JPS58109193A - Biological teratment for waste water - Google Patents

Biological teratment for waste water

Info

Publication number
JPS58109193A
JPS58109193A JP56206651A JP20665181A JPS58109193A JP S58109193 A JPS58109193 A JP S58109193A JP 56206651 A JP56206651 A JP 56206651A JP 20665181 A JP20665181 A JP 20665181A JP S58109193 A JPS58109193 A JP S58109193A
Authority
JP
Japan
Prior art keywords
wastewater
bod
waste water
tank
solid particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56206651A
Other languages
Japanese (ja)
Inventor
Koji Ishizaki
石崎 晃司
Masao Sato
正夫 佐藤
Tadashige Nakamoto
忠繁 中元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP56206651A priority Critical patent/JPS58109193A/en
Publication of JPS58109193A publication Critical patent/JPS58109193A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To perform nitrification of N compds. and removal of phosphates simultaneously and to permit efficient and stable maintenance and control of operations by bringing the waste water added with Ca agents and controlled of pH and BOD amts. into contact with specific solid particles under aerobic conditions. CONSTITUTION:Waste water, Ca agents and alkali agents are put into a treating tank 1 through pipes 6, 7, 8, and pH is controlled to 7-9.5 with a pH controller 13. The waste water ascends in an inside cylinder 2 together with solid particles 4 by the effect of the air through a pipe 3, and circulating flow in an arrow direction is formed. The particles 4 are, for example, ores, bone black, etc. on which microbial membranes and hydroxyapatite can be formed. The feed rate for the waste water is controlled automatically in such a way that the volume loading quantity of BOD by a BOD detector 14 attains <=1.5kg-BOD/m<2>.day. Then the N compds. in the waste water are oxidized down to nitrate N; at the same time, phosphates react with Ca and sticking of microorganisms thereon is eliminated at all or the phosphates are removed by growing crystals of hydroxyapatite on the surfaces of a part of the particles 4.

Description

【発明の詳細な説明】 本発#4は、アン叱ニア性値素、有機a窒素化合物など
のi1素化合物及びリン酸塩類を含む廃水の生物学的処
理方法に関し、詳細には表面#Cl1k生物膜を形成さ
せた固体粒子を処理槽内に介在せしめることによシ、同
−処理槽内で窒素化合物の硝化及びリン酸塩類の除去を
行なわしめ廃水を効率良(且つ経済的に浄化す1方*に
関すh%のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention #4 relates to a method for biological treatment of wastewater containing annealing elements, i1 compounds such as organic a nitrogen compounds, and phosphates, and in detail, surface #Cl1k By interposing solid particles with biofilm formation in the treatment tank, nitrogen compounds can be nitrified and phosphates can be removed in the treatment tank, thereby purifying wastewater efficiently (and economically). h% for one side*.

一般に、窒素化合物やりン#楓類を含む廃水の浄化には
生−学的処理方法が採用される。即ちリン酸塩類は好気
的条件下でリン酸樵類酸化分解微生物c以下単に「リン
酸填類分解曹」という)の−11によp@化分解除去さ
れる。一方窒素化合物は好気的条件下で−わゆる硝化菌
によ〕亜硝酸性鷹素戚いは硝酸性窒素に酸化され(硝化
)、次いでこれらoH硝酸性*m*いは硝酸性窒素はい
わゆる脱窺檜に導かれ、嫌気的条件下で脱窒菌によシ窒
雪ガxK@5eされてCIl電)除去さ、れる。その場
合、曽ン酸樵領分解曹及び硝化菌の最適成長条件には差
がある為、讐ン酸塩類除去のための曽拳 化分解槽と厘雪化合物の硝酸化のための酸化槽C以下「
硝化槽」という)とは夫々独立に設けゐのが普通であ〉
、又微生物源としては通常浮遊汚泥が用いられる。
Generally, biological treatment methods are employed to purify wastewater containing nitrogen compounds and phosphorus. That is, phosphates are decomposed and removed by -11 of phosphoric acid oxidative decomposing microorganisms (hereinafter simply referred to as "phosphoric acid decomposers") under aerobic conditions. On the other hand, nitrogen compounds are oxidized to nitrate nitrogen (nitrification) under aerobic conditions by so-called nitrifying bacteria; The snow is introduced into a so-called de-squeeze, where it is removed by denitrifying bacteria under anaerobic conditions. In that case, since there are differences in the optimal growth conditions for the chloride salts and nitrifying bacteria, the oxidation tank C is used to remove the chloride salts, and the oxidation tank C is used to nitrate the chloride compounds. below"
It is normal for each tank to be installed independently from the nitrification tank.
Also, suspended sludge is usually used as a microbial source.

しかし微生−による酸化処理という同一作用を行なわせ
ゐ処理工程を独立に設けることは経済的でな(、各処層
工s#cおける汚泥濃度もある程度以上高め為ことは因
−である。一方、浮遊汚泥を使用したいわゆる活性汚泥
法による場合は、処理速度が極めて遅く、処@IIC時
間がかかル、その丸め大容量の設備を必要とし、叉いわ
ゆるバルキング現象を起こして汚泥が処理槽から流出し
、処理効率を急低下させるなど安定な運転の維持管理を
行なうことが困鐘な場合がしばしば起とあという間一点
がありえ。
However, it is not economical to provide independent treatment steps that perform the same action of oxidation treatment by microorganisms (this is because the sludge concentration in each treatment layer s#c also increases beyond a certain level). On the other hand, in the case of the so-called activated sludge method using suspended sludge, the processing speed is extremely slow, the processing time is long, and large-capacity equipment is required, and the so-called bulking phenomenon occurs, causing the sludge to be processed. There are often cases where it is difficult to maintain and manage stable operation, such as leakage from the tank and a sudden drop in treatment efficiency.

本発明はこうした事情に着目してなされたものでその目
的とするところは、上記の問題点を全て解消し、効率的
で且つ安定な運転のm待管理ができる佑物学的廃水処理
方法を提供しようとするにToh。
The present invention has been made in view of these circumstances, and its purpose is to provide a wastewater treatment method that solves all of the above problems and enables efficient and stable operation management. Toh to try to provide.

しかしてこの様な目的を達成し′t4九本発明の構成と
は、処理槽に導入した廃水中の電雪化合物のト、。
However, the constitution of the present invention that achieves the above object is that the electrolyte compound in the wastewater is introduced into the treatment tank.

硝化及びリン#櫨頬の除去を同時に行なう方法であって
、表面に微生物膜及びヒドロキリアパタイトを生成し得
る固体粒子を好気的条件下で廃水に接触せしめる一方、
導入廃水中に力VVウム剤をIHIIt&と共KN水O
pHを7〜9Sa’C#llし、且つ処理槽内のBOD
容積負萄量零1.6kll−BoD4rky以下となる
様に廃水導入量17R4/&は廃水中のBOD量を調整
すゐ様にしぇ点にその要Wが存在すゐ。
A method for simultaneous nitrification and phosphorus removal, in which solid particles capable of forming microbial films and hydroxyapatite on their surfaces are brought into contact with wastewater under aerobic conditions, while
Introducing the VV agent into the wastewater with IHIt & KN water O
Adjust the pH to 7-9Sa'C#ll and reduce the BOD in the treatment tank.
The key point is that the amount of wastewater introduced 17R4/& should be adjusted so that the amount of BOD in the wastewater is adjusted so that the volumetric negative amount is less than 1.6kll-BoD4rky.

本発明で使用する固体粒子としては表面に微生物が生育
し、且つヒドロキリアパタイトを生成し得るもので、I
!に被処理廃水中における終端速度カ6〜1100 m
/hrと&、Aもの(粒子径でao、oJs〜1. O
m)であれば良く1例えばリン鉱石、青膨をはじめ砂、
アンスラサイト、活性炭、コークス。
The solid particles used in the present invention are particles on which microorganisms can grow and can produce hydroxyliapatite.
! The terminal velocity in the wastewater to be treated is 6 to 1100 m.
/hr and &, A (particle size: ao, oJs~1.O
m) may be used.1 For example, phosphate rock, azure, sand, etc.
Anthracite, activated carbon, coke.

高炉水砕スラグ等があげられ、v価で摩耗や破砕しにく
いものが好ましい、そして固体粒子の添加量としては処
理槽内におけゐ反応部容積の20〜8G憾c尾かけ容積
)程度が好ましい。即ち添加量が少な過ぎる場合(20
1Gに満えない場合)KF!、大部分の固体粒子、表面
上に微生物膜が付着し、微生物の付着していない粒子表
面が少なくな〉、その結果EFWキVアバIイ)0成長
する余地が嫌とんどな(な9、脱リン能力が阻害される
からであり、反対に添加量が多過ぎる場合(1104を
越える場合)Kは、固体粒子相互の摩擦が火車〈なシ、
微生物膜があ會夛付着せず硝化能力が阻害されJlから
である。
Examples include granulated blast furnace slag, etc., and it is preferable that it has a v-value and is resistant to abrasion and crushing, and the amount of solid particles added is about 20 to 8 G (20 to 8 g) of the reaction area volume in the treatment tank. preferable. In other words, if the amount added is too small (20
If less than 1G) KF! , most of the solid particles have a microbial film attached to their surface, and the surface of the particle free of microorganisms is small, resulting in very little room for EFW growth. 9. This is because the dephosphorization ability is inhibited.On the other hand, if the amount added is too large (more than 1104), the friction between the solid particles will cause
This is due to the fact that the microbial film does not accumulate and the nitrification ability is inhibited.

又本発154における被処理廃水のpHを7〜9.5と
規定、したのは、後述する実施例からも明らかな様に酸
性側では固体粒子のリン酸植頬除去効率及び硝化率共に
着しく減少するからであシ、一方pH9、fi以上では
硝化反応11CWC@影響を及ぼすからである。
In addition, the pH of the wastewater to be treated in 154 of the present invention was specified as 7 to 9.5 because, as is clear from the examples described later, on the acidic side, the phosphoric acid implant removal efficiency and nitrification rate of solid particles are both affected. On the other hand, at pH 9, fi or higher, the nitrification reaction is affected.

又被処理廃水に添加すべきカルVウム剤としては樵化力
A/Vウム、水酸化カフ1/Fウム等をあげゐことがで
き、その添加量として#i処SO兜金を期して理論量C
Ca/PO4(eA/Jf:)=1.117)以上とす
る。伺水酸化力klVつふを使用し九場合JIc#i、
被処理廃水のpH[整用アVカリ剤の使用を節減できる
ので経済的である。
Calcium agents to be added to the wastewater to be treated include calcane force A/V um, hydroxide cuff 1/F um, etc., and the amount of addition is expected to be #i treatment SO kakin. Theoretical quantity C
Ca/PO4(eA/Jf:)=1.117) or more. In the case of using hydration oxidation power klVtsufu, JIc#i,
It is economical because the use of alkali agents for adjusting the pH of wastewater to be treated can be reduced.

w!に軍’let@では悠瑠槽内0BOD容積負荷量を
1、6 kg−BO阪冒−aay以下に設定すゐことに
よシ説リン能力を高く維持する様にしている。即ちBO
D容積負荷量を1.6 kg−BOD/m’・day以
下に抑えることによシROD威分酸化曹の過度の増殖を
抑制して、その分粒子表面にaye樵領分解菌を十分付
着成長せしめてヒドロキシアバタイFを生成させ得る余
地を確保して脱りン効率を低下させない様にしている。
Lol! In the military'let@, the 0BOD volume load in the tank is set to less than 1.6 kg-BOD-aay to maintain the system's phosphorus capacity at a high level. That is, B.O.
By suppressing the D volume load to 1.6 kg-BOD/m'・day or less, excessive growth of ROD oxidizing soda can be suppressed, and the aye degrading bacteria can be sufficiently attached to the particle surface. A room for growth and generation of hydroxyabatai F is ensured so as not to reduce the dephosphorization efficiency.

以下実施例図面に基づき本発明の構成及び作用効果を詳
細に鋺明する。
Hereinafter, the configuration and effects of the present invention will be explained in detail based on the drawings of the embodiments.

811図は本発明を551繍するための装−の−例で、
固体粒子を空電吹込みによるエアリフト作用によって懸
濁浮遊させつつ廃水を処理する悠瑠楢を示したものであ
〕、とのWJKsPいて1は処理槽、2は内筒、8#i
空g&送入用配管、4は固体粒子、6は固体粒子沈降分
11璽(以下単に「分離室」という)・・%6は廃水送
入用配管s ’ #iCa剤供給用配管、8はアルカリ
剤供給用配管、1Gは循環配管である。
Figure 811 is an example of the equipment for sewing the present invention.
This is a WJKsP in which 1 is a treatment tank, 2 is an inner cylinder, and 8#i is a treatment tank that treats wastewater while suspending solid particles by airlift action caused by static electricity blowing.
Empty g & supply piping, 4 is solid particles, 6 is solid particle settling volume 11 (hereinafter simply referred to as "separation chamber")... % 6 is waste water supply piping s'# iCa agent supply piping, 8 is The alkali agent supply pipe 1G is a circulation pipe.

処理槽IP3には好気性微生物膜をその表面に付着生育
せしめた固体粒子461見掛は容積で20〜aO*充填
されており、且つ空気を底部から吹き込んで好気性雰囲
気を形成している。処理槽1の上部外周部には、処理槽
1の上部とその底Itsが連通すゐ分離wi5が設けら
れておシ、後述する如く固体粒子4と廃水とを重力分離
し、配管9にょシ分離後の処理水を系外の図に表われな
い脱電槽に導く一方、一部は配管10により処理槽lの
上部に循環する如く構成されている。同図では分離室す
内に仕切板11を設けて固体粒子4の沈蜂分離効果を高
める様にしている。又処理槽IP9KFi固体粒子4と
廃水とを空気によ〕攪拌する手段として、内筒2及び前
述の空気送入用配管8が設けられている。賞空気の代わ
シに酸素を送入できることは言うまでもない。
The treatment tank IP3 is filled with an apparent volume of solid particles 461 having an aerobic microbial film attached and grown on its surface, and an aerobic atmosphere is created by blowing air into the tank from the bottom. A separation wi5 is provided on the upper outer periphery of the treatment tank 1 so that the upper part of the treatment tank 1 and its bottom Its communicate with each other. The treated water after separation is led to a destaticizing tank (not shown in the figure) outside the system, while a part of the water is circulated to the upper part of the treatment tank 1 via piping 10. In the figure, a partition plate 11 is provided inside the separation chamber to enhance the effect of separating the solid particles 4 from settling. Further, as a means for stirring the solid particles 4 of the treatment tank IP9KFi and the waste water with air, the inner cylinder 2 and the above-mentioned air supply piping 8 are provided. Needless to say, oxygen can be supplied instead of air.

第1図に示す装置を用いて廃水の処理を行なう場合Wc
Ifi、まずMIg化合物及びリン酸塩類を含む廃水を
廃水送入用ポンプ12によ〕配管6を通して処理槽lK
送入する。送入量は処理槽l内の固体粒子4が流動槽を
形成するに充分な量とする。
When treating wastewater using the equipment shown in Figure 1, Wc
Ifi, first, the wastewater containing MIg compounds and phosphates is passed through the pipe 6 by the wastewater supply pump 12 to the treatment tank lK.
Send. The feeding amount is set to be sufficient for the solid particles 4 in the treatment tank 1 to form a fluidized tank.

′i′ )! K Ca剤を配管71ha珊槽l内に送入すると
共に、アルカリ剤を処理槽1内に送入し、pn#I4節
計18かもアルカリを投入してpHを7〜9.6に調整
する。
′i′)! Inject the K Ca agent into the coral tank 1 with 71 ha of piping, and the alkali agent into the treatment tank 1, and add alkali to adjust the pH to 7 to 9.6. .

処理槽l内に送入された廃水は、該檜1内で空気配管8
よシ供給される空気のエアーリフト作用によ〉固体粒子
4と共に内筒2の内部を上昇し且つ内筒2の外周を下降
する様な流動循環流が形成される。又廃水の送入量は、
BOD検出計14で橢定される数値をもとに計算される
BOD容積負荷量が常flc 1.6 kg−BCDA
If−da7以下となる様に自動調整されている。この
間廃水中のgg化合物は固体粒子表面に付着成育した微
生物膜によシ下記反応式で示す橡に硝酸性窒素(NO3
−N)に壕で酸化される。
The wastewater sent into the treatment tank 1 is passed through air piping 8 within the cypress 1.
Due to the air lift effect of the supplied air, a fluid circulation flow is formed which moves upwards inside the inner cylinder 2 together with the solid particles 4 and descends around the outer circumference of the inner cylinder 2. Also, the amount of wastewater sent is
The BOD volume load calculated based on the value determined by the BOD detector 14 is normally flc 1.6 kg-BCDA.
It is automatically adjusted so that If-da is 7 or less. During this time, the gg compounds in the wastewater are absorbed by the microbial film that has grown on the surface of the solid particles, resulting in nitrate nitrogen (NO3) as shown in the reaction formula below.
-N) is oxidized in the trench.

NH4+十gog→NO3−+NgO+2H+同時に廃
水中のリンall樵類は、下記反応式の如<Caと反応
し、微生物の付着していない或いは一部にだけ付着して
いる固体粒子表面に下記反応式で示される如き1.−ド
ロキVアパタイトの結晶を成長することによ)除去され
る。  。
NH4 + 10 gog → NO3 - + NgO + 2H + At the same time, all the phosphorus in the wastewater reacts with <Ca as shown in the reaction formula below, and the following reaction formula is applied to the surface of solid particles to which microorganisms are not attached or are attached only partially. 1 as shown in 1. - removed by growing crystals of Doroki V apatite). .

50a”+jlPO4+OH−にa6(PO4)3−O
H上上記−宇的処増を施され九廃水(処理水)#′i分
離*6に入夛、一部は配管16を経て配管6に返送され
ることによって再び生物学的処理の循環系が形成され、
他の一部は溢流部16よ)配管9を通じて図示されない
脱電槽に験次送られる。
50a”+jlPO4+OH- to a6(PO4)3-O
The above-mentioned treatment has been applied to the wastewater (treated water) #'i separation*6, and some of it is returned to piping 6 via piping 16, thereby returning to the biological treatment circulation system. is formed,
The other part is temporarily sent from the overflow part 16 to a destaticizing tank (not shown) through piping 9.

又1g2図は他の装置例で、固体粒子を充填した固定床
式の処理槽を示したものであシ、この図で11Fi処理
槽、12は固体粒子充填室C以下単に充填室という)、
1B#i空気送入用配管、14は逆洗水送入用配管、1
5は逆洗水排出用配管%16は廃水送入用配管、17t
JCa剤供給用配管、18はアルカリ剤供給用配管%1
9は処理水排出用配管である。この図の鰻重では固体粒
子を一定の部位(処理槽lの下側)K静止する方式を採
るので、第1図の装着の様な分離室6が設けられてぃな
込のは勿論のこと、第1図の装置と比較すると、廃水と
固体粒子の接触方式の違いに基づ〈基本的構fd!に大
きな違いがある。即ち第1LNの装着では内182と分
離室6が設けられているのに対し第2図装置ではかかる
構成に代わって充填室12と逆洗用配管14,115が
設けられている。しかし、これ以外の配管系統及び計測
制御系統篩の付帯的構i!に賢わシはない。
In addition, Figure 1g2 shows another example of the device, which is a fixed bed type processing tank filled with solid particles.
1B#i Air supply pipe, 14 is backwash water supply pipe, 1
5 is backwash water discharge pipe% 16 is waste water supply pipe, 17t
JCa agent supply piping, 18 is alkali agent supply piping%1
9 is a pipe for discharging treated water. Since the eel tank shown in this figure adopts a method in which the solid particles are kept stationary in a certain part (the lower side of the processing tank 1), it goes without saying that a separation chamber 6 is provided as shown in Fig. 1. , compared to the device shown in Figure 1, the basic structure fd! is based on the difference in the contact method between wastewater and solid particles. There is a big difference. That is, in the installation of the first LN, an interior 182 and a separation chamber 6 are provided, whereas in the apparatus shown in FIG. However, there are other incidental structures for piping systems and measurement control systems! There's nothing clever about it.

従ってl111図装置を用いて廃水の処理を行なう場合
にも前記した第1図装置による廃水の処理操作と基本的
には同様の操作を行なえばよいが、長時間9運転によっ
て充填w112の損失水頭が増大し、廃水の円滑通過に
支障をきえすに至った場合には廃水の送入を停止し、配
管14*ら逆洗水を処理槽11の底部に送入して充填室
12内を逆流させることによ〕固体粒子間の目詰シを解
除し、この逆洗水を処理槽11上部に般社られえ配管1
6から排出させればよい。
Therefore, when treating wastewater using the device shown in Figure 111, the same operations as the wastewater treatment operation using the device shown in Figure 1 described above can be performed, but the head loss of filling w112 is caused by long-term operation. If the amount of water increases and the smooth passage of wastewater becomes obstructed, the supply of wastewater is stopped, and backwash water is sent to the bottom of the treatment tank 11 from the pipe 14* to clean the inside of the filling chamber 12. By backflowing] the clogging between solid particles is removed, and this backwash water is sent to the upper part of the treatment tank 11 through the general public pipe 1.
It should be discharged from 6.

木発111に係る廃水の生物学的処理方法は以上の如く
構I!されるポ、要は同−処理槽内の固体粒子表面に付
呻した微生物によって行なわれる電葉酸化物の酸化及び
リン#樵類の酸化分解反応を簡皐な操作でコントロール
することによ〕鍍同−処理榴内で硝化及びリン酸塩類の
除去を同時に行なえ為様にしたので、廃水中の上紀有書
殴分の除去を長期間安定して効率良く又迅11Iiに行
なうことができ、しかも処理槽内に充填された固体粒子
は全て槽内に滞留して生物学的反応に有効に利用される
から経済的である。
The biological treatment method for wastewater related to Kippatsu 111 is as described above! The point is that the oxidation of carbon oxides and the oxidative decomposition reaction of phosphorus wood, which are carried out by microorganisms attached to the surface of solid particles in the treatment tank, can be controlled with simple operations. Since nitrification and removal of phosphates can be carried out simultaneously in the same treatment chamber, the removal of the above-mentioned amount of waste water can be carried out stably, efficiently and quickly over a long period of time. Furthermore, all the solid particles filled in the treatment tank remain in the tank and are effectively used for biological reactions, which is economical.

淘寡発明方法を有効に利用すれば各11j11水の無害
化%場をよ〉効果的に行なうことができ、以下2.80
例を図面に基づ′!説明する。
If the method of detoxification is used effectively, each 11j11 water detoxification process can be carried out more effectively, and the following 2.80
Examples based on drawings! explain.

第8図は下水2次処理水のようにBOD濃度が低い原廃
水を無害化g&珊する場合のプローV−)を示し、原廃
水は本発明方法の実施装置A内で上記の如く空気の吹込
み並びKCa剤及びアルカリ剤の添加を受けて硝化と脱
リンが同時に行なわれ良後、脱窒槽B内でメタノールの
添加を受け″or2ガス[1で還元され、I!に曽脱窒
槽B内で脱11ff応に関与しなかつ−に金剰のメタノ
ールは再曝気槽C内で錯化分解され、ここ忙原廃水は先
金に無書化処jl″Sれる。*ζO場合の脱窒槽B及び
再曝気WICとしては生物膜方式、繍性汚泥方式を含む
hずれの生物学的処理方式を採用してもよい。
Figure 8 shows a flowchart (V-) for detoxifying raw wastewater with a low BOD concentration, such as secondary treated sewage water. After the nitrification and dephosphorization are carried out simultaneously by blowing and the addition of KCa agent and alkali agent, methanol is added in denitrification tank B and reduced with ``or2 gas [1]. The excess methanol that does not participate in the de-11ff reaction is complexed and decomposed in the re-aeration tank C, and the wastewater here is subjected to an initial decomposition process. *For the denitrification tank B and the re-aeration WIC in the case of ζO, biological treatment methods including the biofilm method and the sludge method may be adopted.

又第4図は下水1次処理水、廃棄物理立地浸出水、汚泥
処理工程からの各檎脱離液を対象とする場合のフローV
−シを示す4ので、原廃水は予備曝気槽AQ内で空気の
吹込みを受けて大部分のBOD成分を除去し大後、本発
明方法の実施装置A内に送もれ、以後第S図と同機の処
lIlが行なわれJI*eO場舎の装置fA内fOBO
Djll荷を!、5kft−EDDl&・71 ay以
下にする操作は省略可能となる。
Also, Figure 4 shows the flow V when treating primary sewage treatment water, waste physical site leachate, and each apple desorbed liquid from the sludge treatment process.
- 4, the raw wastewater is blown with air in the preliminary aeration tank AQ to remove most of the BOD components, and then sent to the apparatus A for implementing the method of the present invention. As shown in the figure, the processing of the aircraft was carried out in the equipment fA at the JI*eO building.
Djll load! , 5 kft-EDDl&.71 ay or less can be omitted.

I!に第6図のフローV−トに示す様に予備曝気槽AQ
の前に予備脱窒槽BQを配設すると共に装置Aからの硝
化液を循環させ且つ原廃水中のBOD成分を有効に利用
して予備脱窒を行なうことにょ〉脱窒槽Bでのメタノー
ル添加量を節減することができる。又予備#1.m槽B
□で遊離し九アui#すを有効に利用することによH1
l!a内でのff1illl整用アA/′j1曹剤の使
用量を節減することもできる。
I! As shown in Figure 6, the preliminary aeration tank AQ is
A preliminary denitrification tank BQ is installed in front of the device A, and the nitrification liquid from the device A is circulated, and the BOD components in the raw wastewater are effectively used to carry out preliminary denitrification.〉Amount of methanol added in the denitrification tank B can be saved. Also spare #1. m tank B
H1 by effectively using the free 9 UI# space in □
l! It is also possible to reduce the amount of cleaning agent A/'j1 used in a.

賞この場合にも装置A内でのBODjlL荷抑制操作上
抑制操作と1にゐ。淘予備曝気槽AQ及び予備脱窒槽B
O共に汚泥返送の不要な生物膜方式が好重しく、回転円
板法中接−酸化法などあらゆる生物膜力tSO採用が可
能であ為。
In this case as well, the BODJIL load suppression operation in device A is the same as the suppression operation. Preliminary aeration tank AQ and preliminary denitrification tank B
For both methods, the biofilm method, which does not require sludge return, is preferable, and it is possible to use any type of biofilm tSO, such as the rotating disk method or intermediate oxidation method.

以下本発明の実施例を示す。Examples of the present invention will be shown below.

C実施例1) 第1図の装置を用いて下記条件で処理実験を行なつえ後
の処理水の水質測定結果は第1表に示す通シで6つ九。
C Example 1) After carrying out a treatment experiment under the following conditions using the apparatus shown in FIG. 1, the water quality measurement results of the treated water were as shown in Table 1, with a total of 6 and 9 results.

  − 実験条件 処理槽の形状:1辺の長さが86mの角型で深さlJm
、容積10 /。
- Experimental conditions Treatment tank shape: square with a side length of 86 m and a depth of 1 Jm
, volume 10/.

固体粒子:予めリン#樵博液で接触前処理を行なった!
lスラグ(粒径0.1−0.2 swφ)を使用、添加
量は21(粒子濃度20 畳)。
Solid particles: Contact pre-treatment with phosphorus #Mombo solution!
l slag (particle size 0.1-0.2 swφ) was used, and the amount added was 21 (particle concentration 20 tatami).

原水二下水2次処理水相当の合成排水を使用(成分:ベ
プトン、 NH4C/ 、KH2PO4、NaC/*M
g804.NaHCO3)、BOD+=15ppm。
Uses synthetic wastewater equivalent to raw water and secondary sewage treated water (components: Beptone, NH4C/, KH2PO4, NaC/*M
g804. NaHCO3), BOD+ = 15 ppm.

NH3−N−20ppm、 PO4−P =8J pp
n。
NH3-N-20ppm, PO4-P =8J pp
n.

Mアルカリ度W10011pm(as CaC03)、
(NOx −N )+(NO3−N )<0.21)I
>111処増水fIA=25℃ 槽内pH:  9 Ca添加量: IQOppm(CaC7gf#液を添加
した)滞留時Ill :8G分(Ig廃廃水態量20/
/hrNH3−N負11r: 1 kg−N113−N
/m’−da7BOD負胃 : 0.7kg−BOD/
vd−d&7結果 11!1表必らも明らかな様に、原廃水中の]PO4−
Pは通水開始直後からQ、 Rppm以下Ktで除去さ
れる一方、硝化反応が進みNH3−Nが(No肥+N0
3)−Nまで酸化されてからもpo4−P除去能力は余
)変化す為ことはなく、ことKPO4−Pの除去とNH
3−Nの硝化が安定して行なわれることを確認した・ (5jjE施例り 第2図の装置を用いて下記条件下で処m賽験を行なつ九
後の処理水の水質測定結果は第2表に示す通ヤであった
M alkalinity W10011pm (as CaC03),
(NOx-N)+(NO3-N)<0.21)I
> 111 water increase fIA = 25°C pH in the tank: 9 Ca addition amount: IQOppm (added CaC7gf# liquid) retention Ill: 8G min (Ig wastewater state amount 20/
/hrNH3-N negative 11r: 1 kg-N113-N
/m'-da7BOD negative stomach: 0.7kg-BOD/
vd-d&7 Result 11!1 Table As is obvious, ]PO4- in the raw wastewater
Immediately after the start of water flow, P is removed at Kt below Q, Rppm, while the nitrification reaction progresses and NH3-N (No fertilizer + N0
3) Even after being oxidized to -N, the po4-P removal ability does not change; in particular, the removal of KPO4-P and NH
It was confirmed that the nitrification of 3-N was carried out stably. (5jjE Example) Using the equipment shown in Figure 2, the water quality measurement results of the treated water were as follows: The information was as shown in Table 2.

実験条件 処理槽の形伏:内径10G−の円筒型で高″1t、8m
Experimental conditions: Shape of treatment tank: Cylindrical type with inner diameter of 10G-, height of 1t, 8m.
.

充填室高さ: 1.26 m n 充填剤:高炉水砕スラグ(粒径l〜6.7 tm )を
実施例1と同様の方法で接触前処理を行なったもので、
添加量は10 /。
Filling chamber height: 1.26 mn Filler: Granulated blast furnace slag (particle size l~6.7 tm) was subjected to contact pretreatment in the same manner as in Example 1.
The amount added is 10/.

原水flit : 800 //lay 、 LV=R
8m/lay 、 5V−1,261/h r 処理水温、槽内pH,Ca添加量はいずれも実施例1と
同一条件とした。@NH3−N負荷を0.6kg/rr
/−day ・BOD負荷を0.2〜0.6 kg7y
d’ムッとし、又1日に1[11通水すると共に逆洗を
行なった。処理水の水質測定に当っては、硝化が完全に
進行し定常M@になり九処理水をその対象とした。
Raw water flit: 800 //lay, LV=R
8 m/lay, 5 V-1,261/hr The treated water temperature, tank pH, and amount of Ca added were all the same conditions as in Example 1. @NH3-N load 0.6kg/rr
/-day ・BOD load 0.2-0.6 kg7y
d' It was stuffy, and I passed water through it 1 [11 times a day] and backwashed it. In measuring the water quality of the treated water, 9 treated water, which had completely progressed to nitrification and reached a steady M@, was targeted.

結果 第   2   表 第2秦b#)@らthな様に、原廃水中のNH3−N及
びpo4−pが効率良く除去され、”HKss4前述し
た充填室の濾過作用によ)良好に除去されることが確認
できた。
As shown in Table 2, NH3-N and PO4-P in the raw wastewater were efficiently removed, and NH3-N and PO4-P in the raw wastewater were removed well (by the filtration action of the filling chamber described above). It was confirmed that

(実施例8) 第8図における廃水の無害化処理のフローV −トに基
づ春下記の如1!廃水の連続処場賽験を行ない、得られ
た処理水の水質測定結果を第8表に示した。
(Example 8) Based on the flowchart of wastewater detoxification treatment shown in Fig. 8, the following procedure is carried out. Continuous wastewater treatment experiments were conducted, and the results of water quality measurement of the obtained treated water are shown in Table 8.

装置A及び該装置1A内#C添加し九固体粒子は実施例
1と同一の4のを使用した。脱窒槽1略は1辺の長さが
1705wの鳥型で水深170snw、容積6toii
t付嫌気性処理槽である。又脱窒槽BKは固体粒子とし
て粒径0.2〜G、 a wφの砂を0.761添加(
粒子濃ff15俤)シ、回転寓による機械的、攪拌手段
によって砂を懸濁浮遊させた。再曝気槽Cは装置1Aと
同様の構造で、1辺50■の角型で水深1600w1容
積41であ如、固体粒子として0.2〜0.8 s11
φの砂を0.8/添加(粒子濃慣OTo>シた。
The same 4 solid particles as in Example 1 were used for #C in the apparatus A and the apparatus 1A. Denitrification tank 1 is bird-shaped with a side length of 1705W, water depth of 170SNW, and volume of 6TOII.
This is an anaerobic treatment tank with t. In addition, in the denitrification tank BK, 0.761 of sand with a particle size of 0.2 to G and a wφ was added as solid particles (
The sand was suspended and suspended by a mechanical stirring means using a rotary machine. The re-aeration tank C has the same structure as the device 1A, is rectangular with a side of 50 cm, has a water depth of 1600 w, a volume of 41 cm, and has a solid particle size of 0.2 to 0.8 s11.
Add 0.8/φ sand (particle concentration OTo>shi).

原廃水としては下水2次処理水を使用し、上記各装[A
 、 B及びCにおける4t&珊条件を王妃の如く設定
すると共I/c処増水増水温5℃に調節した。
Secondary treated sewage water is used as raw wastewater, and each of the above [A]
, The 4t & coral conditions in B and C were set like a queen, and the water temperature in both I/C treatments was adjusted to 5°C.

装置1A p H: 8.6 、 Ca*7Jljk : 100
ppm(100pp溶液を添加)、滞留時間二80分、
 NH3−N*荷;l kg−NH3−N/m’s d
 ay、BOD負荷:Q、 4〜0.8kg BOD/
7F/”+la7 睨鼠憧町 メIノーvyt=加1k : II O卯1fl *滞
留時間:16分再曝気槽C 滞留時間:16分 爾処理水の水質測定に蟲っては、運転開始後1力月経過
して定常杖aになつ九処瑠水をその対象とした。
Apparatus 1A pH: 8.6, Ca*7Jljk: 100
ppm (100 ppm solution added), residence time 280 minutes,
NH3-N*load; l kg-NH3-N/m's d
ay, BOD load: Q, 4-0.8kg BOD/
7F/”+la7 Glaring Mouse Toumachi Meno vyt=Additional 1k: II O Rabbit 1 fl *Residence time: 16 minutes Re-aeration tank C Residence time: 16 minutes If the water quality measurement of treated water fails, after the start of operation. The target was Kusho Rumi, who became a regular cane a after one month.

結果 第1I!!l!かも明らかな様に、処理水中の総1m分
(T−N)は1 )]911以下とな〕、I!<po4
−P2O、1NO,II pp!lとなシ、原廃水中O
II嵩化金化合物リン#壌類の961以上が有効に除去
され、無公書処増が有効に行なわれることを確認した。
Result 1st I! ! l! As is clear, the total length of 1 m (T-N) in the treated water is 1)]911 or less], I! <po4
-P2O, 1NO, II pp! ltonashi, raw wastewater O
It was confirmed that more than 961 of the II bulky gold compound phosphorous compounds were effectively removed, and that the removal of undocumented materials was effectively carried out.

【図面の簡単な説明】[Brief explanation of the drawing]

11!1図は本発明を実施するえめの装置の一実施例説
明図、第2図は他の実施例説明図、第1図〜第6図は本
発明方法を利用し九各種廃水処理のフローF−)を夫々
示す。 1・・・処理槽     2・・・内筒8・・・空気送
入用配管 4・・・固体粒子6・・・原廃水送入配管 
7・・・C&剤供給用配管8・・・アルカV剤供給用配
管 18−IHIlB計   14−B OD検出計A・・
・実施例装’III    B−・・脱窒槽C・・・再
曝気槽 出−人  株式会社神戸製鋼所
Figure 11!1 is an explanatory diagram of one embodiment of an apparatus for carrying out the present invention, Figure 2 is an explanatory diagram of another embodiment, and Figures 1 to 6 illustrate nine different types of wastewater treatment using the method of the present invention. Flow F-) are shown respectively. 1... Treatment tank 2... Inner cylinder 8... Air supply pipe 4... Solid particles 6... Raw wastewater supply pipe
7... Piping for C& agent supply 8... Piping for alkali V agent supply 18-IHIlB meter 14-B OD detection meter A...
・Example equipment 'III B--Denitrification tank C--Reareration tank outlet Kobe Steel, Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)処理槽に導入した廃水中の窒素化合物の硝化及び
リン酸塩類の除去を同時に行なう方法であって、表面に
@生物膜及びヒドロキシアパタイトを生貌し得る固体粒
子を好気的条件下で廃水に接触せしめる一方、導入廃水
中にカルVウム剤を添加すると共に廃水のpi(を7〜
9.5に調整し、且つ処理槽内のBOD容積負荷量がl
、 b”It”””/d−681以下となる様に廃水導
入量或いは廃水中のBOD量を調整することを特徴とす
b廃水の生物学的処理方法。
(1) A method that simultaneously nitrates nitrogen compounds and removes phosphates from wastewater introduced into a treatment tank, in which solid particles capable of growing biofilm and hydroxyapatite on their surfaces are grown under aerobic conditions. At the same time, a calcium agent was added to the introduced wastewater, and the wastewater was brought into contact with the wastewater (from 7 to
9.5, and the BOD volume load in the treatment tank is 1
, b) A biological treatment method for wastewater, characterized in that the amount of wastewater introduced or the amount of BOD in the wastewater is adjusted so that the amount becomes less than "It"""/d-681.
JP56206651A 1981-12-21 1981-12-21 Biological teratment for waste water Pending JPS58109193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56206651A JPS58109193A (en) 1981-12-21 1981-12-21 Biological teratment for waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56206651A JPS58109193A (en) 1981-12-21 1981-12-21 Biological teratment for waste water

Publications (1)

Publication Number Publication Date
JPS58109193A true JPS58109193A (en) 1983-06-29

Family

ID=16526873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56206651A Pending JPS58109193A (en) 1981-12-21 1981-12-21 Biological teratment for waste water

Country Status (1)

Country Link
JP (1) JPS58109193A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6623642B2 (en) 2000-03-17 2003-09-23 Centre For Research In Earth And Space Technology System for removing phosphorus from waste water

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712892A (en) * 1980-06-25 1982-01-22 Ebara Infilco Co Ltd Disposal of phosphate ion-containing waste water

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712892A (en) * 1980-06-25 1982-01-22 Ebara Infilco Co Ltd Disposal of phosphate ion-containing waste water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6623642B2 (en) 2000-03-17 2003-09-23 Centre For Research In Earth And Space Technology System for removing phosphorus from waste water

Similar Documents

Publication Publication Date Title
US5228997A (en) Aerobic biological nitrification using biomass granulates
JP2002166293A (en) Method to remove nitrogen and phosphor simultaneously from waste water
US3546111A (en) Waste treatment
CA1151323A (en) Process for the chemical removal of phosphorus compounds from waste water and process for the purification of waste water
Kalyuzhnyi et al. Integrated mechanical, biological and physico-chemical treatment of liquid manure streams
JP4685224B2 (en) Waste water treatment method and waste water treatment equipment
JP4642635B2 (en) High concentration organic waste liquid treatment method and apparatus
JPS6317513B2 (en)
JPH06182393A (en) Fluidized bed type denitrification treating device
JP3933230B2 (en) Nitrogen-containing organic wastewater treatment method
JPS58109193A (en) Biological teratment for waste water
KR101135011B1 (en) A sewage and wastewater treatment and an apparatus for thereof
JP2002172399A (en) Denitrification treatment method
JPH08318292A (en) Waste water treatment method and apparatus
JP4101498B2 (en) Nitrogen and phosphorus-containing wastewater treatment method and apparatus
JPH0975992A (en) Treatment of waste water containing high concentrated phosphorus and ammoniacal nitrogen
JP2005095758A (en) Method and apparatus for treating water containing inorganic-state nitrogen or phosphorus
JP3614251B2 (en) Method for suppressing hydrogen sulfide in sewage treatment
JPS6345275B2 (en)
JPS5990690A (en) Treatment of water containing organic substance and phosphate
JPS61216795A (en) Treatment of phosphorus-containing waste water
JPH0253117B2 (en)
JPH0133237B2 (en)
JPS59206092A (en) Treating process of waste water
JPH0130554B2 (en)