耐久性を高めることもできる。 本考案吹拭ノズルによりめつき金属の吹拭を行
うには、常法により鋼帯表面に対して直角に指向
させるか、あるいは鋼帯の進行方向と逆方向に、
鋼帯に対して適当な角度だけ傾けて指向させ、常
温あるいは加熱した空気、不活性ガスなどを、適
当な圧力、例えば0.05〜2.0Kgf/cm2・Gにて噴
射させればよい。 なお、めつき浴から引上げられる鋼帯は、その
両側縁部(エツヂ部)が中央部よりめつき金属付
着量が多くなり、エツヂ部にオーバーコートを生
じ易いが、本考案吹拭ノズルを用いれば、その強
い吹拭作用により、板幅方向の付着量の不均一さ
を緩和し、めつき品質を一そう高めることができ
る。 実施例 1〜3 鋼帯(板厚0.5mm、板幅914mm)の連続溶融亜鉛
めつきにおいて、本考案吹拭ノズルを用いてめつ
き金属付着量を制御しめつき鋼板を製造した。ま
た、比較として従来ノズルを用いるほか、同じ条
件で連続溶融亜鉛めつきを行つた。いづれの場合
も、噴射ガス圧力は0.6Kgf/cm2・G、鋼帯表面
と吹拭ノズル先端間隔は15mmである。試験条件お
よび結果を第1表に示す。
The present invention relates to an improvement of a blowing nozzle for controlling the amount of plating metal deposited on the surface of a steel strip during continuous hot-dip galvanizing of the steel strip. In continuous hot-dip plating, the steel strip is passed through a hot-dip metal bath, pulled out above the bath, and then the excessive amount of hot-dipped metal adhering to the surface is removed to control the amount of adhesion to a predetermined level. In recent years, instead of roll wiping, a gas wiping method using a blow-wiping nozzle has been used. As shown in Fig. 3, blowing nozzles 2 and 3 are directed at both the front and back sides of the steel strip s above the plating bath 1, and the excess plating metal is blown off with the jet gas from the nozzles. Due to this gas wiping, the line speed for galvanized steel sheets has increased year by year. However, as the line speed increases, the amount of plating metal lifted up by the steel strip increases, so the amount of plating metal deposited on the product tends to increase. On the other hand, the use of galvanized steel sheets continues to diversify.
For example, due to problems such as weldability, steel sheets with a smaller amount of plated metal are required. If the amount of plating metal deposited is simply reduced, the goal can be achieved by lowering the line speed, but this will result in a decrease in manufacturing efficiency and an increase in manufacturing costs. Other possible methods include increasing the pressure of the gas injected from the wiping nozzle, increasing the air volume by widening the width of the nozzle injection port (slit), or moving the wiping nozzle closer to the surface of the steel strip. However, increasing the pressure and air volume of the injected gas requires high-pressure, large-capacity equipment, which not only increases equipment costs but also causes severe nozzle noise and deteriorates the working environment. Installing the blowing nozzle close to the steel strip is a simple measure, but since the steel strip passing through the nozzle vibrates in the thickness direction (arrow x), the distance between the nozzle and the steel strip should not be too narrow. Contact between the two may occur, causing product defects due to damage to the plating layer on the surface of the steel strip or clogging of the nozzle slit. As the line speed increases, the vibration amplitude of the steel strip increases, so the distance between the nozzle and the steel strip must be increased accordingly. The wider the interval, the weaker the wiping force of the injected gas becomes, making it more difficult to reduce the amount of adhesion. For this reason, it is not possible to produce a plated steel sheet with a small amount of metal deposited under high-speed production, and the actual situation is that the line speed must be sacrificed in order to reduce the amount of metal deposited. The present invention solves the above problems, and by improving the nozzle shape, the wiping force is significantly increased, making it possible to obtain plated steel sheets with a small amount of adhesion even during high-speed production. FIG. 1 shows an embodiment of the present invention. The nozzle 3 of the present invention is characterized by having a thin wall thickness a at its tip and a small angle α between a side surface b that continuously slopes toward the rear of the nozzle from the tip and the gas injection direction C from the nozzle slit. It is preferable that the wall thickness a of the tip part is 2 mm or less, and the inclination angle α is 30 to 60 degrees.
Comparing this with a conventional blow-wiping nozzle, the conventional nozzle has a shape as shown in FIG. 4, with a front wall thickness a of about 5 mm and an inclination angle α of about 65 to 80 degrees. In such a conventional blowing nozzle, after the gas G injected from the nozzle slits 2 and 1 collides with the steel strip surface, it stagnates near the nozzle and obstructs the subsequent jetted gas flow, so the blowing force is weakened. It is being In contrast, the tip of the nozzle of the present invention is formed with an acute angle, so the gas flow dissipates smoothly after colliding with the steel strip, effectively preventing stagnation near the nozzle and interference with the jet gas flow. As a result of being resolved,
Even if the injection gas pressure and the distance from the steel strip are the same,
It applies a stronger wiping force to the steel strip surface than conventional nozzles, making it possible to further reduce the amount of plated metal deposited. This effect becomes stronger as the inclination angle α becomes smaller. From this point of view, it is more preferable that α is 45° or less. However, if α is made too small, the thickness of the tip becomes too thin due to the structure of the nozzle, causing problems such as insufficient strength and deformation due to heat effects, so the lower limit of α is set at 30°. FIG. 2 compares the blowing effect of the present invention and the conventional blowing nozzle in continuous hot-dip galvanizing. In the figure, the curve ~ indicates the nozzle of the present invention (however,
Tip wall thickness a: 2mm, inclination angle α: 60°,
45°, 30°) are conventional nozzles (tip wall thickness a: 5 mm, inclination angle α: 60°), gas injection pressure 0.6 Kgf/cm 2 G, nozzle tip and steel strip surface. The spacing is 15mm. As is clear from the figure, the nozzle of the present invention has excellent wiping power and can reduce the amount of plated metal deposited compared to conventional nozzles, and the wiping power can be strengthened by making the tip shape more acute. Recognize. Gas injection port (slit) of the invented blowing nozzle
3. The shape and dimensions of 1 do not need to be special, but the width of the slit is of course wider than the width of the steel strip, and the wiping force of the injected gas can be applied over the entire width. It takes. Further, the tip of the nozzle can be given wear resistance by surface nitriding, chrome plating, hardening, overlay welding of hard material, etc. to increase durability. To blow away plated metal with the blowing nozzle of the present invention, it can be directed perpendicularly to the surface of the steel strip in the conventional manner, or in the direction opposite to the direction of movement of the steel strip.
It may be oriented at an appropriate angle with respect to the steel strip, and room temperature or heated air, inert gas, etc. may be injected at an appropriate pressure, for example, 0.05 to 2.0 Kgf/cm 2 ·G. It should be noted that when a steel strip is pulled up from a plating bath, the amount of plating metal deposited on both side edges (edge parts) is greater than the center part, and overcoat tends to occur on the edge parts. For example, its strong wiping action can alleviate non-uniformity in the amount of adhesion in the board width direction and further improve plating quality. Examples 1 to 3 In continuous hot-dip galvanizing of steel strips (plate thickness: 0.5 mm, plate width: 914 mm), a galvanized steel plate was produced by controlling the amount of plated metal deposited using the blowing nozzle of the present invention. For comparison, we also used a conventional nozzle and conducted continuous hot-dip galvanizing under the same conditions. In either case, the injection gas pressure was 0.6 kgf/cm 2 ·G, and the distance between the steel strip surface and the blowing nozzle tip was 15 mm. Test conditions and results are shown in Table 1.

【表】 上記試験結果から明らかなように、本考案ノズ
ルを用いれば、高速度で、従来ノズルでは得られ
ない低付着量のめつき鋼板を得ることができる。
[Table] As is clear from the above test results, by using the nozzle of the present invention, it is possible to obtain a plated steel plate at a high speed and with a low coating weight that cannot be obtained with conventional nozzles.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施例を示す要部縦断面図、
第2図は吹拭ノズルの吹拭力を例示するグラフ、
第3図は連続溶融めつき装置の配置概略図、第4
図は従来の吹拭ノズルの要部縦断面図である。 1……めつき浴、2,3……吹拭ノズル、S…
…鋼帯。
FIG. 1 is a vertical sectional view of the main part showing an embodiment of the present invention.
Figure 2 is a graph illustrating the blowing force of the blowing nozzle.
Figure 3 is a schematic diagram of the arrangement of the continuous melting and gluing equipment;
The figure is a longitudinal cross-sectional view of the main part of a conventional blow-wiping nozzle. 1...Plating bath, 2, 3...Blowing nozzle, S...
...Steel strip.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] めつき浴から引上げられた鋼帯表面に付着した
溶融めつき金属の過剰分を噴射ガスにて除去しそ
の付着量を制御するための吹拭ノズルであつて、
ノズル先端部肉厚aが3mm以下であり、該先端部
から連続してノズル後方に傾斜する側壁面bとノ
ズルからのガス噴射方向とのなす角度αが30〜
60゜であることを特徴とする吹拭ノズル。
A blowing nozzle for controlling the amount of molten galvanized metal adhering to the surface of a steel strip pulled up from a plating bath by removing with a jet gas,
The wall thickness a of the nozzle tip is 3 mm or less, and the angle α between the side wall surface b that slopes continuously from the tip toward the rear of the nozzle and the gas injection direction from the nozzle is 30 to
A blowing nozzle characterized by a 60° angle.
JP9341282U 1982-06-21 1982-06-21 blowing nozzle Granted JPS58195673U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9341282U JPS58195673U (en) 1982-06-21 1982-06-21 blowing nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9341282U JPS58195673U (en) 1982-06-21 1982-06-21 blowing nozzle

Publications (2)

Publication Number Publication Date
JPS58195673U JPS58195673U (en) 1983-12-26
JPS6339250Y2 true JPS6339250Y2 (en) 1988-10-14

Family

ID=30224217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9341282U Granted JPS58195673U (en) 1982-06-21 1982-06-21 blowing nozzle

Country Status (1)

Country Link
JP (1) JPS58195673U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6205753B2 (en) * 2013-02-28 2017-10-04 新日鐵住金株式会社 Gas wiping nozzle and gas wiping method
JP2017164664A (en) * 2016-03-14 2017-09-21 中外炉工業株式会社 Air knife device

Also Published As

Publication number Publication date
JPS58195673U (en) 1983-12-26

Similar Documents

Publication Publication Date Title
US3681118A (en) Method of removing excess molten metal coatings by employing low pressure gas streams
JPS6339250Y2 (en)
JP5418550B2 (en) Manufacturing method of molten metal plated steel strip
JP2007302957A (en) Method for producing hot dip metal plated steel strip
JP4816105B2 (en) Manufacturing method of molten metal plated steel strip
JP3498613B2 (en) Gas wiping nozzle
JP4899588B2 (en) Gas wiping nozzle and method for producing molten metal plated steel sheet
JP6205753B2 (en) Gas wiping nozzle and gas wiping method
KR100362671B1 (en) Cooling method of alloyed hot-dip galvanized steel sheet and cooling apparatus used therein
JPH01230758A (en) Method for controlling amount of plated molten metal and gas injection nozzle
JPH05306449A (en) Method for preventing sticking of molten metal splash to strip surface at the time of hot dip metal coating
JP3800448B2 (en) Method for adjusting the amount of molten metal in continuous hot dipping
JPH042756A (en) Gas wiping method for continuous hot dipping
JPS6048587B2 (en) Melt plating equipment
JP2019167553A (en) Method and apparatus for manufacturing hot-dip metal plated steel strip
JPH11152556A (en) Device for removing excess plating liquid of hot dip metal coating
JP4853107B2 (en) Manufacturing method of molten metal plated steel strip
JP5386779B2 (en) Method and apparatus for manufacturing hot-dip galvanized steel sheet
JPH07188888A (en) Method for controlling coating weight of hot dip metal coating, the control device, and controlling nozzle
JPH06346211A (en) High-speed hot-dip metal coating device
JP4765641B2 (en) Manufacturing method of molten metal plated steel strip
JPS644835Y2 (en)
JPH06184717A (en) Method for controlling coating rate of hot-dip metal coating
JPH072606Y2 (en) Hot dip gas wiping nozzle
JPH0741924A (en) Device for preventing vibration of hot dip metal coating