JPS5810705A - Photocoupler - Google Patents

Photocoupler

Info

Publication number
JPS5810705A
JPS5810705A JP10856481A JP10856481A JPS5810705A JP S5810705 A JPS5810705 A JP S5810705A JP 10856481 A JP10856481 A JP 10856481A JP 10856481 A JP10856481 A JP 10856481A JP S5810705 A JPS5810705 A JP S5810705A
Authority
JP
Japan
Prior art keywords
light
optical
refractive index
core layer
transparent material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10856481A
Other languages
Japanese (ja)
Inventor
Masao Hirano
平野 正夫
Mitsutaka Kato
加藤 充孝
Hirohiko Yasuda
安田 博彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Tateisi Electronics Co
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateisi Electronics Co, Omron Tateisi Electronics Co filed Critical Tateisi Electronics Co
Priority to JP10856481A priority Critical patent/JPS5810705A/en
Publication of JPS5810705A publication Critical patent/JPS5810705A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2821Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals
    • G02B6/2826Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals using mechanical machining means for shaping of the couplers, e.g. grinding or polishing
    • G02B6/283Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals using mechanical machining means for shaping of the couplers, e.g. grinding or polishing couplers being tunable or adjustable
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2821Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To make it possible that an optical waveguide itself functions as an optical directional coupler or an optical switch, by arranging plural optical waveguides in parallel on the surface of a substrate and forming a transparent material having the optically induced refractive index changing characteristics instead of a part of the clad layer interposed between core layers of adjacent optical waveguide. CONSTITUTION:A part of a clad layer 12 interposed between core layers 11 and 14 of two optical waveguides provided on a substrate 10 is eliminated, and a transparent material 13 having the optically induced refractive index changing characteristics is formed in this part. When a signal light A is made incident to the core layer 11, the light A is led out partially as an output light A' as it is but the light propagated through the core layer 11 is coupled to the core layer 14 of the adjacent waveguide partially by the transparent material 13 to lead out an output light B. Since the refractive index of the transparent material 13 is changed by the light irradiation, the degree of coupling to the adjacent waveguide 14 is controlled by a light C' irradiated to the transparent material 13.

Description

【発明の詳細な説明】 この発明は、光方向性結合器や光スィッチに適用される
光結合器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical coupler applied to an optical directional coupler or an optical switch.

従来、光方向性結合器としては第1図(5)に示すよう
に伝播定数の近い2つの先導波路を極めて近い間隔で隣
接させるものや、第1図の)に示すよりなY分岐による
結合器がある。しかし第1図(A)のものは、隣接間隔
を入射する光の/波長にとる必要があシ、結合効率はそ
れぞれO光導波路の伝播定数と隣接距離eに依存する。
Conventionally, optical directional couplers include those in which two leading waveguides with similar propagation constants are adjacent to each other at a very close interval, as shown in Figure 1 (5), and coupling by a Y-branch as shown in Figure 1). There is a vessel. However, in the case of FIG. 1A, the adjacent spacing must be set to the wavelength of the incident light, and the coupling efficiency depends on the propagation constant of the O optical waveguide and the adjacent distance e, respectively.

この光方向性結合器は上記隣接間隔をとることが難しい
という欠点がある。また第1図中)の場合では1図に示
す角度θが大きくなる分岐の結合効率が小さくなる欠点
がある。
This optical directional coupler has the disadvantage that it is difficult to maintain the above-mentioned adjacent spacing. Furthermore, in the case of FIG. 1), there is a drawback that the coupling efficiency of the branch where the angle θ shown in FIG. 1 becomes large becomes small.

一方光導波路に用いられる光スィッチとして従来よシ知
られている有用なものはほとんどない。
On the other hand, there are almost no known useful optical switches used in optical waveguides.

数少ない光導波路用のスイッチとして第2図に示すもの
がある。この光スィッチは、基板1上に光誘起屈折率変
化特性を持つフィルム2を形成して導波路とし、ルチル
製プリズム6と屈折率変化を生じる光4を照射する手段
を備え、プリズム5の屈折率とフィルム2の屈折率変化
の相対的関係から、光信号4の入射がプリズム5とフィ
ルム2の界面で調節されるものである。この光スィッチ
はプリズムを用いるものでありアレイ化が困難であリ、
また光導波路自体が光スイツチ機能を持たないという欠
点がある。
One of the few switches for optical waveguides is shown in FIG. This optical switch includes a waveguide formed by forming a film 2 having light-induced refractive index change characteristics on a substrate 1, a rutile prism 6, and a means for irradiating light 4 that causes a refractive index change. The incidence of the optical signal 4 is adjusted at the interface between the prism 5 and the film 2 based on the relative relationship between the refractive index and the change in the refractive index of the film 2. This optical switch uses a prism and is difficult to array.
Another drawback is that the optical waveguide itself does not have an optical switch function.

この発明は、上記した従来の光方向性結合器や光スィッ
チの欠点を解消し、光導波路その兎のが光方向性結合器
としであるいは光スィッチとして機能し得る。しかもそ
れらのアレイ化が可能な光結合器を提供するにある。
The present invention eliminates the drawbacks of the conventional optical directional couplers and optical switches described above, and allows the optical waveguide to function as an optical directional coupler or an optical switch. Moreover, it is an object of the present invention to provide an optical coupler capable of forming an array of these elements.

この発明の光結合器は以上の目的を達成するために基板
面上に、コア層およびクラッド層よシなる複数の光導波
路を並設し、隣接する光導波路のコア層間に挾まれるク
ラッド層の一部に代えて光誘起屈折率変化特性を持つ透
明体を形成し、この透明体に励起光を照射して隣接する
光導波路を光学的に結合するようにしている。
In order to achieve the above object, the optical coupler of the present invention has a plurality of optical waveguides, each consisting of a core layer and a cladding layer, arranged in parallel on a substrate surface, and the cladding layer is sandwiched between the core layers of adjacent optical waveguides. A transparent body having a light-induced refractive index change characteristic is formed in place of a part of the optical waveguide, and this transparent body is irradiated with excitation light to optically couple adjacent optical waveguides.

以下1図面に示す実施例にょシこの発明の詳細な説明す
る。
The present invention will be described in detail below with reference to an embodiment shown in the drawings.

第3図はこの発明の一実施例を示す光方向性結合器の断
面図である。透明基、板1o上に、コア層11、クラッ
ド層12.コア層14.クラッド層15が順次積層され
て2つの積層された光導波路を形成している。そしてそ
れぞれの積層においてコア層の屈折率〉クラッド層の屈
折率となるように調節されている。また2つの光導波路
のコア層に挾まれたクラッド層12の一部が除去され、
これに代えて光誘起屈折率変化特性を有する透明体15
が形成されている。この透明体13は光照射によって屈
折率が変化する。
FIG. 3 is a sectional view of an optical directional coupler showing an embodiment of the present invention. A core layer 11, a cladding layer 12. Core layer 14. The cladding layers 15 are sequentially stacked to form two stacked optical waveguides. In each laminated layer, the refractive index of the core layer is adjusted to be greater than the refractive index of the cladding layer. Also, a part of the cladding layer 12 sandwiched between the core layers of the two optical waveguides is removed,
In place of this, a transparent body 15 having light-induced refractive index change characteristics
is formed. The refractive index of this transparent body 13 changes when irradiated with light.

第6図において信号光Aがコア層11に入射されると、
一部の光線が・そのまま出力光A′として導出されるが
透明体13によってコア層11の伝播光Aは一部隣接す
る導波路のコア層14にも結合され、出力光Bを導出す
る。この隣接する導波路への結合度は、透明体16に照
射されるCによって調節される。なお透明体13への励
起光の照射はCのように導波路に垂直に入射させてもよ
い。
In FIG. 6, when the signal light A is incident on the core layer 11,
Some of the light rays are directly led out as output light A', but due to the transparent body 13, part of the propagating light A of the core layer 11 is also coupled to the core layer 14 of the adjacent waveguide, and output light B is led out. The degree of coupling to adjacent waveguides is adjusted by C irradiated onto the transparent body 16. Note that the excitation light may be irradiated onto the transparent body 13 by making it perpendicular to the waveguide as shown in C.

上記の透明体13の材料、すなわち光誘起屈折率変化特
性を有する材料としては、現在カルコゲン元素S、Ss
、Te  を含む化合物としてA s −S 。
Currently, chalcogen elements S, Ss
, As-S as a compound containing Te.

As−8e−Ge、 As −8e−8−Geなどがよ
く知られ。
As-8e-Ge, As-8e-8-Ge, etc. are well known.

さらに(Pb、L2)(Zr、Ti)0+ で表わされ
るPLZTも同特性を生じることが確認されている。
Furthermore, it has been confirmed that PLZT represented by (Pb, L2) (Zr, Ti)0+ also exhibits the same characteristics.

これら光誘起屈折率変化特性を有する材料の屈折率変化
特性を第2図に示している。
FIG. 2 shows the refractive index change characteristics of materials having these photo-induced refractive index change characteristics.

全く履歴を受けていない材料の屈折率をnoとし、この
材料のバンドキャップをE!とする。ここでhw≧E!
の光子エネルギを有する光をバンドキャップ光BGLと
定義し、とのBGLよシも波長の長い、すなわちhw<
Kyの光を非バンドギャップ光LBGLと定義すると、
屈折率noの材料にBGLを照射すると屈折率が大計ぐ
警31球]に達する。また屈折率noの材料にLBGL
を照射するとやはシ屈折率が大きくなりn2に達する。
The refractive index of a material that has not undergone any history is set to no, and the bandcap of this material is set to E! shall be. Here hw≧E!
Band-capped light BGL is defined as light having a photon energy of
If we define Ky light as non-bandgap light LBGL, then
When a material with a refractive index of no. Also, LBGL is a material with a refractive index of no.
When irradiated with n, the refractive index increases and reaches n2.

この場合n 1) n 2の関係にある。屈折率n1に
達した材料にLBGLを照射すると屈折率はn2に下が
る。逆に屈折率n2の材料にBGLを照射すると、屈折
率はnlに上がる。なお屈折率n1は光照射を停止して
から放置するとn3まで下がる。この屈折率n3とnl
、n2の関係はn2<n3<nlである。
In this case, the relationship is n 1) n 2. When a material that has reached a refractive index n1 is irradiated with LBGL, the refractive index decreases to n2. Conversely, when a material with a refractive index of n2 is irradiated with BGL, the refractive index increases to nl. Note that the refractive index n1 decreases to n3 when the light irradiation is stopped and left as is. These refractive indexes n3 and nl
, n2 is n2<n3<nl.

以上より、光を照射することによシ動的には屈折率nを
n 2 (n (n iの範囲で変化でき、静的状態に
はn 2 (n (n 3の範囲で屈折率の定常状。
From the above, by irradiating light, the refractive index n can be dynamically changed in the range of n 2 (n (n i), and in the static state, the refractive index can be changed in the range of n 2 (n (n Steady state.

態を保つことができる。またLBGLとBGLを交互に
照射することによシ可逆的にn 2 < n <nlの
範囲で屈折率を調節できる。さらにまたLBGLとBG
Lを同時に照射することKよりn2とn3の中間の屈折
率を得ることができる。
You can maintain your condition. Furthermore, by alternately irradiating LBGL and BGL, the refractive index can be reversibly adjusted within the range n 2 < n < nl. Furthermore, LBGL and BG
By simultaneously irradiating L, a refractive index intermediate between n2 and n3 can be obtained from K.

第5図において、コア層11.14の屈折率をn4とす
ると、この屈折率n4を第4図に示す屈折率特性に対し
、n2(n4<n3となるように設定する。ここで透明
体13の部分の屈折率向がn 2(n(n4であると光
導波路は導波条件を満たすので、先述したようにコア層
11を伝達される光線Aは光線A′のように導光される
。一方n4くnとなると導波条件が画たされなくなるの
で。
In FIG. 5, if the refractive index of the core layer 11.14 is n4, this refractive index n4 is set so that n2 (n4<n3) with respect to the refractive index characteristics shown in FIG. If the refractive index direction of the portion 13 is n2 (n (n4), the optical waveguide satisfies the waveguide condition, so as mentioned earlier, the light ray A transmitted through the core layer 11 is guided like the light ray A'. On the other hand, when n4×n, the waveguide conditions are no longer defined.

コア層11を伝播する光はコア層11を光線A′のよう
に導光される成分と光線Bのようにコア層11から隣シ
の導波路のコア層14に導出される成分に分かれる。ま
た光導波路の臨界角θCで定義される導波条件は で表わされるが、透明体13の部分の屈折率nが変化す
ることにより、θCが変化するので、コア層11内の伝
達光量も変化する。なおn(n4となる関係は光線Cと
してLBGLを透明体13に照射すると左により達成で
きるし+n4<nの関係は光線CとしてBGI、を照射
することによって達成される。そしてLBGLおよびB
GLを一定光量で透明体13に照射し、このLBGLと
BGLの照射時間を調節することにより任意の中間の屈
折率を得ることができ、光結合量を加減できる。
The light propagating through the core layer 11 is divided into a component guided through the core layer 11 like a light ray A' and a component guided like a light ray B from the core layer 11 to the core layer 14 of the adjacent waveguide. In addition, the waveguide condition defined by the critical angle θC of the optical waveguide is expressed as follows. As the refractive index n of the transparent body 13 changes, θC changes, so the amount of transmitted light within the core layer 11 also changes. do. Note that the relationship n(n4 can be achieved by irradiating the transparent body 13 with LBGL as the ray C, as shown on the left, and the relationship +n4<n can be achieved by irradiating BGI as the ray C. Then, LBGL and B
By irradiating the transparent body 13 with a constant amount of GL and adjusting the irradiation time of the LBGL and BGL, an arbitrary intermediate refractive index can be obtained, and the amount of optical coupling can be adjusted.

第5図はこの発明の他の実施例を示す光方向性結合器の
平面図、第6図はその断面図である。
FIG. 5 is a plan view of an optical directional coupler showing another embodiment of the present invention, and FIG. 6 is a sectional view thereof.

第5図、第6図に示す光方向性結合器は、基板20上に
コア層21.24およびクラッド層22゜25からなる
2つの光導波路を同一平面に設けている。もちろん両党
導波路は光誘起屈折率変化特性を持つ透明体23で結合
されている。動作は第3図に示すものと同様に考えられ
るので説明は省略する。
In the optical directional coupler shown in FIGS. 5 and 6, two optical waveguides each consisting of a core layer 21, 24 and a cladding layer 22.25 are provided on the same plane on a substrate 20. Of course, both waveguides are coupled by a transparent body 23 having a light-induced refractive index change characteristic. Since the operation can be considered similar to that shown in FIG. 3, the explanation will be omitted.

次に実施例として光スイツチアレイを構成する場合につ
いて説明する。第5図に示す方向性結合器において導出
光Aの伝達光量が0となれば光スィッチとして利用でき
る。しかしながら第5図のものにおいて導出光Aを完全
に0にすることは難しい。それゆえ光スィッチとしては
第7図ないし第9図に示すものを使用するのが望ましい
Next, as an example, a case of configuring an optical switch array will be described. In the directional coupler shown in FIG. 5, if the amount of transmitted light of the derived light A becomes 0, it can be used as an optical switch. However, in the case of FIG. 5, it is difficult to make the output light A completely zero. Therefore, it is desirable to use the optical switches shown in FIGS. 7 to 9.

第7図に示す光スィッチは、2個のコア層31゜34の
うちの一方のコア層31に屈曲部を設けておシ、この屈
曲部を含む両コア層間に光誘起屈折率変化特性を有する
透明体33を配している。この透明体33に励起光をあ
てると、コア層31への入射された光線Aは、光線Bと
してコア層34に透出する。またコア層31を伝播すれ
ばそのほとんどが透失光りとなりコア層外へ出てゆく。
The optical switch shown in FIG. 7 has a bent part in one of the two core layers 31 and 34, and a light-induced refractive index change characteristic is created between both core layers including this bent part. A transparent body 33 having a transparent body 33 is disposed. When this transparent body 33 is irradiated with excitation light, the light ray A incident on the core layer 31 is transmitted as a light ray B to the core layer 34 . Furthermore, when the light propagates through the core layer 31, most of it becomes opaque light and goes out of the core layer.

さらにコア層31を伝播した光線Aは屈曲部のために多
重反射を繰シ返すので透失してしまい、コア層31の終
端まで伝達されない。結局光線人の伝搬をコア層31か
らコア層34に切換えることができる。
Furthermore, the light ray A propagated through the core layer 31 undergoes multiple reflections due to the bending portion, so that the light ray A is lost and is not transmitted to the end of the core layer 31. Eventually, the propagation of the rays can be switched from the core layer 31 to the core layer 34.

第8図の光スィッチはコア層31に屈曲部を設けるとと
もにコア層34にも、コア層31の屈曲部よりもアール
の大きい屈曲部を設け1両屈曲部を含、んだコア層31
.34間に光誘起屈折率変化特性を持つ透明体33を設
けている。コア層!+4も屈曲部を有しているのでコア
層51の入射光線Aが容易にコア層34に取り込まれる
In the optical switch shown in FIG. 8, the core layer 31 is provided with a bent portion, and the core layer 34 is also provided with a bent portion with a larger radius than the bent portion of the core layer 31, and includes one and both bent portions.
.. A transparent body 33 having a light-induced refractive index change characteristic is provided between 34 and 34. Core layer! Since +4 also has a bent portion, the incident light beam A of the core layer 51 is easily taken into the core layer 34.

第9図の光スィッチは、2つの屈曲されたコア層が積層
された例を示している。基板40の一端を研磨して角づ
けした上にコア層41.クラッド層42.コア層44.
クラッド層45が順次積層形成されている。また43は
光誘起屈折率変化時1生を有する透明体である。このよ
うに基板40の一方に角づけすることによっても、第7
図、第8図に示す光スィッチと同様の効果を得ることが
できる。なお上記実施例において光導波路は2個並設す
るものについて説明したが、2個はトを並設するもので
あってもよい。
The optical switch in FIG. 9 shows an example in which two bent core layers are laminated. One end of the substrate 40 is polished and squared, and then a core layer 41. Cladding layer 42. Core layer 44.
The cladding layers 45 are sequentially laminated. Further, 43 is a transparent body which has a 1-segment when the refractive index changes due to light induction. By squaring one side of the substrate 40 in this way, the seventh
It is possible to obtain the same effect as the optical switch shown in FIGS. In the above embodiment, two optical waveguides are installed in parallel, but two optical waveguides may be installed in parallel.

また上記実施例(でおいて光信号用の先導波路と励起光
用の光導波路を兼用しているが、光信号用の導波路の他
に励起光用の導波路を併設してもよい。
Further, in the above embodiment, the leading waveguide for optical signals and the optical waveguide for excitation light are used together, but a waveguide for excitation light may be provided in addition to the waveguide for optical signals.

以上のようにこの発明の光結合器によれば、基板面上に
、複数の光導波路を並設し隣接する光導波路のコア層間
に挾まれるクラッド層の一部に代えて、光誘起屈折率変
化特性を持つ透明体を形成し、この透明体に励起光を照
射して隣接する光導波路を光学的に結合するものである
から、これを光方向性結合器や光スィッチとして適用す
れば光結合器そのものを光方向性結合器や光スィッチと
して機能させ得るので、小形化が可能であるとともに、
アレイ化も可能であり光IC回路の機能素子として利用
できる。
As described above, according to the optical coupler of the present invention, a plurality of optical waveguides are arranged in parallel on the substrate surface, and instead of a part of the cladding layer sandwiched between the core layers of adjacent optical waveguides, optically induced refraction A transparent body with rate change characteristics is formed, and this transparent body is irradiated with excitation light to optically couple adjacent optical waveguides, so if this is applied as an optical directional coupler or optical switch, Since the optical coupler itself can function as an optical directional coupler or optical switch, it is possible to downsize it, and
It can also be formed into an array and can be used as a functional element of an optical IC circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光方向性結合器を示す図、第2図は従来
のプリズム結合法を用いた光スィッチを示す図、第3図
はこの発明の一実施例を示す光方向性結合器の断面図、
第4図は第3図実施例に使用される光誘起屈折率変化特
性を持つ透明体の屈折率変化特性を示す図、第5図はこ
の発明の池の実施例を示す光方向性結合器の平面図、第
6図は第5図の光方向性結合器の断面図、第7図、第8
図、第9図はそれぞれこの発明の他の実施例であ。 る光スィッチを示す図である。 10・20・30;基板、  11・14・21・24
・51・34・41・44蓚コア層。 12・15・22・25・42・45;クラッド層、 
13・26・56・43i光誘起屈折率変化特性を持つ
透明体。 特許出願人     立石電機株式会社代理人 弁理士
  中 村 茂 信 第 1 記 (A) ’11211 11!!3  図     ・ 笥 4 図 箆 5 図 隻 6 図 J4゜ l189  聞
Fig. 1 shows a conventional optical directional coupler, Fig. 2 shows an optical switch using the conventional prism coupling method, and Fig. 3 shows an optical directional coupler according to an embodiment of the present invention. A cross-sectional view of
FIG. 4 is a diagram showing the refractive index change characteristics of a transparent body having light-induced refractive index change characteristics used in the embodiment shown in FIG. 3, and FIG. 5 is an optical directional coupler showing an embodiment of the present invention. Figure 6 is a cross-sectional view of the optical directional coupler in Figure 5, Figures 7 and 8 are
9 and 9 respectively show other embodiments of the present invention. It is a diagram showing an optical switch. 10, 20, 30; board, 11, 14, 21, 24
・51, 34, 41, 44 turmeric core layer. 12, 15, 22, 25, 42, 45; cladding layer,
13/26/56/43i A transparent body with light-induced refractive index change characteristics. Patent Applicant Tateishi Electric Co., Ltd. Agent Patent Attorney Shigeru Nakamura Shin No. 1 (A) '11211 11! ! 3 Fig. 4 Fig. 5 Fig. 6 Fig. J4゜l189

Claims (2)

【特許請求の範囲】[Claims] (1)基板面上に、コア層およびクラッド層よシなる複
数の光導波路を並設し、隣接する光導波路のコア層間に
挾まれるクラッド層の一部に代えて、光誘起屈折率変化
特性を持つ透明体を形成し、この誘明体に励起光を照射
して、隣接する光導波路を光学的に結合することを特徴
とする光結合器。
(1) A plurality of optical waveguides consisting of a core layer and a cladding layer are arranged in parallel on the substrate surface, and a part of the cladding layer sandwiched between the core layers of adjacent optical waveguides is replaced with a light-induced refractive index change. An optical coupler is characterized in that it forms a transparent body having a characteristic, and optically couples adjacent optical waveguides by irradiating this diluent with excitation light.
(2)前記並設される光導波路の少なくとも一方に。 屈曲部を設けこの屈曲部を含んで前記透明体を形成して
なることを特徴とする特許請求の範囲第1項記載の光結
合器。
(2) At least one of the optical waveguides arranged in parallel. 2. The optical coupler according to claim 1, wherein the transparent body is formed by providing a bent portion and including the bent portion.
JP10856481A 1981-07-10 1981-07-10 Photocoupler Pending JPS5810705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10856481A JPS5810705A (en) 1981-07-10 1981-07-10 Photocoupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10856481A JPS5810705A (en) 1981-07-10 1981-07-10 Photocoupler

Publications (1)

Publication Number Publication Date
JPS5810705A true JPS5810705A (en) 1983-01-21

Family

ID=14488017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10856481A Pending JPS5810705A (en) 1981-07-10 1981-07-10 Photocoupler

Country Status (1)

Country Link
JP (1) JPS5810705A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0178806A2 (en) * 1984-10-17 1986-04-23 Sperry Marine Inc. Variable coupler fibreoptic sensor
EP0204493A2 (en) * 1985-05-29 1986-12-10 THE GENERAL ELECTRIC COMPANY, p.l.c. Fibre optic coupler
KR100395490B1 (en) * 2001-03-27 2003-08-25 한국전자통신연구원 Ultra short two-section vertical direct coupler switch with high extinction ratios

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5177259A (en) * 1974-08-08 1976-07-05 Int Standard Electric Corp
JPS5298459A (en) * 1976-02-13 1977-08-18 Nippon Telegr & Teleph Corp <Ntt> Light logic element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5177259A (en) * 1974-08-08 1976-07-05 Int Standard Electric Corp
JPS5298459A (en) * 1976-02-13 1977-08-18 Nippon Telegr & Teleph Corp <Ntt> Light logic element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0178806A2 (en) * 1984-10-17 1986-04-23 Sperry Marine Inc. Variable coupler fibreoptic sensor
EP0204493A2 (en) * 1985-05-29 1986-12-10 THE GENERAL ELECTRIC COMPANY, p.l.c. Fibre optic coupler
KR100395490B1 (en) * 2001-03-27 2003-08-25 한국전자통신연구원 Ultra short two-section vertical direct coupler switch with high extinction ratios

Similar Documents

Publication Publication Date Title
JP3522117B2 (en) Self-guided optical circuit
US4846540A (en) Optical wavegide junction
US4881791A (en) Optical device
US3967877A (en) Coupler for coupling optical energy transmitted by optical fiber to optical waveguide and method of manufacture
US4983006A (en) Polarization-independent optical waveguide switch
GB2220764A (en) Single mode optical waveguide couplers
US5937129A (en) Waveguide grating structure having linear and nonlinear waveguiding film
US6728438B2 (en) Externally controllable waveguide type higher order mode generator
EP0877284B1 (en) Acousto-optic silica optical circuit switch
JPS5810701A (en) Optical variable attenuator
JPH11167032A (en) Curved optical waveguide circuit
US4988156A (en) Bent waveguide for an optical integrated circuit
JPS5810705A (en) Photocoupler
JPS6394205A (en) Optical excitation device for bidirectional transmission
JP2001296438A (en) Photo-breaching waveguide
US6175670B1 (en) Planar lightguide circuit having a planar grating
JP3552592B2 (en) Manufacturing method of optical waveguide
JPH052116A (en) Optical waveguide
JP3555888B2 (en) Self-guided optical circuit
JP2005284240A (en) Photonic crystal waveguide, homogeneous medium waveguide, and optical element
JPH0361924B2 (en)
JPS63191106A (en) Optical branching circuits
JPS62299913A (en) Waveguide type polarizer
JP3379658B2 (en) Light switch
JPS63279627A (en) Two-way optical communication module