JPS62299913A - Waveguide type polarizer - Google Patents

Waveguide type polarizer

Info

Publication number
JPS62299913A
JPS62299913A JP14295586A JP14295586A JPS62299913A JP S62299913 A JPS62299913 A JP S62299913A JP 14295586 A JP14295586 A JP 14295586A JP 14295586 A JP14295586 A JP 14295586A JP S62299913 A JPS62299913 A JP S62299913A
Authority
JP
Japan
Prior art keywords
waveguide
mode
refractive index
films
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14295586A
Other languages
Japanese (ja)
Other versions
JP2580127B2 (en
Inventor
Naoyuki Mekata
直之 女鹿田
Minoru Kiyono
實 清野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61142955A priority Critical patent/JP2580127B2/en
Publication of JPS62299913A publication Critical patent/JPS62299913A/en
Application granted granted Critical
Publication of JP2580127B2 publication Critical patent/JP2580127B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To simplify a production process and to reduce restriction of materials by arranging films with a specific refractive index near an optical waveguide and projecting either one of two modes through the films. CONSTITUTION:The films 3, 4 having a refractive index equal (or almost equal) to the equivalent refractive index of guided light are arranged near the waveguide 2 and either one of two kinds of polarized light beams (TE mode, TM mode) transmitted through the waveguide 2 is radiated through the films 3, 4. Since only the TE mode polarized light is projected to the periphery through the film 3, 4 by arranging the films 3, 4 near the waveguide 2, the mode of the outputted light is only the TM mode. Thereby, the polarizer acts as a filter passing only the TM mode. Since the refractive index of the waveguide may be set up equally to the refractive index of the films 3, 4 arranged near the waveguide, these members can be formed by the same material in one process, so that the production process can be simplified and the restriction of materials can be loosened.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔概   要〕 本発明は、光導波路を伝搬するTEモード及びTMモー
ドの2種類の偏光のうちどちから一方のみを透過させる
ようにした導波路形偏光子において、光導波路の近傍に
、先導波路の屈折率と等しい(もしくはほぼ等しい)屈
折率を持つ膜を配置し、この膜を介して上記2つのモー
ドのいずれが一方を放射させるようにしたことにより、
製造工程の簡単化を可能にするとともに、材料面におけ
る制約を少なくしたものである。
Detailed Description of the Invention 3. Detailed Description of the Invention [Summary] The present invention provides a light guide that transmits only one of two types of polarized light, TE mode and TM mode, which propagate in an optical waveguide. In the wave-shaped polarizer, a film having a refractive index equal to (or almost equal to) the refractive index of the leading waveguide is placed near the optical waveguide, and one of the two modes is radiated through this film. By doing so,
This simplifies the manufacturing process and reduces restrictions on materials.

(産業上の利用分野〕 本発明は、特に光築積回路内に使用され、導波路中を伝
搬する光に対してTEモードフィルタ(もしくはT”M
モードフィルタ)として作用する導波路形偏光子に関す
る。
(Industrial Application Field) The present invention is particularly useful in optical integrated circuits, and applies to TE mode filters (or T"M filters) for light propagating in waveguides.
This invention relates to a waveguide polarizer that acts as a mode filter.

現在、一般の光学系に使用される偏光子と同様に、光集
積回路においても、導波路形の偏光子が要望されている
Currently, similar to polarizers used in general optical systems, waveguide-type polarizers are in demand for optical integrated circuits as well.

〔従 来 の 技 術〕[Traditional techniques]

TEモードフィルタとして作用する、従来の導波路形偏
光子を第4図(a)〜(C)に示す。
A conventional waveguide polarizer that acts as a TE mode filter is shown in FIGS. 4(a) to 4(c).

同図fa)ば、導波路1上に金属クラッド2を配置した
ものである。このようにすれば、導波路1中を伝搬する
光のうち、TMモート′の偏光ば金属クラッド2に吸収
されるが、TEモードの偏光はほとんど吸収されずにそ
のまま透過する。
In the figure fa), a metal cladding 2 is placed on a waveguide 1. In this way, among the light propagating through the waveguide 1, the polarized light of the TM mode' is absorbed by the metal cladding 2, but the polarized light of the TE mode is hardly absorbed and is transmitted as is.

同図tblは、ガラス導波路11上に、例えば方解石等
の異方性光学結晶12を配置したものである。
In FIG. tbl, an anisotropic optical crystal 12 such as calcite is placed on a glass waveguide 11.

異方性光学結晶12は、同図に示すように、方向によっ
て屈折率が異なる(X方向はno、z方向ばrJ4 )
。ガラス導波路11の屈折率をn9とすれば、nO>n
g>ngの関係がある。すると、1Mモードに対しては
、異方性光学結晶12の屈折率はnoとなり、導波路1
1の屈折率nsよりも大きくなるので、光を閉込める作
用がなくなり、そのまま放射してしまう。一方、TEモ
ードに対しては、異方性光学結晶12の屈折率はne 
 (<n、)となるので、光は導波路11内に閉じ込め
られ、放射されずにそのまま取り出される。
As shown in the figure, the anisotropic optical crystal 12 has a refractive index that differs depending on the direction (no in the X direction and rJ4 in the z direction).
. If the refractive index of the glass waveguide 11 is n9, then nO>n
There is a relationship of g>ng. Then, for the 1M mode, the refractive index of the anisotropic optical crystal 12 becomes no, and the waveguide 1
Since the refractive index is larger than ns of 1, there is no effect of confining light, and the light is emitted as is. On the other hand, for the TE mode, the refractive index of the anisotropic optical crystal 12 is ne
(<n,), so the light is confined within the waveguide 11 and is extracted as it is without being radiated.

同図tc)は、上記の場合とは逆に、異方性(y方向の
屈折率no、z方向の屈折率ne−)を持つTi拡散L
iNb0! 導波路21上に、高屈折率nc(no>n
C>n4)を持つNb2O5膜22を配置したものであ
る。この場合も、屈折率の大小関係から、1Mモードに
対しては光の閉じ込め作用がなくなり、TEモードだけ
が放射することなくそのまま透過する。
tc) in the same figure shows a Ti diffused L with anisotropy (refractive index no in the y direction, refractive index ne in the z direction), contrary to the above case.
iNb0! On the waveguide 21, a high refractive index nc (no>n
In this example, an Nb2O5 film 22 having a relationship (C>n4) is arranged. In this case as well, due to the magnitude relationship of the refractive index, there is no light confinement effect for the 1M mode, and only the TE mode is transmitted as is without being emitted.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来の導波路形偏光子においては、いずれの場合も
、導波路に対してこれとは屈折率の異なる物質を配置す
る必要があるため、製造工程が複雑になるという問題点
があった。また、第4図(b)。
In any of the above conventional waveguide polarizers, there is a problem in that the manufacturing process becomes complicated because it is necessary to arrange a substance with a different refractive index in the waveguide. Also, FIG. 4(b).

(Q)に示した例では、異方性結晶を使わなければなら
ないという制約もあった。
In the example shown in (Q), there was also a restriction that an anisotropic crystal had to be used.

本発明は、上記問題点に鑑み、製造工程の簡単化が可能
であって、しかも材料面における制約の少ない導波路形
偏光子を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, an object of the present invention is to provide a waveguide-type polarizer that can simplify the manufacturing process and has fewer restrictions in terms of materials.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、導波路の近傍に、導波光の等価屈折率と等し
い(もしくはほぼ等しい)屈折率を持つ膜を配置し、導
波路を伝搬する2種類の偏光(TEモモ−’、1Mモー
ド)のうちの一方を、上記膜を介して放射させるように
したものである。
In the present invention, a film having a refractive index equal to (or almost equal to) the equivalent refractive index of the guided light is arranged near the waveguide, and two types of polarized light (TE momo-', 1M mode) propagating through the waveguide are provided. One of the two is emitted through the film.

〔作   用〕[For production]

本発明の作用を第1図を用いて説明する。同図において
、導波路の屈折率をn4 、その隣接層の屈折路をnc
l+   C2(<n4)とする。この導波率を伝Il
!する光の偏光状態には、TEモードと1Mモードの2
つがあるが、第1図(al、 (blにそれぞれ示すよ
うに、導波路から隣接層へのしみ出−5= し量は、TEモードよりも1Mモードの方が大きい。よ
って、導波路の近傍に、その屈折率n(と等しい(もし
くはほぼ等しい)屈折率nsを持つ膜を配置すれば、1
Mモードの方はしみ出した光が上記膜を介して多く放射
され、一方、TEモードの方はほとんど放射されずに、
はぼそのまま導波路内を透過していく。従って、このよ
うな構造は、1Mモードを除去してTEモードだけを取
り出す偏光子として作用することになる。
The operation of the present invention will be explained using FIG. In the same figure, the refractive index of the waveguide is n4, and the refraction path of the adjacent layer is nc.
Let l+C2(<n4). This waveguide is transmitted Il
! There are two polarization states of the light: TE mode and 1M mode.
However, as shown in Figure 1 (al, (bl), the amount of leakage from the waveguide to the adjacent layer is larger in the 1M mode than in the TE mode. If a film with a refractive index ns equal to (or almost equal to) the refractive index n is placed nearby, 1
In the M mode, much of the seeped light is emitted through the film, while in the TE mode, almost no light is emitted,
The light passes through the waveguide almost unchanged. Therefore, such a structure acts as a polarizer that removes the 1M mode and extracts only the TE mode.

〔実  施  例〕〔Example〕

以下、本発明の実施例について、図面を参照しながら説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

第2図+a)および(b)は、本発明の一実施例を示す
平面図および八−A断面図である。同図では、屈折率n
cの基板1に形成された屈折率nf()nc)の導波路
2の近傍であって、この導波路2を両横から挟む位置に
、屈折率n s  (an4)の2つの膜3.4を配置
したものである。
Figures 2+a) and 2(b) are a plan view and a sectional view taken along line 8-A, showing an embodiment of the present invention. In the figure, the refractive index n
In the vicinity of the waveguide 2 with a refractive index nf()nc) formed on the substrate 1 of c, two films 3. 4 is arranged.

このように導波路2の近傍に膜3,4を配置することに
より、第1図に示した原理に基づき(ただし、各モード
の方向とII*3.4の配置位置との関係は、第1図と
第2図とで互いに逆になっている)、TEモートだけが
膜3.4を介して周囲に放射するので、出力される光の
モート′はTMモードだけとなる。従って、第2図に示
した偏光子は、TMモードだけを通過させるフィルタと
して作用する。なお、膜3,4の屈折率n6を導波モー
ドの等価屈折率と等しくすることにより、互いの位相整
合をとることができ、よって膜3,4を介してよりよく
放射させることが可能になる。
By arranging the films 3 and 4 near the waveguide 2 in this way, based on the principle shown in Fig. 1 (however, the relationship between the direction of each mode and the arrangement position of II 1 and 2), only the TE moat radiates into the surroundings via the membrane 3.4, so that the only output light moat 'is the TM mode. Therefore, the polarizer shown in FIG. 2 acts as a filter that passes only the TM mode. Note that by making the refractive index n6 of the films 3 and 4 equal to the equivalent refractive index of the waveguide mode, mutual phase matching can be achieved, and therefore better radiation can be achieved through the films 3 and 4. Become.

第2図に示した本実施例の偏光子を作成するには、まず
、例えばLiNbO3の結晶を基板1とし、ごの表面上
の導波路2および股3,4と対応する位置に、それぞれ
所定量のTiを蒸着させて、Tiのストリップラインを
形成する。次に、酸素雰囲気中で、上記Tiを基板1内
に拡散させる。すると、T’ iの拡散した部分の屈折
率が周囲の屈折率よりも高くなり、その部分が導波路2
および膜3゜4になる。このとき、導波路2の屈折率n
千と膜3.4の屈折率n5は、上記Tiの量を変化させ
て調整する。
To create the polarizer of this example shown in FIG. 2, first, a crystal of LiNbO3, for example, is used as the substrate 1, and a crystal is placed on the surface of the substrate at positions corresponding to the waveguide 2 and the legs 3 and 4, respectively. A fixed amount of Ti is deposited to form a Ti stripline. Next, the Ti is diffused into the substrate 1 in an oxygen atmosphere. Then, the refractive index of the diffused part of T' i becomes higher than the surrounding refractive index, and that part becomes the waveguide 2.
and the membrane becomes 3°4. At this time, the refractive index n of the waveguide 2
The refractive index n5 of the film 3.4 is adjusted by changing the amount of Ti.

この場合、n+とn8とが互いに等しくなるようにした
い時は、それぞれ同し量のTiを拡散すればよいので、
導波路2と膜3.4とを1つの工程で一遍に形成するこ
とができ、よって製造工程を簡単化できるという利点が
ある。
In this case, if you want n+ and n8 to be equal to each other, you can diffuse the same amount of Ti for each, so
There is an advantage that the waveguide 2 and the film 3.4 can be formed all at once in one process, thereby simplifying the manufacturing process.

なお、第2図talにおいて、−例として、導波路2の
幅a、導波路2と膜3,4との間隔す、膜3゜4の幅C
の実際の寸法を、例えばa=7μm。
In addition, in FIG. 2 tal, for example, the width a of the waveguide 2, the distance between the waveguide 2 and the films 3 and 4, and the width C of the film 3°4.
For example, the actual size of a = 7 μm.

b = 4 μm、  c−1000μmとし、マタ屈
折率ヲn c=2.14.  n+−n 、 =2.1
44となるようにすれば、本実施例はTMモートのフィ
ルタとして有効に作用する。ただし、これらの数値に限
定されるものではなく、例えば膜3.4は、もっと基板
1の端部まて広く配置されていてもよい。
b = 4 μm, c - 1000 μm, and the primary refractive index is c = 2.14. n+-n, =2.1
44, this embodiment effectively functions as a TM mote filter. However, the present invention is not limited to these numerical values; for example, the film 3.4 may be disposed more widely toward the edge of the substrate 1.

次に、第3図は本発明の他の実施例を示す斜視図である
Next, FIG. 3 is a perspective view showing another embodiment of the present invention.

同図では、屈折率nc;の物質と屈折率1’l c2の
物質とでチューブ形に構成したタラソト11内に、屈折
率n ((> n (1+  ’ c 2 )の導波路
12を形成し、さらにこの導波路12の下方近傍に、屈
折率n、(≧n4 )の膜13を配置したものである。
In the figure, a waveguide 12 with a refractive index n ((> n (1+' c 2 ) Furthermore, a film 13 having a refractive index of n (≧n4) is disposed near the bottom of this waveguide 12.

このような構成でば、TMモードだげが膜13を介して
放射するので、導波路12内を透過して出力される光の
モードばTEモードとなる。従って、本実施例の偏光子
は、前記実施例とは逆に、TEモードだけを通過させる
フィルタとして作用する。
With such a configuration, since only the TM mode is emitted through the film 13, the mode of light transmitted through the waveguide 12 and output becomes the TE mode. Therefore, the polarizer of this example acts as a filter that allows only the TE mode to pass, contrary to the previous example.

上記構成の偏光子を作成するには、まず、例えばSiO
2膜を形成する。次に、SiO2とTiO2の混合結晶
を基板として(この基板は最終的には膜13となる)、
この上にCVD等でSiO2膜を形成する。次に、Si
O=とTiO2を混合してスバ・7りを行い、上記Si
O2膜上にSiO2とTiO2の混合結晶を構成する。
To create a polarizer with the above configuration, first, for example, SiO
2 films are formed. Next, using a mixed crystal of SiO2 and TiO2 as a substrate (this substrate will eventually become the film 13),
A SiO2 film is formed on this by CVD or the like. Next, Si
O= and TiO2 are mixed and subjected to a sulfur treatment to form the above-mentioned Si.
A mixed crystal of SiO2 and TiO2 is formed on the O2 film.

続いて、マスクを使って、ごの混合結晶が導波IM、1
2となるように、フォトエツチング等でパターニングす
る。そして最後に、CVD等を用いて導波路12の周囲
をSi02膜で覆う。このSiOz膜と上記SiO2膜
が、チューブ形のクラット′11となる。このようにし
て形成された導波路12と膜13は、ともにSiO2と
TiO2の混合結晶であり、屈折率が互いに等しくなる
(もしくはほぼ等しくなる)ことにより、上記フィルタ
としての作用が生じる。
Next, using a mask, the mixed crystal is used as a waveguide IM, 1
2, patterning is performed by photo-etching or the like. Finally, the periphery of the waveguide 12 is covered with a Si02 film using CVD or the like. This SiOz film and the SiO2 film form a tube-shaped crat '11. Both the waveguide 12 and the film 13 formed in this manner are mixed crystals of SiO2 and TiO2, and their refractive indexes become equal (or almost equal) to each other, thereby producing the above-mentioned effect as a filter.

本実施例においても、第2図に示した実施例と同様に、
従来のような異方1!i:材料と等方性祠料とを組合せ
る必要性が全くなく、よって材料面における制約が緩和
される。
In this embodiment, similarly to the embodiment shown in FIG.
Anisotropic 1 like the conventional one! i: There is no need to combine the material and the isotropic abrasive, and therefore restrictions on the material are relaxed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、導波路の屈折率と、その近傍に配置さ
れる膜の屈折率とを等しくしてもよいので、これらを同
じ材料で1つの工程で形成することもでき、よって製造
工程の簡単化が可能になる。
According to the present invention, since the refractive index of the waveguide and the refractive index of the film disposed near the waveguide may be made equal, they can be formed from the same material in one process, and therefore the manufacturing process simplification becomes possible.

更に、異方性結晶等のような特別な物質を使用する必要
もないので、材料面での制約が緩くなる。
Furthermore, since there is no need to use special substances such as anisotropic crystals, restrictions on materials are relaxed.

【図面の簡単な説明】[Brief explanation of drawings]

−’10− 第1図(alおよび[b)は本発明の原理図、第2図(
a)、 fb)はそれぞれ本発明の一実施例を示す平面
図とそのA−A断面図、 第3図は本発明の他の実施例を示す斜視図、第4図(a
)〜(C)はそれぞれ従来の導波路形偏光子を示す斜視
図である。 2.12・・・導波路、 3、 4. 13・・・膜。 特許出願人   富士通株式会社 TEモード (a) ns(筐nf) TEモート′” (b) 本発明の原理図 A−14面図 (b) 木部B月の一タ(方−分) 第2図 本発明ゆ他の実施分j 第3図
-'10- Figure 1 (al and [b) is a diagram of the principle of the present invention, Figure 2 (
a) and fb) are a plan view and a sectional view taken along the line A-A of the embodiment of the present invention, respectively; FIG. 3 is a perspective view of another embodiment of the present invention; and FIG.
) to (C) are perspective views showing conventional waveguide polarizers, respectively. 2.12... Waveguide, 3, 4. 13...Membrane. Patent applicant Fujitsu Ltd. TE mode (a) ns (casing nf) TE mode' (b) Principle diagram of the present invention Figure 3 Other implementations of the present invention

Claims (1)

【特許請求の範囲】 1)光導波路(2;12)を伝播するTEモード及びT
Mモードの2種類の偏光のうちいずれか一方のみを透過
させる導波路形偏光子において、前記光導波路の近傍に
、導波光の等価屈折率と等しいかもしくは略々等しい屈
折率を持つ膜(3、4;13)を配置し、該膜を介して
前記2種類の偏光のうちの他方の偏光を放射させること
を特徴とする導波路形偏光子。 2)前記膜を、前記TEモードの方向に沿って前記光導
波路を挾んだ2箇所に配置し(3、4)、該膜を介して
前記TEモードの偏光を放射させることを特徴する特許
請求の範囲第1項記載の導波路形偏光子。 3)前記膜及び前記光導波路はともに、LiNbO_3
の結晶でできた基板にTiを拡散して形成されることを
特徴とする特許請求の範囲第2項記載の導波路形偏光子
[Claims] 1) TE mode and T propagating in the optical waveguide (2; 12)
In a waveguide polarizer that transmits only one of two types of M-mode polarized light, a film (3 , 4; 13), and the other of the two types of polarized light is emitted through the film. 2) A patent characterized in that the film is arranged at two locations sandwiching the optical waveguide along the direction of the TE mode (3, 4), and the polarized light of the TE mode is radiated through the film. A waveguide polarizer according to claim 1. 3) Both the film and the optical waveguide are made of LiNbO_3
3. The waveguide polarizer according to claim 2, wherein the waveguide polarizer is formed by diffusing Ti into a substrate made of crystal.
JP61142955A 1986-06-20 1986-06-20 Waveguide polarizer Expired - Fee Related JP2580127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61142955A JP2580127B2 (en) 1986-06-20 1986-06-20 Waveguide polarizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61142955A JP2580127B2 (en) 1986-06-20 1986-06-20 Waveguide polarizer

Publications (2)

Publication Number Publication Date
JPS62299913A true JPS62299913A (en) 1987-12-26
JP2580127B2 JP2580127B2 (en) 1997-02-12

Family

ID=15327541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61142955A Expired - Fee Related JP2580127B2 (en) 1986-06-20 1986-06-20 Waveguide polarizer

Country Status (1)

Country Link
JP (1) JP2580127B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08292266A (en) * 1995-04-21 1996-11-05 Sony Corp Speed sensor head and speed measuring equipment
JPH0954159A (en) * 1995-08-18 1997-02-25 Sony Corp Laser doppler velocimeter
US5949943A (en) * 1996-10-23 1999-09-07 Kabushiki Kaisha Toyota Chuo Kenkyusho Waveguide device and a method of producing the same
CN110095840A (en) * 2019-04-12 2019-08-06 中山大学 A kind of silicon substrate light engraving erosion waveguide polarizer and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5144939A (en) * 1974-10-16 1976-04-16 Nippon Telegraph & Telephone DOHAGATA HENKOSOSHI
JPS5144940A (en) * 1974-10-16 1976-04-16 Nippon Telegraph & Telephone
JPS5168247A (en) * 1974-12-10 1976-06-12 Nippon Telegraph & Telephone DOHAGATA HENKOSOSHI
JPS5595103U (en) * 1980-01-17 1980-07-02

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5144939A (en) * 1974-10-16 1976-04-16 Nippon Telegraph & Telephone DOHAGATA HENKOSOSHI
JPS5144940A (en) * 1974-10-16 1976-04-16 Nippon Telegraph & Telephone
JPS5168247A (en) * 1974-12-10 1976-06-12 Nippon Telegraph & Telephone DOHAGATA HENKOSOSHI
JPS5595103U (en) * 1980-01-17 1980-07-02

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08292266A (en) * 1995-04-21 1996-11-05 Sony Corp Speed sensor head and speed measuring equipment
JPH0954159A (en) * 1995-08-18 1997-02-25 Sony Corp Laser doppler velocimeter
US5949943A (en) * 1996-10-23 1999-09-07 Kabushiki Kaisha Toyota Chuo Kenkyusho Waveguide device and a method of producing the same
CN110095840A (en) * 2019-04-12 2019-08-06 中山大学 A kind of silicon substrate light engraving erosion waveguide polarizer and preparation method thereof

Also Published As

Publication number Publication date
JP2580127B2 (en) 1997-02-12

Similar Documents

Publication Publication Date Title
JP3522117B2 (en) Self-guided optical circuit
US4778234A (en) Integrated optics polarizing device
US20010026659A1 (en) Optical functional device and optical integrated device
US6249619B1 (en) Optical isolator
WO2005022221A1 (en) Electromagnetic wave frequency filter
JP5363218B2 (en) Polarization-dependent hollow optical fiber
US6876806B2 (en) Optical waveguides and method of fabrication thereof
JPH02275402A (en) Adiabatic polarization operation device
JP3946879B2 (en) Photonic crystal material
KR20010062610A (en) Integrated optics chip having reduced surface wave propagation
JPS62299913A (en) Waveguide type polarizer
Thyagarajan et al. Waveguide polarizer based on resonant tunneling
JPH03288104A (en) Unidirectional mode converter and optical isolator using the same
Jordan et al. Design of a waveguide with optics axes tilted by 45° and realized by ion-exchange on glass
JP2004045709A (en) Coupled optical waveguide
WO2006103850A1 (en) Waveguide element and laser generator
JP3555888B2 (en) Self-guided optical circuit
JP2679760B2 (en) Optical waveguide
JPS5810705A (en) Photocoupler
Kawai et al. Transmittance and time-of-flight study of Al x Ga 1− x As− based photonic crystal waveguides
JP2004145246A (en) Plane type two-dimensional waveguide and two-dimensional waveguide type optical device
JP2784496B2 (en) Waveguide type optical isolator
JP2641238B2 (en) Polarizer
JPH0943558A (en) Waveguide type polarization compensator as well as waveguide type ring resonator and waveguide type mach-zehunder interferometer using the same
Gehler et al. ARROW's in KTiOPO 4

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees