JPS6394205A - Optical excitation device for bidirectional transmission - Google Patents

Optical excitation device for bidirectional transmission

Info

Publication number
JPS6394205A
JPS6394205A JP23900486A JP23900486A JPS6394205A JP S6394205 A JPS6394205 A JP S6394205A JP 23900486 A JP23900486 A JP 23900486A JP 23900486 A JP23900486 A JP 23900486A JP S6394205 A JPS6394205 A JP S6394205A
Authority
JP
Japan
Prior art keywords
waveguide
optical
refractive index
optical fiber
bidirectional transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23900486A
Other languages
Japanese (ja)
Inventor
Katsuyuki Imoto
克之 井本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23900486A priority Critical patent/JPS6394205A/en
Publication of JPS6394205A publication Critical patent/JPS6394205A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device

Abstract

PURPOSE:To permit coupling of an optical integration module for bidirectional transmission and optical fiber with high efficiency by disposing an input waveguide of a refractive index n1 and optical waveguide of a refractive index n0 (n1>=n0) in parallel and contact with each other so that both the waveguide have a tapered shape. CONSTITUTION:The input waveguide 12 of the refractive index n1 and the optical waveguide 14 of the refractive index n0 are disposed in parallel and contact with each other via the layer of a refractive index nc1 on a substrate 8 (n1>=n0>nc1). The outer peripheries of the two parallel disposed waveguides 12, 14 are coated with a layer of a refractive index nc2 (n1<=n0>nc1<=nc2). An optical fiber 5 or semiconductor optical element is disposed to one end of the input waveguide 12 and the opposite side thereof is formed to the tapered shape. The waveguide 14 on one end side of the waveguide 12 is also formed to the tapered shape. A light signal repeats reflections in the tapered parts, by which the reflection angle thereof is increased and the light is efficiently coupled to the waveguide 14 or the waveguide 12. The coupling of the optical integration module for bidirectional transmission and the optical fiber 5 is thereby permitted with high efficiency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光ファイバと導波路の接続方法、半導体発光
あるいは受光素と薄波路の接続方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for connecting an optical fiber and a waveguide, and a method for connecting a semiconductor light emitting or light receiving element to a thin waveguide.

〔従来の技術〕[Conventional technology]

光フアイバ通信の急速な進展に伴い、半導体発光素子、
受光素子、光スィッチ、光変調素子、光導 合分波素子、および光を瀞波する光導波路などを集積化
する、いわゆる光集積回路の研究が活発化してきた。こ
の光集積回路における重要な課題は、光導波路と上記光
素子、あるいは光ファイバとの結合にある。すなわち、
いかに効率良く結合させるかが重要である。
With the rapid development of optical fiber communications, semiconductor light emitting devices,
Research on so-called optical integrated circuits, which integrate light-receiving elements, optical switches, optical modulation elements, optical coupling/demultiplexing elements, optical waveguides that wave light, etc., has become active. An important issue in this optical integrated circuit is the coupling between the optical waveguide and the above-mentioned optical element or optical fiber. That is,
What is important is how efficiently to combine them.

従来、上記結合方法の代表例として、第5図に示すよう
な端面直接結合法と、第6図に示すようなテーパ導波路
を介しての結合法がある(特開昭60−133408号
公報)。
Conventionally, typical examples of the above-mentioned coupling methods include the end face direct coupling method as shown in FIG. 5 and the coupling method via a tapered waveguide as shown in FIG. ).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第5図の方法は、構造が簡単である反面、高結合効率を
得るためには光導波路9のサイズを光フアイバのコア部
の直径に近づけなければならないという制約があり、光
導波路の設計自由度がない。
Although the method shown in Fig. 5 has a simple structure, there is a restriction that the size of the optical waveguide 9 must be close to the diameter of the core part of the optical fiber in order to obtain high coupling efficiency, and there is freedom in designing the optical waveguide. There is no degree.

第6図の方法は、第5図の改良法であり、入力導波路1
0の屈折率nl を光導波路9の屈折率n。
The method shown in Fig. 6 is an improved method of Fig. 5, in which the input waveguide 1
The refractive index nl of 0 is the refractive index n of the optical waveguide 9.

と等しいかそれよりも大きくとり、かつ基板8の屈折率
ns ′@:no + nt よりも低くとるようにし
た構成である。この構成では、光導波路9のサイズは光
ファイバ5のコア部6の直径に無関係に設計することが
でき、その代わりに、人力薄波路10の厚み2幅を光フ
ァイバのコア部のサイズに合わせるように設計される。
The refractive index of the substrate 8 is set to be equal to or larger than , and lower than the refractive index ns'@:no + nt of the substrate 8. With this configuration, the size of the optical waveguide 9 can be designed without regard to the diameter of the core portion 6 of the optical fiber 5, and instead, the thickness and width of the thin waveguide 10 are adjusted to the size of the core portion of the optical fiber. Designed to be.

したがって、光ファイバからの光は人力導波路10に高
効率で結合される。そして入力薄波路のテーバ部11を
介して光導波路に高効率で励振される。第5図および第
6図において、光ファイバの代わりに半導体レーザを用
いてもよい、しかし、第6図の励振方法は光ファイバあ
るいは半導体レーザから光導波路への励振方法としては
有効であるが、第7図のような双方向伝送用光モジュー
ル1に光ファイバ5を接続した構成の励振方法には不向
きである。すなわち、光モジュール1には光フアイバ5
内を伝搬してきた波長λ2の光を結合させると共に、逆
に光フアイバ5内へ光モジュール1からの波長λlの光
を結合させなければならない、第6図の場合に、光導波
路9内を伝搬している光を入力導波路10を介して逆に
光ファイバ5のコア部6に高効率で結合させることは非
常にむずかしい、その理由は、光導波路9内を矢印22
のごとく伝搬していって入力導波路10に結合しにくい
ためである。
Therefore, light from the optical fiber is coupled into the manual waveguide 10 with high efficiency. The light is then excited into the optical waveguide with high efficiency via the tapered portion 11 of the input thin waveguide. In FIGS. 5 and 6, a semiconductor laser may be used instead of the optical fiber. However, although the excitation method in FIG. 6 is effective as a method for excitation from an optical fiber or semiconductor laser to an optical waveguide, This method is not suitable for an excitation method in which an optical fiber 5 is connected to an optical module 1 for bidirectional transmission as shown in FIG. That is, the optical module 1 has an optical fiber 5.
In the case of FIG. 6, in which the light with wavelength λ2 propagating within the optical waveguide 9 must be coupled into the optical fiber 5, and the light with the wavelength λl from the optical module 1 must be coupled into the optical fiber 5. It is very difficult to couple the light that is in the optical waveguide 9 to the core 6 of the optical fiber 5 through the input waveguide 10 with high efficiency.
This is because it is difficult to couple to the input waveguide 10 due to propagation as shown in FIG.

特に、光導波路9が単一モードあるいは低次モード伝送
用にサイズ、屈折率が定められている場合には、その傾
向が大きい。
This tendency is particularly strong when the size and refractive index of the optical waveguide 9 are determined for single mode or low-order mode transmission.

本発明の目的は、上記問題点を解決させることにある。An object of the present invention is to solve the above problems.

すなわち、双方向伝送用光集積化モジュールと光ファイ
バとの結合を高効率で実現させることにある。また、光
導波路のサイズは上記高効率化と無関係に選べるような
設計自由度をもたせた方法も合わせて提供することにあ
る。
That is, the object is to achieve highly efficient coupling between an optical integrated module for bidirectional transmission and an optical fiber. Another object of the present invention is to provide a method that allows a degree of freedom in design so that the size of the optical waveguide can be selected regardless of the above-mentioned improvement in efficiency.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は次のような構成方法にすることにより、達成
される。すなわち、基板上に屈折率nc1の層を介して
屈折率nlの入力薄波路と屈折率noの先導波路を接し
て平行に配置しくnl、≧−n。
The above object is achieved by the following configuration method. That is, an input thin wave path with a refractive index nl and a leading wave path with a refractive index no are arranged in parallel on the substrate via a layer with a refractive index nc1, nl, ≧-n.

>ncl)、該平行配置した両導波路の外周を屈折率n
cz Cnt>no>ncsンnc2)で覆い、該入力
導波路の一方端に光ファイバあるいは半導体光素子を配
置させ、その反対端をテーバ形状にし、また入力導波路
の一方端側の光導波路もテーバ形状にした構成にするこ
とにより達成される。
>ncl), and the outer periphery of both waveguides arranged in parallel has a refractive index n
cz Cnt>no>ncsnnc2), an optical fiber or a semiconductor optical device is arranged at one end of the input waveguide, the opposite end is made into a Taber shape, and the optical waveguide at one end of the input waveguide is also This is achieved by using a tapered configuration.

〔作用〕[Effect]

光ファイバ(あるいは半導体発光素子)からの光信号は
入力導波路に励振され、入力導波路を伝搬し、テーバ部
内をジグザグに反射をくり返し、そのたびに反射角度を
大きくし、除々に光導波路内に結合されていく。逆に先
導波路内を逆方向に伝搬してきた光信号は、光導波路の
テーバ部に入るにつれて除々に反射角度を大きくし、入
力導波路に効率よく結合され、そして入力導波路から光
ファイバへ光信号が結合され、光フアイバ内を逆方向に
伝搬していく。
An optical signal from an optical fiber (or a semiconductor light emitting device) is excited into an input waveguide, propagates through the input waveguide, and is repeatedly reflected in a zigzag pattern within the tapered section, increasing the reflection angle each time, and gradually transmitting light inside the optical waveguide. will be combined into. Conversely, an optical signal propagating in the opposite direction within the leading waveguide gradually increases its reflection angle as it enters the tapered part of the optical waveguide, is efficiently coupled to the input waveguide, and is then transmitted from the input waveguide to the optical fiber. The signals are combined and propagate in the opposite direction through the optical fiber.

〔実施例〕〔Example〕

第1図に本発明の双方向伝送周光励振方法の実施例を示
す、この図は側面図の一部を示したものであり、半導体
レーザ、受光素子などの光素子は省略して記載されてい
ないが、実際には当然存在するものである。5は光ファ
イバ、6はコア部、7はクラッド部である。この光フア
イバ内には双方向に光が伝送される。入力薄波路(屈折
率nx)12は角度αBのテーパ部13を有している。
FIG. 1 shows an embodiment of the bidirectional transmission frequency excitation method of the present invention. This figure shows a part of a side view, and optical elements such as a semiconductor laser and a light receiving element are omitted. However, in reality, it naturally exists. 5 is an optical fiber, 6 is a core portion, and 7 is a cladding portion. Light is transmitted in both directions within this optical fiber. The input thin wave path (refractive index nx) 12 has a tapered portion 13 with an angle αB.

光導波路(屈折率no)14も角度α^のテーバ部15
を有している。基板8の屈折率はこの場合nclとする
。各々の屈折率の関係は次式のように決定される。
The optical waveguide (refractive index no.) 14 also has a tapered portion 15 with an angle α^
have. In this case, the refractive index of the substrate 8 is ncl. The relationship between each refractive index is determined as shown in the following equation.

。□、≧−no>。。□           ・・・
(1)入力導波路12の上面はこの場合、空気で覆われ
ている。入力導波路12.光導波路14はこの場合、3
次元導波路(埋込み型、リッジ型など)であるが、光フ
ァイバと入力導波路の間にレンズを設ける構成にすれば
、スラブ導波路であってもよい。ここで、角度αB、α
^は入力導波路12と光導波路14間の結合が強くなる
ようにできる限り小さい角度が好ましい、すなわち、光
線方程式により近似的に表わすとすると、上記角度と相
接する側の導波路への屈折角θ、との関係は、で表わさ
れる。上式において、nlとnoはほぼ等しい。そして
θ、が90”に近い程、結合量が大きくとれる。したが
って、式(2)より、αBは小さい方がよい。具体的に
は10°以下が好ましい。またこのα^、αBの値が小
さいほど、導波路以外への放射光を小さく抑えることが
できる。
. □, ≧-no>. . □ ・・・
(1) The upper surface of the input waveguide 12 is covered with air in this case. Input waveguide 12. In this case, the optical waveguide 14 is 3
Although it is a dimensional waveguide (embedded type, ridge type, etc.), it may be a slab waveguide as long as a lens is provided between the optical fiber and the input waveguide. Here, angle αB, α
The angle ^ is preferably as small as possible so that the coupling between the input waveguide 12 and the optical waveguide 14 is strong.In other words, if it is approximately expressed by a ray equation, the refraction to the waveguide on the side adjacent to the above angle is The relationship with the angle θ is expressed as follows. In the above equation, nl and no are approximately equal. The closer θ is to 90", the larger the amount of bonding can be. Therefore, from equation (2), the smaller αB is, the better. Specifically, it is preferably 10° or less. Also, the values of α^ and αB are The smaller it is, the smaller the light emitted to areas other than the waveguide can be suppressed.

第2図は本発明の双方向伝送月光励振方法の別の実施例
を示したものである。これは入力導波路。
FIG. 2 shows another embodiment of the bidirectional transmission moonlight excitation method of the present invention. This is the input waveguide.

12を下に、その上に光導波路14を設けた構造である
。光導波路14の上部は空気で覆われているので、光導
波路から入力導波路への結合効率は第1図の場合よりも
よい。
It has a structure in which an optical waveguide 12 is placed below and an optical waveguide 14 is provided above. Since the upper part of the optical waveguide 14 is covered with air, the coupling efficiency from the optical waveguide to the input waveguide is better than in the case of FIG.

第3図は第2図の入力導波路の下に低屈折率(ncx)
層16を、光導波路の上部に低屈折率(n cz)層1
7をそれぞれ設けた構成である。この場合、基板8の屈
折率は16の屈折率よりも高くてもよい。
Figure 3 shows a low refractive index (ncx) below the input waveguide in Figure 2.
layer 16 and a low refractive index (n cz) layer 1 on top of the optical waveguide.
7, respectively. In this case, the refractive index of substrate 8 may be higher than the refractive index of 16.

第4図は基板8に半導体レーザ24を設けた光モジュー
ルの実施例である。同図において、18はInP層、1
9はInPバッファ層、25はInGaAsPの活性層
、26はInPバッファ層、27はInPクラッド層で
ある。12′は半導体レーザ24と光導波路14とを結
合させる入力導波路であるが、この屈折率は半導体レー
ザ24との結合効率が最適になるように選ばれる。した
がって、12の入力導波路の屈折率と異なっていてもよ
い。
FIG. 4 shows an embodiment of an optical module in which a semiconductor laser 24 is provided on a substrate 8. In the figure, 18 is an InP layer, 1
9 is an InP buffer layer, 25 is an InGaAsP active layer, 26 is an InP buffer layer, and 27 is an InP cladding layer. Reference numeral 12' denotes an input waveguide for coupling the semiconductor laser 24 and the optical waveguide 14, and its refractive index is selected so that the coupling efficiency with the semiconductor laser 24 is optimized. Therefore, the refractive index may be different from that of the 12 input waveguides.

本発明は上記実施例に限定されない、まず基板の材質は
半導体以外に、ガラス、サファイヤなどであってもよい
、また基板には半導体光素子以外に、光合分波素子、光
スイツチ素子、光合分岐素子、レンズ、などの光素子、
電気回路(レーザ駆動回路、増幅回路、など)を含んで
いてもよい。
The present invention is not limited to the above embodiments. First, the material of the substrate may be glass, sapphire, etc. in addition to semiconductors. In addition to semiconductor optical elements, the substrate may also include optical multiplexing/demultiplexing elements, optical switch elements, optical multiplexing/demultiplexing elements, and optical multiplexing/demultiplexing elements. Optical elements such as elements, lenses, etc.
It may include an electric circuit (a laser drive circuit, an amplifier circuit, etc.).

[発明の効果〕 本発明によれば、双方向伝送用光集積化モジュールと光
ファイバ(あるいは半導体光素子)との結合を高効率で
実現させることができる。また光導波路のサイズを上記
高効率化とほぼ無関係に選ぶことができるので、設計の
自由度をもたせることができる。
[Effects of the Invention] According to the present invention, it is possible to realize highly efficient coupling between an optical integrated module for bidirectional transmission and an optical fiber (or a semiconductor optical device). Further, since the size of the optical waveguide can be selected almost independently of the above-described high efficiency, a degree of freedom in design can be provided.

【図面の簡単な説明】 第1図、第2図、第3図及び第4図は本発明の双方向伝
送月光励振方法の実施例を示す図、第5図および第6図
は従来の光ファイバ(あるいは半導体光素子)と光モジ
ュールの結合方法を示す図、第7図は本発明者が検討中
の双方向伝送用光モジュールと光ファイバを結合した概
略図である。 1・・・双方向伝送用光モジュール、2・・・発光素子
、3・・・受光素子、4・・・光合分波器、5・・・光
ファイバ、6・・・コア部、7・・・クラッド部、8・
・・基板、9・・・光導波路、10,12,12’・・
・入力光導波路、13.13’ 、15,15’・・・
テーパ部、14・・・光導波路、16.17・・・クラ
ッド部、18・・・InP層、19・・・InPバッフ
ァ層、24・・・半導体レーザ、25−InGaAsP
活性層、26 ”・I n Pパツフ第 117 Z  2  +] Z3  図 /b クラ、7ド郵 17 クラ・・ド苦p 名 5 ロ ア クラ1.ド(p ’Hb  ロ ア  7ラン)−IP   IO)sne%ikz q
 l¥1
[Brief Description of the Drawings] Figures 1, 2, 3, and 4 are diagrams showing an embodiment of the bidirectional transmission moonlight excitation method of the present invention, and Figures 5 and 6 are diagrams showing conventional FIG. 7, which is a diagram showing a method of coupling a fiber (or semiconductor optical device) and an optical module, is a schematic diagram of a bidirectional transmission optical module and an optical fiber being considered by the present inventor. DESCRIPTION OF SYMBOLS 1... Optical module for bidirectional transmission, 2... Light emitting element, 3... Light receiving element, 4... Optical multiplexer/demultiplexer, 5... Optical fiber, 6... Core part, 7... ...Clad part, 8.
... Substrate, 9... Optical waveguide, 10, 12, 12'...
・Input optical waveguide, 13.13', 15,15'...
Tapered part, 14... Optical waveguide, 16.17... Clad part, 18... InP layer, 19... InP buffer layer, 24... Semiconductor laser, 25-InGaAsP
Active layer, 26 ”・I n P puff No. 117 Z 2 +] Z3 Figure/b Kura, 7 do 17 Kura・・do bitterp Name 5 Lower Cla 1. Do (p 'Hb Lower 7 run) - IP IO )sne%ikz q
l¥1

Claims (1)

【特許請求の範囲】 1、屈折率n_1の入力導波路と屈折率n_0の光導波
路(n_1≧n_0)が互いに接して平行に配置され、
該平行配置された両導波路の周りは上記屈折率よりは低
屈折率の層で覆われ、上記入力導波路の一端に光ファイ
バあるいは半導体光素子が配置され、その他端側がテー
パ形状を呈し、また入力導波路側の光導波路もテーパ形
状を呈していることを特徴とする双方向伝送用光励振装
置。 2、特許請求の範囲第1項において、前記両導波路が基
板上に形成されていることを特徴とする双方向伝送用光
励振装置。 3、特許請求の範囲第2項において、前記基板上に半導
体光素子が少なくとも1個形成されていることを特徴と
する双方向伝送用光励振装置。
[Claims] 1. An input waveguide with a refractive index n_1 and an optical waveguide with a refractive index n_0 (n_1≧n_0) are arranged in parallel and in contact with each other,
Both waveguides arranged in parallel are covered with a layer having a refractive index lower than the above refractive index, an optical fiber or a semiconductor optical element is arranged at one end of the input waveguide, and the other end has a tapered shape, Furthermore, an optical excitation device for bidirectional transmission is characterized in that the optical waveguide on the input waveguide side also has a tapered shape. 2. The optical excitation device for bidirectional transmission according to claim 1, wherein both the waveguides are formed on a substrate. 3. An optical excitation device for bidirectional transmission according to claim 2, characterized in that at least one semiconductor optical device is formed on the substrate.
JP23900486A 1986-10-09 1986-10-09 Optical excitation device for bidirectional transmission Pending JPS6394205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23900486A JPS6394205A (en) 1986-10-09 1986-10-09 Optical excitation device for bidirectional transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23900486A JPS6394205A (en) 1986-10-09 1986-10-09 Optical excitation device for bidirectional transmission

Publications (1)

Publication Number Publication Date
JPS6394205A true JPS6394205A (en) 1988-04-25

Family

ID=17038463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23900486A Pending JPS6394205A (en) 1986-10-09 1986-10-09 Optical excitation device for bidirectional transmission

Country Status (1)

Country Link
JP (1) JPS6394205A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0285803A (en) * 1988-09-22 1990-03-27 Hitachi Cable Ltd Waveguide type optical star coupler
JPH02234107A (en) * 1989-03-07 1990-09-17 Sankyo Seiki Mfg Co Ltd Optical waveguide
JPH0415604A (en) * 1990-05-09 1992-01-21 Oki Electric Ind Co Ltd Optical waveguide
EP0687925A2 (en) 1994-06-08 1995-12-20 Hoechst Aktiengesellschaft Method of forming an optical coupling waveguide and a lightguide device having the optical coupling waveguide
EP0695958A1 (en) * 1994-08-04 1996-02-07 Hoechst Aktiengesellschaft Tapered waveguide for optical coupling
JP2001330763A (en) * 2000-03-15 2001-11-30 Hoya Corp Condenser parts as well as light source module, laser device and signal amplifier device using the same
JP2003515253A (en) * 1999-11-12 2003-04-22 スパーコラー・コーポレーション Tapered planar optical waveguide
EP1496378A1 (en) * 2003-07-10 2005-01-12 C.S.E.M. Centre Suisse D'electronique Et De Microtechnique Sa Optical coupling device
WO2004112206A3 (en) * 2003-06-16 2005-05-12 Soreq Nuclear Res Ct Optical apparatus
US20200257053A1 (en) * 2019-02-11 2020-08-13 Poet Technologies, Inc. Dual Core Waveguide

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5280042A (en) * 1975-12-22 1977-07-05 Ibm Optical coupler
JPS60133408A (en) * 1983-12-22 1985-07-16 Matsushita Electric Ind Co Ltd Light junction device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5280042A (en) * 1975-12-22 1977-07-05 Ibm Optical coupler
JPS60133408A (en) * 1983-12-22 1985-07-16 Matsushita Electric Ind Co Ltd Light junction device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0285803A (en) * 1988-09-22 1990-03-27 Hitachi Cable Ltd Waveguide type optical star coupler
JPH02234107A (en) * 1989-03-07 1990-09-17 Sankyo Seiki Mfg Co Ltd Optical waveguide
JPH0415604A (en) * 1990-05-09 1992-01-21 Oki Electric Ind Co Ltd Optical waveguide
EP0687925A2 (en) 1994-06-08 1995-12-20 Hoechst Aktiengesellschaft Method of forming an optical coupling waveguide and a lightguide device having the optical coupling waveguide
EP0695958A1 (en) * 1994-08-04 1996-02-07 Hoechst Aktiengesellschaft Tapered waveguide for optical coupling
US5568579A (en) * 1994-08-04 1996-10-22 Hoechst Aktiengesellschaft Waveguide coupling device including tapered waveguide with a particular tapered angle to reduce coupling loss
JP2003515253A (en) * 1999-11-12 2003-04-22 スパーコラー・コーポレーション Tapered planar optical waveguide
JP2001330763A (en) * 2000-03-15 2001-11-30 Hoya Corp Condenser parts as well as light source module, laser device and signal amplifier device using the same
WO2004112206A3 (en) * 2003-06-16 2005-05-12 Soreq Nuclear Res Ct Optical apparatus
US7277612B2 (en) 2003-06-16 2007-10-02 Soreq Nuclear Research Center Optical apparatus including pump guiding fiber and receiving fiber
EP1496378A1 (en) * 2003-07-10 2005-01-12 C.S.E.M. Centre Suisse D'electronique Et De Microtechnique Sa Optical coupling device
US20200257053A1 (en) * 2019-02-11 2020-08-13 Poet Technologies, Inc. Dual Core Waveguide
US20200257054A1 (en) * 2019-02-11 2020-08-13 Poet Technologies, Inc. Dual Core Waveguide
US10976496B2 (en) * 2019-02-11 2021-04-13 Poet Technologies, Inc. Dual core waveguide
US10976497B2 (en) * 2019-02-11 2021-04-13 Poet Technologies, Inc. Dual core waveguide

Similar Documents

Publication Publication Date Title
JP3349950B2 (en) Wavelength demultiplexing circuit
JP2000056146A (en) Light self-guide optical circuit
JP2002122750A (en) Structure for connecting optical waveguide
US20100092132A1 (en) Waveguide connecting structure
JP3434986B2 (en) Optical multiplexing / demultiplexing circuit
JP3490745B2 (en) Composite optical waveguide type optical device
JP2022505829A (en) Methods and equipment for controlling and suppressing stray light in photonic integrated circuits
JPS6394205A (en) Optical excitation device for bidirectional transmission
TWI442117B (en) Optical waveguide circuit and multi-core central processing unit using the same
EP0877284B1 (en) Acousto-optic silica optical circuit switch
JP2001215371A (en) Optical waveguide type element with monitor
JPH04360105A (en) Spot width converter for light wave
JP2004157530A (en) Optical module
US5841913A (en) Acousto-optic planar waveguide modulators
JP3125902B2 (en) Star type optical wiring circuit
JP2000321449A (en) Waveguide type optical multiplexing/demultiplexing circuit chip
JP2001174659A (en) Mode separating method and mode separator
JP2004138785A (en) Optical multiplexer/demultiplexer circuit
JP2005284240A (en) Photonic crystal waveguide, homogeneous medium waveguide, and optical element
JPS5810705A (en) Photocoupler
JP2898066B2 (en) Optical device
JP3184358B2 (en) Star coupler
JPH0697561A (en) Optical output stabilizing method for waveguide type bilateral transmission module
JP2004125854A (en) Optical waveguide element and its manufacturing method
JPH0576614B2 (en)