WO2006103850A1 - Waveguide element and laser generator - Google Patents

Waveguide element and laser generator Download PDF

Info

Publication number
WO2006103850A1
WO2006103850A1 PCT/JP2006/303240 JP2006303240W WO2006103850A1 WO 2006103850 A1 WO2006103850 A1 WO 2006103850A1 JP 2006303240 W JP2006303240 W JP 2006303240W WO 2006103850 A1 WO2006103850 A1 WO 2006103850A1
Authority
WO
WIPO (PCT)
Prior art keywords
photonic crystal
waveguide
refractive index
core
crystal waveguide
Prior art date
Application number
PCT/JP2006/303240
Other languages
French (fr)
Japanese (ja)
Inventor
Shigeo Kittaka
Tatsuhiro Nakazawa
Original Assignee
Nippon Sheet Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Company, Limited filed Critical Nippon Sheet Glass Company, Limited
Priority to JP2007510336A priority Critical patent/JPWO2006103850A1/en
Publication of WO2006103850A1 publication Critical patent/WO2006103850A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/0632Thin film lasers in which light propagates in the plane of the thin film
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices

Definitions

  • the present invention relates to a waveguide element and a laser generator using a one-dimensional photonic crystal.
  • a two-dimensional photonic crystal having a refractive index periodic structure is constructed by arranging regular vacancies in a thin film layer using, for example, Si having a high refractive index.
  • This two-dimensional photonic crystal is configured to form a complete photonic band gap in the operating frequency range in a direction having refractive index periodicity (hereinafter referred to as “refractive index periodic direction” t). Is done.
  • a defect waveguide is formed by providing a linear defect (line defect) in the two-dimensional photonic crystal. Light can propagate through the defect portion of the defect waveguide, and cannot propagate through the area where no defect is provided.
  • This defect waveguide has a feature that it can be bent at a steep angle (steep angle). Therefore, by using this defect waveguide as a wiring, the degree of freedom in designing the optical circuit is increased, and the optical circuit can be miniaturized or integrated. By using this defect waveguide as a part of the optical element, the optical element can be miniaturized.
  • the defect waveguide has a feature that it can completely confine light.
  • Patent Documents 1 and 2 describe an optical element including a defect waveguide configured by providing a line defect in a two-dimensional photonic crystal and a resonator configured by providing a point defect. It is disclosed. Furthermore, Non-Patent Document 1 discloses an optical element that achieves high efficiency by providing multistage resonators due to point defects.
  • Patent Document 3 discloses an optical element including a resonator configured by providing a line defect in a ring shape in a two-dimensional photonic crystal.
  • Non-Patent Document 2 discloses an optical element in which two wavelengths are separated by a multimode force bra in which the width of a two-dimensional photonic crystal defect waveguide is partially increased.
  • Patent Document 4 discloses an all-optical flip-flop element using a multimode force bra.
  • Patent Document 5 disclose light-emitting elements in which quantum dots are incorporated in defects of a photonic crystal.
  • Patent Document 6 Non-Patent Documents 5, 6, 7, 8, 9 and 10 disclose an optical switch using a non-linear action using a two-dimensional photonic crystal defect waveguide.
  • the two-dimensional photonic crystal defect waveguide is used in various optical elements.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-119671
  • Patent Document 2 JP 2004-212416 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2004-170478
  • Patent Document 4 Japanese Patent No. 3578737
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2004-296560
  • Patent Document 6 Japanese Unexamined Patent Application Publication No. 2004-93787
  • Non-Patent Document 1 3p— ZC— 6, Proceedings of the 65th JSAP Autumn Meeting 2004, September 1, 2004, p. 934
  • Non-Patent Document 2 OPTICS EXPRESS (USA) October 31, 2004 No.12 ⁇ 23 p. 5625
  • Non-Patent Document 3 3a—ZC—10, Proceedings of the 65th JSAP Autumn Meeting 2004, September 1, 2004, p. 931
  • Non-Patent Document 4 3a- ZC-11, Proceedings of the 65th JSAP Autumn Meeting 2004, September 1, 2004, p. 931
  • Non-Patent Document 5 4a— ZC— 10, Proceedings of the 65th JSAP Autumn Meeting 2004, September 1, 2004, p. 941
  • Non-Patent Document 6 4p— ZC— 2, Proceedings of the 65th JSAP Autumn Meeting 2004, September 1, 2004, p. 942
  • Non-Patent Document 7 4p— ZC— 3, Proceedings of the 65th JSAP Autumn Meeting 2004, September 1, 2004, p. 942
  • Non-Patent Document 8 4p— ZC— 5, Proceedings of the 65th JSAP Autumn Meeting 2004, September 1, 2004, p. 943
  • Non-Patent Document 9 4p— ZC— 6, Proceedings of the 65th JSAP Autumn Meeting 2004, September 1, 2004, p. 943
  • Non-Patent Document 10 4p— ZC— 7, Proceedings of the 65th JSAP Autumn Meeting 2004, September 1, 2004, p. 944
  • the two-dimensional photonic crystal defect waveguide has the following problems.
  • the materials forming the refractive index periodic structure It is necessary to increase the refractive index difference. Therefore, in general, a photonic crystal made of a high refractive index material (for example, Si having a refractive index of 3.48) and air is produced. However, in this case, the refractive index of the defect portion forming the core of the waveguide becomes very large, so that the cross section of the core becomes very small to satisfy the single mode condition (typically 1 m x 1 m or less).
  • the difference between the cross section of the core of the waveguide and the cross section of the single mode fiber (about the diameter of the core) coupled to the waveguide becomes large, making it difficult to efficiently couple them. Also, at the interface where the refractive index difference is large, leaking light is more likely to occur due to a weak defect, and the propagation loss of the waveguide increases.
  • a description will be given of design constraints when a two-dimensional photonic crystal is formed by arranging triangular holes in a uniform medium.
  • the width of the waveguide is N times the period (N is a natural number), such as “without one row” or “without two rows”.
  • the size and shape of point defects is N holes, and the distance between point defects in the waveguide is N times the period.
  • Such a configuration is a natural and preferable force in a two-dimensional photonic crystal.
  • design parameters such as the resonance frequency of the resonator, take discrete values and select a desired value. I could't.
  • an in-plane heterostructure two-dimensional photonic crystal as disclosed in Non-Patent Document 1 may be used.
  • the design cost and the manufacturing cost increase. There was a point.
  • the present invention has been made to solve the above-described problems in the prior art, and can be easily manufactured because of its simple configuration, and can be integrated with a high degree of design freedom.
  • An object of the present invention is to provide a waveguide element and a laser generator.
  • a first configuration of the waveguide element according to the present invention is configured by a photonic crystal having a refractive index periodicity in one direction, and does not have the refractive index periodicity.
  • a waveguide device comprising a resonant photonic crystal waveguide having a core for propagating electromagnetic waves existing on the Brillouin zone boundary, wherein the resonant photonic crystal waveguide The path propagates through the core with n as the refractive index of the homogeneous medium in contact with the side of the core parallel to the direction having the refractive index periodicity of the core, a as the refractive index period of the core.
  • a second configuration of the waveguide element according to the present invention is a waveguide element including a slab-like photonic crystal waveguide, an incident-side photonic crystal waveguide, and a plurality of output-side photonic crystal waveguides.
  • the slab-like photonic crystal waveguide extends in a direction parallel to a plane perpendicular to a direction having a refractive index periodicity, and the incident-side photonic crystal waveguide is the slab-like photonic crystal
  • the plurality of output-side photonic crystal waveguides are connected to a surface of the slab-like photonic crystal waveguide that faces the surface to which the incident-side photonic crystal waveguide is connected.
  • the slab photonic crystal waveguide, the incident side photonic crystal waveguide, and the plurality of output side photonic crystal waveguides each have a refractive index periodicity in one direction.
  • the photonic crystal has a core that propagates electromagnetic waves that exist on the Brillouin zone boundary in the direction without the refractive index periodicity, and is parallel to the direction having the refractive index periodicity.
  • the refractive index of the homogeneous medium in contact with the side of the core is n
  • the refractive index period of the core is a
  • the configuration of the laser generator according to the present invention is configured by a photonic crystal having a refractive index periodicity in one direction, and an electromagnetic wave existing on the Brillouin zone boundary in a direction not having the refractive index periodicity.
  • a laser generator comprising an excitation photonic crystal waveguide having a core for propagating light, and an excitation mechanism for exciting the excitation photonic crystal waveguide to oscillate laser light, the excitation photonic crystal waveguide
  • the refractive index of the homogeneous medium in contact with the side surface of the core parallel to the direction of the refractive index periodicity of the core is n
  • the refractive index period of the core is a
  • the electromagnetic wave propagating in the core In vacuum
  • the above core is satisfied, and the core has a light emitting action.
  • FIG. 1 is a cross-sectional view showing a configuration of a one-dimensional photonic crystal in an embodiment of the present invention.
  • FIG. 2 is a band diagram of the photonic crystal shown in FIG.
  • FIG. 3 is a band diagram when incident light is obliquely incident on the incident side end face of the one-dimensional photonic crystal in the embodiment of the present invention.
  • FIG. 4 is a band diagram of the one-dimensional photonic crystal when the propagation directions of the propagation light of the first band and the second band are both in the Z-axis direction in the embodiment of the present invention.
  • FIG. 5 is a band diagram showing the band diagram on the Brillouin zone boundary in FIG. 4 limited to the Z-axis direction.
  • Fig. 6 is a schematic diagram showing an electric field when traveling in the one-dimensional photonic crystal in an embodiment of the present invention while being inclined with respect to the direction of the propagating light force and the third axis.
  • FIG. 7A is a cross-sectional view showing a configuration of a photonic crystal waveguide having a cladding and a core of a one-dimensional photonic crystal in an embodiment of the present invention.
  • FIG. 7B is a perspective view showing a configuration of a photonic crystal waveguide having a cladding and a core of a one-dimensional photonic crystal in an embodiment of the present invention.
  • FIG. 8 is a perspective view showing a configuration of a waveguide element in accordance with the first exemplary embodiment of the present invention.
  • FIG. 9 is a plan view showing the configuration of the waveguide element according to the first embodiment of the present invention.
  • FIG. 10 is a perspective view showing a configuration of a waveguide element in accordance with the second exemplary embodiment of the present invention.
  • FIG. 11 is a plan view showing the configuration of the waveguide element according to the third embodiment of the present invention. is there.
  • FIG. 12 is a plan view showing a configuration of a waveguide element in the fourth exemplary embodiment of the present invention.
  • FIG. 13 is a perspective view showing a configuration of a waveguide element in accordance with the fifth exemplary embodiment of the present invention.
  • FIG. 14 is a perspective view showing a configuration of a waveguide element according to the sixth embodiment of the present invention.
  • FIG. 15 is a perspective view showing a configuration of a waveguide element according to the seventh embodiment of the present invention.
  • FIG. 16A is a plan view showing a configuration of a waveguide element and an optical path in Embodiment 8 of the present invention, and shows a state in which signal light is emitted in the middle as an output waveguide force. .
  • FIG. 16B is a plan view showing the configuration of the waveguide element and the optical path in the eighth embodiment of the present invention, and shows a state in which the signal light is emitted from the end of the output waveguide force.
  • FIG. 17 is a perspective view showing a configuration of a laser generator according to the tenth embodiment of the present invention.
  • FIG. 18 is a perspective view showing a configuration of a laser generator in an eleventh embodiment of the present invention.
  • FIG. 19 is a perspective view showing a configuration of a laser generator according to the twelfth embodiment of the present invention.
  • FIG. 20 is a perspective view showing a configuration of a laser generator in the thirteenth embodiment of the present invention.
  • FIG. 21 is a perspective view showing a configuration of a waveguide element according to the fourteenth embodiment of the present invention.
  • FIG. 22 is a perspective view showing a configuration of a waveguide element having two resonance portions according to the fourteenth embodiment of the present invention.
  • FIG. 23 shows the structure of a waveguide element that is a branching element in Embodiment 14 of the present invention. It is a perspective view which shows composition.
  • FIG. 24 is a perspective view showing a configuration of a waveguide element according to the fifteenth embodiment of the present invention.
  • FIG. 25 is a perspective view showing a configuration of a waveguide element according to the sixteenth embodiment of the present invention.
  • FIG. 26 is a perspective view showing the configuration of the waveguide element according to the seventeenth embodiment of the present invention.
  • a first configuration of the waveguide element of the present invention includes a resonant photonic crystal waveguide configured to resonate, which is configured by a one-dimensional photonic crystal waveguide. For this reason, the resonant photonic crystal waveguide can resonate evanescent waves of all directional forces perpendicular to the direction having the refractive index periodicity of the core.
  • the resonant photonic crystal waveguide is
  • the size, shape, electromagnetic wave bending angle, etc. which has a high degree of design freedom.
  • the one-dimensional photonic crystal waveguide is a multilayer structure and can be easily manufactured.
  • the first configuration of the waveguide element of the present invention preferably further includes a resonance mechanism that causes resonance in the resonant photonic crystal waveguide.
  • the resonance mechanism is substantially perpendicular to the optical axis of the resonant photonic crystal waveguide, and the refractive index of the core of the resonant photonic crystal waveguide is periodic.
  • An evanescent wave is coupled to the core of the resonant photonic crystal waveguide from a direction substantially perpendicular to the direction having the optical axis, and the optical axis of the resonant photonic crystal waveguide is within the resonant photonic crystal waveguide. It is preferable that resonance is generated in a direction substantially perpendicular to the core and substantially perpendicular to the direction having the refractive index periodicity of the core of the resonant photonic crystal waveguide.
  • a waveguide for propagating electromagnetic waves that cause resonance can be disposed on the substrate.
  • the waveguide may be a photonic crystal waveguide, the fabrication of the waveguide element is facilitated.
  • the resonance mechanism further includes the refractive index periodicity of the core of the resonant photonic crystal waveguide and substantially perpendicular to the optical axis of the resonant photonic crystal waveguide.
  • Each of the two waveguides is composed of a photonic crystal having a refractive index periodicity in one direction, and a photonic crystal having a core for propagating an electromagnetic wave existing on the Brillouin zone boundary in a direction not having the refractive index periodicity.
  • the photonic crystal waveguide is parallel to a direction having the refractive index periodicity of the core of the photonic crystal waveguide.
  • N is the refractive index of the homogeneous medium in contact with the side surface of the photonic crystal waveguide, and the refractive index period of the core of the photonic crystal waveguide is
  • the resonance mechanism preferably couples an evanescent wave to the core of the resonant photonic crystal waveguide in the same directional force as the optical axis of the resonant photonic crystal waveguide.
  • the signal light propagating in the resonant photonic crystal waveguide and the control light resonating in the resonant photonic crystal waveguide can be propagated using the same waveguide. This will reduce the size of the waveguide element.
  • the resonance mechanism further has the same optical axis as the optical axis of the resonant photonic crystal waveguide, and is separated from the resonant photonic crystal waveguide so as to be separated from the resonant photonic crystal waveguide.
  • the two waveguides are arranged by sandwiching a crystal waveguide, and each of the two waveguides is composed of a photonic crystal having a refractive index periodicity in one direction, and the refractive index periodicity is A photonic crystal waveguide having a core that propagates electromagnetic waves existing on the Brillouin zone boundary in the ⁇ direction, wherein the photonic crystal waveguide is the refractive index period of the core of the photonic crystal waveguide Parallel to the direction
  • the refractive index n of the homogeneous medium in contact with the side surface of the core of the tonic crystal waveguide is n
  • the refractive index period of the core of the photonic crystal waveguide is a, the photonic crystal waveguide
  • the resonant photonic crystal waveguide sandwiches the core from the direction having the refractive index periodicity of the core, and is the same as the direction of the core having the refractive index periodicity.
  • the resonance mechanism further includes an optical axis along a direction having the refractive index periodicity of the core of the resonance photonic crystal waveguide, and the resonance photonic crystal guide It is preferable to have a light incident portion that is spaced apart from the waveguide. According to this preferred example, it is possible to realize a waveguide element capable of causing resonance in a resonant photonic crystal waveguide.
  • the light incident portion includes an optical waveguide and a lens that collects light from the optical waveguide.
  • the light incident portion includes an optical waveguide and a lens that collects light from the optical waveguide.
  • the light incident portions are arranged in a line along a plane perpendicular to the direction of the refractive index periodicity of the core of the resonant photonic crystal waveguide.
  • each of the plurality of light sources emits light independently.
  • the output of the control light that causes resonance can be increased.
  • multiple light sources can selectively emit control light, the path of propagating light can be controlled even if the number of waveguides is increased or the shape of the waveguides is complicated. I'll do it.
  • the resonant photonic crystal waveguide has a slab-like portion that extends along a plane perpendicular to the direction of the refractive index periodicity of the core of the resonant photonic crystal waveguide. It is preferable. According to this preferred example, by selectively emitting control light from a plurality of light sources, the path of propagation light in the slab-like portion can be controlled to be in a desired direction.
  • the core of the resonant photonic crystal waveguide has a non-linear action. According to this preferable example, it is possible to improve the characteristics as a light control element by causing a large non-linear effect.
  • the core of the resonant photonic crystal waveguide has an amplifying function.
  • a waveguide element which is an amplifying element can be realized.
  • the resonant photonic crystal waveguide is preferably ring-shaped.
  • this preferable example includes a ring-shaped resonant photonic crystal waveguide that is configured by a one-dimensional photonic crystal waveguide and that performs resonance.
  • the resonant length of the resonant photonic crystal waveguide can be lengthened, so that a plurality of frequencies at regular intervals can be resonated.
  • an optical buffer memory or a waveguide element that is a multiple pulse generating element can be realized.
  • an incident-side photonic crystal waveguide and an exit-side photonic crystal waveguide are further provided, and the incident-side photonic crystal waveguide is disposed inside the waveguide element.
  • an electromagnetic wave having a resonance frequency of the resonant photonic crystal waveguide is resonated in the resonant photonic crystal waveguide and is emitted to the output side photonic crystal waveguide.
  • the incident-side photonic crystal waveguide, the resonant photonic crystal waveguide, and the output-side photonic crystal waveguide are disposed so as to propagate, and the incident-side photonic crystal waveguide and the output-side photonic crystal waveguide are disposed.
  • Each of the crystal waveguides is composed of a photonic crystal having a refractive index periodicity in one direction, and a core that propagates an electromagnetic wave that exists on the Brillouin zone boundary in the direction without the refractive index periodicity.
  • the refractive index of the homogeneous medium in contact with n is n and the refractive index period of the core of the photonic crystal waveguide is a.
  • a waveguide element that is a resonant element can be realized.
  • the first configuration of the waveguide element of the present invention further includes an incident-side photonic crystal waveguide and an output-side photonic crystal waveguide, and includes a plurality of the resonant photonic crystal waveguides.
  • the electromagnetic waves having the resonance frequency of the resonant photonic crystal waveguide sequentially resonate in the plurality of resonant photonic crystal waveguides.
  • the incident-side photonic crystal waveguide, the plurality of resonant photonic crystal waveguides, and the output-side photonic crystal waveguide are disposed so as to propagate to the output-side photonic crystal waveguide,
  • the entrance-side photonic crystal waveguide and the exit-side photonic crystal waveguide are each made of a photonic crystal having a refractive index periodicity in one direction.
  • the photonic crystal waveguide has a core that propagates electromagnetic waves that exist on the Brillouin zone boundary in the negative direction without the refractive index periodicity, and the photonic crystal waveguide is a photonic crystal waveguide described above.
  • the refractive index of the homogeneous medium in contact with the side surface of the core of the photonic crystal waveguide parallel to the direction having the refractive index periodicity of the core of the nic crystal waveguide is n,
  • the refractive index period of the core of the photonic crystal waveguide is a, and the photonic crystal guide
  • a waveguide element can be realized.
  • the waveguide device further includes an incident-side photonic crystal waveguide and a plurality of emission-side photonic crystal waveguides, and the plurality of emission-side photonic crystal waveguides are provided.
  • the resonant frequencies of the plurality of resonant photonic crystal waveguides are different from each other, and the wavelengths propagating through the incident-side photonic crystal waveguide are different.
  • each electromagnetic wave having a resonance frequency for each of the resonant photonic crystal waveguides resonates in the corresponding resonant photonic crystal waveguide, and enters the corresponding output-side photonic crystal waveguide.
  • the incident-side photonic crystal waveguide and the plurality of exit-side photonic crystal waveguides are each composed of a photonic crystal having a refractive index periodicity in one direction, and the bending is performed.
  • the refractive index period of the core of the photonic crystal waveguide S1 is a, and the photonic crystal waveguide
  • a waveguide element which is a wavelength separation element can be realized.
  • the second configuration of the waveguide element of the present invention includes a one-dimensional photonic crystal waveguide and functions as a multimode force bra.
  • the design of a waveguide using a one-dimensional photonic crystal waveguide can freely design the size and shape of the waveguide, the bending angle of the electromagnetic wave, etc. with a high degree of freedom. As a result, it is possible to realize integration and a higher-performance waveguide element.
  • the one-dimensional photonic crystal waveguide is a multilayer structure, it can be easily manufactured.
  • the slab-like photomask is used.
  • the crystal waveguide preferably splits the light incident from the incident-side photonic crystal waveguide and causes the light to enter each of the plurality of output-side photonic crystal waveguides.
  • a waveguide element that is a branch element can be realized.
  • the slab-shaped photonic crystal waveguide has a plurality of different wavelengths incident from the incident-side photonic crystal waveguide. It is preferable that the light is separated for each wavelength and is incident on each of the plurality of emission-side photonic crystal waveguides. According to this preferred example, a waveguide element that is a wavelength separation element can be realized.
  • the configuration of the laser generator of the present invention can excite laser light by resonance in the one-dimensional photonic crystal. Since a one-dimensional photonic crystal waveguide is used, the size and shape of the waveguide, the bending angle of the electromagnetic wave, etc. can be freely designed. As a result, integration can be realized and a more sophisticated laser generator can be realized. Also, the one-dimensional photonic crystal waveguide is a multilayer structure and can be easily manufactured.
  • the exit-side photonic has an optical axis substantially perpendicular to the direction of the refractive index periodicity of the core of the excitation photonic crystal waveguide.
  • the exit-side photonic crystal waveguide is formed of a photonic crystal having a refractive index periodicity in one direction, and has no refractive index periodicity on a Brillouin zone boundary in the direction.
  • the refractive index period of the core of the crystal crystal waveguide is a, the photonic crystal waveguide of the core
  • the excitation mechanism includes two electrodes arranged with the excitation photonic crystal waveguide sandwiched from the direction of the refractive index periodicity of the core of the excitation photonic crystal waveguide, and the 2 A voltage source for applying a voltage between the two electrodes.
  • the excitation photonic crystal waveguide is excited to oscillate the laser light, and the oscillated laser light is incident on the emission-side photonic crystal waveguide Is preferred.
  • a laser generator can be realized.
  • the excitation mechanism excites the excitation photonic crystal waveguide by irradiating the excitation photonic crystal waveguide with excitation light. It is preferable to oscillate laser light. According to this preferred example, a laser generator can be realized.
  • the output-side photonic crystal waveguide further includes a vertical optical axis, and the output-side photonic crystal waveguide is composed of a photonic crystal having a refractive index periodicity in one direction, and has the refractive index periodicity.
  • the refractive index of the homogeneous medium in contact with the side surface of the core of the photonic crystal waveguide parallel to the direction having periodicity is n, and the refractive index period of the core of the photonic crystal waveguide A, the photonic
  • the excitation mechanism causes the excitation light to enter the excitation photonic crystal waveguide from a direction substantially perpendicular to the direction of the refractive index periodicity of the core of the excitation photonic crystal waveguide.
  • Irradiation excites the excitation photonic crystal waveguide to oscillate the laser beam, and the oscillated laser beam is preferably incident on the emission-side photonic crystal waveguide.
  • a laser generator can be realized.
  • the excitation mechanism is further substantially perpendicular to the optical axis of the emission-side photonic crystal waveguide and the refraction of the core of the excitation photonic crystal waveguide.
  • Two waveguides having an optical axis substantially perpendicular to a direction having a rate periodicity and spaced apart from the excitation photonic crystal waveguide and sandwiching the excitation photonic crystal waveguide Each of the two waveguides is made of a photonic crystal having a refractive index periodicity in one direction, and propagates an electromagnetic wave existing on the Brillouin zone boundary in a direction not having the refractive index periodicity.
  • a photonic crystal waveguide having a core wherein the photonic crystal waveguide is parallel to a direction having the refractive index periodicity of the core of the photonic crystal waveguide.
  • N is the refractive index of the homogeneous medium in contact with the side surface of the core, and the refractive index period of the core of the photonic crystal waveguide is
  • a laser generator can be realized.
  • the emission photonic crystal waveguide further includes an emission-side photonic crystal waveguide having an optical axis substantially perpendicular to the direction of the refractive index periodicity of the core of the excitation photonic crystal waveguide.
  • the side photonic crystal waveguide is a photonic crystal composed of a photonic crystal having a refractive index periodicity in one direction, and having a core for propagating an electromagnetic wave existing on the Brillouin zone boundary in a direction not having the refractive index periodicity.
  • the photonic crystal waveguide is formed on a side surface of the core of the photonic crystal waveguide parallel to a direction having the refractive index periodicity of the core of the photonic crystal waveguide.
  • N is the refractive index of the contacting homogeneous medium and n is the refractive index of the core of the photonic crystal waveguide.
  • the excitation photonic crystal waveguide sandwiches the core of the excitation photonic crystal waveguide from the direction having the refractive index periodicity of the core of the excitation photonic crystal waveguide, and A clad having a refractive index periodicity in the same direction as the direction having the refractive index periodicity of the core of the nick crystal waveguide;
  • the excitation mechanism irradiates the excitation photonic crystal waveguide by irradiating the excitation photonic crystal waveguide with the excitation light from a direction having the refractive index periodicity of the core of the excitation photonic crystal waveguide.
  • the laser beam is excited to oscillate, and the oscillated laser beam is preferably incident on the emission-side photonic crystal waveguide. According to this preference! / Example, a laser generator can be realized.
  • the excitation mechanism further includes an optical axis along a direction having the refractive index periodicity of the core of the excitation photonic crystal waveguide, and the excitation photonic crystal guide It is preferable to have a light incident portion that is spaced apart from the waveguide. According to this preferred example, a laser generator can be realized.
  • the light incident portion includes an optical waveguide and a lens that emits light from the optical waveguide.
  • a laser generator can be realized.
  • the excitation mechanism is configured so that the excitation photonic crystal waveguide from a direction substantially perpendicular to the direction of the core of the excitation photonic crystal waveguide having the refractive index periodicity.
  • the excitation photonic crystal waveguide is excited to oscillate the laser light, and from the excitation photonic crystal waveguide, the refraction of the core of the excitation photonic crystal waveguide
  • the oscillated laser beam is preferably emitted in a direction having a rate periodicity.
  • the waveguide for propagating the excitation light can be arranged on the substrate. For this reason, it is sufficient that the waveguide is also a photonic crystal waveguide, which facilitates the production of the laser generator.
  • the excitation mechanism further includes an optical axis substantially perpendicular to the direction of the refractive index periodicity of the core of the excitation photonic crystal waveguide, and the excitation photonic Two waveguides are disposed apart from the crystal waveguide and sandwich the excitation photonic crystal waveguide, and each of the two waveguides has a refractive index periodicity in one direction.
  • the refractive index of the homogeneous medium in contact with the side surface is n
  • the core of the photonic crystal waveguide is
  • a laser generator can be realized.
  • a reflection layer of a distributed feedback resonator is disposed between the excitation photonic crystal waveguide and the emission side photonic crystal waveguide. It is preferable. According to this preferred example, a laser generator having wavelength selectivity can be realized.
  • FIG. 1 is a cross-sectional view showing a configuration of a one-dimensional photonic crystal.
  • the light propagation direction is the Z-axis direction
  • the directions perpendicular to the light propagation direction (Z-axis direction) and perpendicular to each other are the X-axis direction and the Y-axis direction.
  • the photonic crystal 101 is a one-dimensional photonic crystal having a refractive index periodicity only in the Y-axis direction.
  • a material 105a and a material 105b are alternately stacked in the Y-axis direction to form a multilayer structure.
  • the thickness (length in the Y-axis direction) of the material 105a is t
  • the refractive index of the material 105a is n.
  • the thickness of substance 105b (
  • the length in the Y-axis direction is t, and the refractive index of the substance 105b is n.
  • a photonic crystal 101 is a core, and air (not shown) around the photonic crystal 101 is a clad, and the core and the clad constitute an optical waveguide.
  • a plane wave having a wavelength of ⁇ in vacuum is incident as incident light 102 from an end surface (incident side end surface) 101a perpendicular to the Z-axis direction, which is the incident end of the photonic crystal 101,
  • the incident light 102 propagates in the photonic crystal 101 as propagating light 104.
  • the propagating light 104 is transmitted from the end face (exit-side end face) 101b which is the exit end opposite to the entrance end to the exit light 103. And emitted.
  • How the propagating light 104 propagates in the multilayer film of the substance 105a and the substance 105b in the photonic crystal 101 can be known by calculating a photonic band and illustrating it.
  • the method for calculating the band of the photonic band is, for example, “Photonics rystals, Princeton University Press, (1995)”, Arima Takama, “Physical Review B, 19 91, 44 ⁇ , 16, p.8565”. Are described in detail.
  • the photonic crystal 101 shown in FIG. 1 has an infinite periodic structure in the Y-axis direction (stacking direction), and in the X-axis direction and the Z-axis direction (direction in which the layer surface spreads). Is assumed to be infinite.
  • the contents obtained by band calculation will be described below. Since this band calculation is related to the photonic crystal 101 shown in FIG. 1, the content obtained by the band calculation will be described with reference to FIG.
  • FIG. 2 is a band diagram of the photonic crystal 101 shown in FIG.
  • the conditions of the photonic crystal 101 at this time are as follows. First, substance 105a has a refractive index n of 2. 1011.
  • FIG. 2 shows the results of band calculations in the Y-axis direction and the Z-axis direction of the photonic crystal 101, which is a multilayer structure having a period a in which the materials 105a and 105b are alternately stacked.
  • FIG. 2 shows the first, second and third bands of TE-polarized light within the range of the first prior zone.
  • Figure 2 connects the points where the normalized frequency co aZ2 7uc has the same value, and is contoured. Hereinafter, this contour line is referred to as “equal frequency line”.
  • the suffix of each line represents the value of the standard frequency coaZ2 7uc.
  • the standard frequency co aZ2 C is expressed using the angular frequency ⁇ of the incident light 102, the period a of the multilayer structure, and the speed of light c in vacuum.
  • the normalized frequency is the incident light
  • the standardized frequency can be easily
  • the force in the Y-axis direction of the Brillouin zone in the photonic crystal 101 is 2 ⁇ Za. Since there is no periodicity in the Z-axis direction, the Brillouin zone in the lateral direction (Z-axis direction) There is no boundary, and it extends everywhere.
  • TE polarized light is polarized light whose electric field direction is in the X-axis direction.
  • TM polarized light whose direction of magnetic field is polarized in the X-axis direction
  • the band diagram is not shown.
  • the band diagram for TM polarization is similar to the band diagram for TE polarization, but has a slightly different shape.
  • FIG. 3 is a band diagram when incident light is obliquely incident on the incident side end face of the one-dimensional photonic crystal.
  • the photonic crystal bond band can be determined by drawing.
  • the one-dimensional photonic crystal is the photonic crystal 101 shown in FIG. 1, and FIG. 1 is also referred to.
  • the incident angle ⁇ is an angle formed between the direction perpendicular to the incident side end face 101a, that is, the Z-axis direction and the traveling direction of the incident light 102.
  • the inclination of the incident light 102 is limited to the YZ plane.
  • the incident side end face 101a of the photonic crystal 101 is perpendicular to the Z-axis.
  • FIG. 3 shows a plane wave (polarized light) having a specific frequency a / ⁇ from the end face 101a of the photonic crystal 101 in FIG. 1 with respect to the incident end face (incident face) 101a. Incident at an incident angle ⁇
  • the right side is a band diagram in the photonic crystal 101
  • the left side is a band diagram of a homogeneous medium outside the photonic crystal 101.
  • the upper part represents the coupling between the incident light 102 and the first band
  • the lower stage represents the coupling between the incident light 102 and the second band. Since the incident light 102 has the homogeneous medium force also incident on the end face 101a, the band diagram of the incident light 102 is a band diagram in the homogeneous medium.
  • the band diagram of the homogeneous medium is a sphere whose radius r is expressed by the following equation (in the YZ plane, a circle).
  • the traveling direction of propagating light propagating in the photonic crystal 101 is the normal direction of the equal frequency line. As shown in Fig. 3, the direction of propagating light propagating in the photonic crystal 101 is different in the first band and the second band. Neither is it in the Z-axis direction!
  • the wave number vector of the incident light 102 is an arrow 110
  • the wave vector of the propagating light is an arrow 113 (first band) and an arrow 114 (second band).
  • the energy traveling direction of the first band of propagating light can be represented by an arrow 111
  • the energy traveling direction of the second band of propagating light can be represented by the arrow 112, respectively.
  • FIG. 4 is a band diagram of the one-dimensional photonic crystal when the propagation directions of the propagation light of the first band and the second band are both in the Z-axis direction.
  • the incident angle ⁇ is set so as to satisfy the condition of the following formula (1).
  • the one-dimensional photonic crystal is the photonic crystal 101 shown in FIG.
  • incident at an incident angle of 0 is inclined at an angle of 0 with respect to the Z-axis direction. The incident light is incident.
  • n-sin 0-(a / ⁇ ) ⁇ 0.5 (1)
  • n is the refractive index of the medium in contact with the end face 101a of the photonic crystal 101.
  • the first and second on the Brillouin zone boundary 127 There is a propagation band.
  • the wave number vector of incident light 102 is represented by arrow 120
  • the energy traveling direction of propagating light 104 in photonic crystal 101 is represented by arrow 121 (first band) and arrow 122 (second band).
  • arrow 121 first band
  • arrow 122 second band
  • the wave vector of the propagating light 104 is an arrow 123 (first band) and an arrow 124 (second band).
  • the wave energy travels in the Z-axis direction Therefore, the propagating light 104 travels in the Z-axis direction.
  • the condition that the incident angle ⁇ to satisfy the propagation in the Z-axis direction satisfies the periodicity of the Brillouin zone in the Y-axis direction, for example,
  • n-sin 0-(a / ⁇ ) ⁇ 1. 0, ⁇ 1. 5, ⁇ 2. 0,
  • FIG. 5 shows a band diagram on the Brillouin zone boundary in FIG. 4 limited to the Z-axis direction.
  • the horizontal axis is the Z-axis direction component kz of the wave vector
  • the vertical axis is the normalized frequency.
  • the frequency value is determined by aZ. For this reason, as shown in FIG.
  • the wavelength in the air is ⁇ , it corresponds to each band in the photonic crystal 101.
  • the propagation light 104 is
  • the wavelength of light in a vacuum is propagated through the photonic crystal 101.
  • Wavelength of light e.g., X, X
  • the value divided by 1 or 2) is defined as the “effective refractive index”.
  • the effective refractive index As can be seen from Fig. 5, in the propagation of propagating light existing on the Brillouin zone boundary, the effective refractive index varies greatly with ⁇ . Left of line 128 (light line) with refractive power ⁇
  • the area on the side has an effective refractive index of less than 1, and the area to the right of line 128 (light line) has an effective index of refraction greater than 1. From Fig. 5, it can be seen that in the propagation of propagating light existing on the Brillouin zone boundary, the left side of the line 128 (light line), that is, the effective refractive index may be less than 1.
  • the slope of the line is zero. This is a group velocity abnormality peculiar to the photonic crystal.
  • the group velocity anomaly in the photonic crystal is extremely large and is opposite to the dispersion of the normal homogeneous material (the group velocity decreases as the wavelength of incident light increases). So this
  • the waveguide can be used as an optical control element such as an optical delay element or a dispersion compensation element in optical communication. As shown in Fig. 5, on the Brillouin zone boundary, all the bands including the first band have “a large change in the effective refractive index due to wavelength” and “group velocity anomaly”.
  • Such a waveguide that realizes propagation by a band on the Brillouin zone boundary can propagate light exhibiting the above characteristics with low loss, and thus can be applied to a light control element or the like.
  • the propagation light from the band on the Brillouin zone boundary forms a knotted electric field pattern, and is a kind of higher-order mode propagation light.
  • the present inventors have clarified several methods for coupling a plane wave outside the photonic crystal and propagating light on the Brillouin zone boundary propagating in the photonic crystal. .
  • the methods for realizing “propagation on the Brillouin zone boundary” are disclosed in, for example, Japanese Patent Application Laid-Open No. 2003-215362, International Publication No. 04/81625, International Publication No. 04Z81626 and International Publication No. 05Z8305. It is disclosed.
  • the light propagating in the photonic crystal is preferably single mode in order to prevent multimode dispersion of signals.
  • Fig. 6 is a schematic diagram showing the electric field when propagating light travels through the one-dimensional photonic crystal while tilting with respect to the Z-axis direction. As shown in FIG.
  • the periodic structure of the photonic crystal 101 is exposed when propagating light in the photonic crystal 101 travels in the XZ plane and is inclined with respect to the Z-axis direction.
  • an electric field pattern shown as a pinecone-like pattern is generated on the side surface 130 (side surface parallel to the YZ plane) 130.
  • electric field mountain 131 and electric field valley 132 are shown in FIG.
  • the medium serving as the cladding existing on the side surface of the photonic crystal 101 is a homogeneous medium having a different refractive index n. Therefore
  • the side surface 130 where the periodic structure of the photonic crystal 101 is exposed has a uniform refractive index of n.
  • a wavefront having a period 133 is generated on the side of the homogeneous medium on the side face 130 exposed to the periodic structure that is in contact with the homogeneous medium. This wave can be leaking light.
  • a right triangle consisting of auxiliary lines 134 and 135 perpendicular to each other and auxiliary line 136 (the hypotenuse) is formed.
  • the lengths of auxiliary lines 134 and 135 are Z2cos ⁇ and a Therefore, the size of the auxiliary line 136 can be obtained, and thus the size (length) of the period 133 can be easily obtained.
  • is the period of the propagation mode in the direction perpendicular to the axial direction.
  • the magnitude of the period 133 is specifically:
  • the period 133 has a refractive index n
  • the condition for the light propagating inside to not leak side force parallel to the YZ plane of the photonic crystal 101 is
  • the size of the period 133 becomes the maximum value 2a when the angle ⁇ is 90 °. In other words, if the following formula (2) is satisfied, no leakage light occurs regardless of the value of the angle ⁇ .
  • the refractive index period of the photonic crystal 101 is a or a, and the photonic crystal 101
  • the side where the periodic structure is exposed is the refractive index n or n
  • the photonic crystal 101 is caused by the difference in refractive index.
  • Light is confined inside.
  • the effective refractive index of the propagating light in the photonic crystal 101 must be large to some extent.
  • the medium disposed in contact with the upper and lower surfaces of the photonic crystal 101 is, for example, air (refractive index: 1)
  • air reffractive index: 1
  • the refractive index of the medium disposed in contact with the upper and lower surfaces of the photonic crystal 101 is higher than that of air, so that the light can be confined. If the effect of “large change of effective refractive index with wavelength” or “group velocity anomaly”, which is a major feature of waveguides, is reduced, there is a problem.
  • FIG. 7 shows a photonic connection with a one-dimensional photonic crystal cladding and core.
  • FIG. 7A is a cross-sectional view and
  • FIG. 7B is a perspective view showing a configuration of a crystal waveguide.
  • a crystal clad 141 is provided.
  • the clad 141 is provided so as to sandwich the photonic crystal 101 in the vertical direction (Y-axis direction).
  • the clad 141 is configured by periodically and alternately laminating materials 105 a and 105 b constituting the photonic crystal 101 in the same direction as the refractive index periodic direction of the photonic crystal 101. That is, the clad 141 is made of the same material as the photonic crystal 101 and has a refractive index periodicity in the Y-axis direction.
  • the period (refractive index period) b of the clad 141 is different from the period a of the photonic crystal 101.
  • the photonic crystal waveguide 140 is a one-dimensional photonic crystal, and is located in the refractive index period direction, where the refractive index period is the period b (cladding 141) and the period a.
  • the refractive index period is the period b (cladding 141) and the period a.
  • a photonic crystal 101 that is a core) and a portion with a period a is sandwiched between places with a period b. It is possible to prevent light that can propagate through the photonic crystal 101 (core) from propagating in the clad 141 by the photonic band gap.
  • the values of the period a and the period b can be adjusted. Bho.
  • a photonic crystal comprising a clad 141 which is a one-dimensional photonic crystal by laminating a material different from the materials (substance 105a and substance 105b) constituting the core which is the one-dimensional photonic crystal 101
  • confinement of light in the vertical direction can be realized.
  • the core or Can also confine light in the vertical direction (Y-axis direction) even in photonic crystal waveguides that form a clad and have three or more core or clad periods.
  • the above-described methods for realizing light confinement in the Y-axis direction may be used alone or in combination.
  • the plane parallel to the XZ plane of the photonic crystal waveguide 140 can realize complete light confinement. Furthermore, if the photonic crystal waveguide 140 satisfies the above formula (3), light can propagate through the photonic crystal waveguide 140 with almost no loss. In addition, as described above, the photonic crystal waveguide 140 can easily propagate specific propagating light existing on the Brillouin zone boundary. Effects such as “group velocity abnormality” can be increased.
  • the photonic crystal waveguide 140 satisfying the above formula (3) can propagate specific propagating light existing on the Brillouin zone boundary. Furthermore, since the photonic crystal waveguide 140 can realize complete light confinement as described above and there is no limit on the size and shape thereof, when producing a waveguide element using this, High degree of design freedom. Further, since the photonic crystal waveguide 140 is a multilayer structure, it can be easily manufactured. For example, a multilayer film can be easily formed by laminating a multilayer film on a substrate, then forming a mask on the waveguide portion and performing etching. In order to enhance the durability, an overcladding such as quartz is put on the waveguide part to make it sealed.
  • the one-dimensional photonic crystal waveguide may be formed of a material generally used as a thin film material.
  • a material for the one-dimensional photonic crystal waveguide for example, silica, silicon, titanium oxide, tantalum oxide, niobium oxide, magnesium fluoride, silicon nitride, etc., which are excellent in terms of durability and film formation cost, etc. Is suitable.
  • These materials can be easily formed into thin films by general methods such as sputtering, vacuum deposition, ion-assisted deposition, and plasma CVD.
  • silica and tantalum oxide can polish the end face by the same method as glass, which enables high-light transmittance and uniform film formation without grain boundaries.
  • t has the following characteristics.
  • the material of the substrate In general, there is no particular limitation, and it is possible to use a general quartz or silicon substrate.
  • the action of the one-dimensional photonic crystal waveguide is 200 ⁇ , which is the wavelength range of light normally used by selecting materials appropriately. It is demonstrated in the wavelength range of ⁇ 20 ⁇ m.
  • the size of the incident side end surface and the emission side end surface can be set to, for example, 5 m ⁇ 5 m. Therefore, the optical field system of the collimator and the objective lens can match the mode field diameter of the optical fiber and the end face to increase the coupling efficiency.
  • waveguides that are various optical elements configured by using a plurality of one-dimensional photonic crystal waveguides having the same configuration as the photonic crystal waveguide 140 that satisfies the above formula (3).
  • the element and the laser generator will be specifically described.
  • such a waveguide In the meantime, you can propagate electromagnetic waves other than light!
  • the propagation light existing on the Brillouin zone boundary is propagated. Also, these are the same configurations as the photonic crystal waveguide 140 that satisfies the above formula (3), and the plane (upper and lower planes) parallel to the XZ plane and the plane parallel to the YZ plane of the core photonic crystal 101 On the (side) side, complete light confinement is assumed.
  • the waveguide element according to the first embodiment of the present invention is perpendicular to the refractive index periodic direction and perpendicular to the signal light propagation direction in a part of the signal light waveguide through which the signal light propagates.
  • This is a waveguide element that changes the refractive index of the resonance part by causing the control light to resonate, thereby causing a shift in the phase of the signal light.
  • the waveguides used in this waveguide element are all one-dimensional photonic crystal waveguides.
  • FIG. 8 is a perspective view showing the configuration of the waveguide element in the first exemplary embodiment of the present invention.
  • FIG. 9 is a plan view showing the configuration of the waveguide element according to the first embodiment of the present invention.
  • the waveguide element 1 according to the first embodiment includes a substrate 2, a signal light waveguide (resonant photonic crystal waveguide) 3 provided on the substrate 2, and control light.
  • An incident waveguide (resonance mechanism) 4 and a control light emission waveguide (resonance mechanism) 5 are provided.
  • the signal light waveguide 3, the control light incidence waveguide 4, and the control light emission waveguide 5 are the above-described one-dimensional photonic crystal waveguides, respectively.
  • the one-dimensional photonic crystal waveguide can propagate a specific higher-order mode light, and can further confine the propagation light.
  • the signal light waveguide 3, the control light incidence waveguide 4, and the control light emission waveguide 5 each have a stacking direction in the Y-axis direction, which is a direction perpendicular to the main surface of the substrate 2. It is a multilayer structure and has a refractive index periodicity in the stacking direction.
  • the optical axis of the signal light waveguide 3 is along the Z-axis direction.
  • the optical axes of the control light incident waveguide 4 and the control light emitting waveguide 5 are the same, perpendicular to the optical axis (Z-axis direction) of the signal light waveguide 3, and in the stacking direction (Y-axis). Direction). That is, the optical axes of the control light incident waveguide 4 and the control light emitting waveguide 5 are along the X-axis direction.
  • the control light incident waveguide 4 and the control light emitting waveguide 5 are disposed opposite to each other with the signal light waveguide 3 interposed therebetween.
  • the exit side end face 4a of the control light incident waveguide 4 and the entrance side end face 5a of the control light exit waveguide 5 are located in the vicinity of the side face of the signal light waveguide 3.
  • the width of the signal light waveguide 3 (the length in the X-axis direction) is another place. Compared to This is because this part is used as a resonator, so the width of this part (resonant part) is determined according to the resonance frequency, and the width cannot be reduced like other parts. is there .
  • the width of the signal light waveguide 3 may be constant including the resonance portion, and the resonance portion may be narrower than other portions.
  • the signal light waveguide 3, the control light incident waveguide 4, and the control light emitting waveguide 5 are the photonic crystal waveguides 140 shown in FIGS. 7A and 7B, respectively. (3) is also satisfied. For this reason, leakage of propagating light on the Brillouin zone boundary in the direction along the plane perpendicular to the Y-axis direction which is the refractive index periodic direction does not occur.
  • the refractive index n is 1 because each waveguide is air.
  • both the clad and the core are formed as one-dimensional photonic crystals so that propagation light does not leak on the Brillouin zone boundary in the stacking direction. Accordingly, in the signal light waveguide 3, the control light incident waveguide 4, and the control light emitting waveguide 5, the propagation light on the side surface and the upper and lower surface force Brillouin zone boundaries does not leak.
  • the distance between the side surface of the signal light waveguide 3 and the output side end surface 4a of the control light incident waveguide 4 is such that the evanescent wave of the control light 72 propagating in the control light incident waveguide 4 is The distance that can be coupled to the waveguide 3 for signal light.
  • the distance between the side surface of the signal light waveguide 3 and the incident-side end surface 5a of the control light emitting waveguide 5 is also a distance at which an evanescent wave can be coupled.
  • the distance between the side surface of the signal light waveguide 3 and the output side end surface 4a of the control light incident waveguide 4 and the incident side end surface 5a of the control light output waveguide 5 is set in this way.
  • the efficiency at which the evanescent wave is coupled that is, the reflectance can be adjusted.
  • the inner surface of the side surface of the signal light waveguide 3 functions as a resonator, and the control light 72 resonates in the X-axis direction in the signal light waveguide 3. That is, the control light incident waveguide 4, the control light emitting waveguide 5, and the signal light waveguide 3 constitute a Fabry-Perot resonator.
  • the evanescent wave can be coupled in this way because the signal light waveguide 3 is the above-described one-dimensional photonic crystal waveguide, and the light is completely confined on the side surface.
  • a signal light 71 having a wavelength ⁇ is propagated through the signal light waveguide 3.
  • the signal light 71 is
  • control light 72 having the wavelength ⁇ is propagated through the control light incident waveguide 4.
  • a Fabry-Perot resonator is formed by the inside of the side surface of the signal light waveguide 3, and is formed in the signal light waveguide 3. Then, control light 73 resonating in the X-axis direction is generated. The resonating control light 73 is coupled to the control light emitting waveguide 5.
  • the distance between the side surface of the signal light waveguide 3 and the exit side end surface 4a of the control light incident waveguide 4 and the incident side end surface 5a of the control light exit waveguide 5 is specifically, It is determined by the characteristics of the control light and the resonance frequency.
  • the signal light guide is adjusted.
  • the reflectance inside the side surface of the waveguide 3 can be adjusted.
  • the control light 72 By causing the control light 72 to resonate in the signal light waveguide 3, the electric field in the resonance portion becomes very strong, and a large nonlinear effect can be generated.
  • Nonlinear effects occur in proportion to the square, cube (or higher) of the electric field. Therefore, a non-linear action occurs only in the resonance part of the control light 72, and the signal light 71 propagating through the part other than the resonance part is not affected at all.
  • the core of the signal light waveguide 3 may be configured to easily generate the nonlinear effect.
  • a nonlinear material is used for at least a part of the material constituting the core, a material such as a rare earth having a nonlinear action is doped in the material constituting the core, or a nonlinear action is applied to the material constituting the core.
  • a material such as a rare earth having a nonlinear action is doped in the material constituting the core, or a nonlinear action is applied to the material constituting the core.
  • the refractive index changes, so the optical path length of the signal light 71 changes, and therefore the phase also changes. Since the wavelengths of the signal light 71 and the control light 72 are different, the control light 72 does not become noise of the signal light 71.
  • the optical path length of the signal light 71 differs between the state in which the control light 72 is made to resonate and the state in which the control light 72 is not made to resonate. A phase shift occurs. Therefore, the waveguide element 1 can be used as a switching element, for example.
  • the waveguide element according to the second embodiment is a waveguide element having a configuration including the waveguide element according to the first embodiment, and is a so-called Mach-Zehnder type optical path switching element.
  • FIG. 10 is a perspective view showing the configuration of the waveguide element according to the second embodiment of the present invention.
  • a waveguide element 6 shown in FIG. 10 includes the waveguide element of the first embodiment shown in FIGS. Therefore, in FIG. 10, members having the same functions as those shown in FIGS. 8 and 9 are denoted by the same reference numerals, and description thereof is omitted.
  • the waveguide element 6 of the second embodiment includes a substrate 2 and a first signal light waveguide (resonant photonic crystal waveguide) 7a provided on the substrate 2.
  • a signal light main waveguide 7, a control light incident waveguide 4, and a control light emitting waveguide 5 branched in the middle of the second signal light waveguide 7 b are provided.
  • This is a one-dimensional photonic crystal waveguide.
  • the one-dimensional photonic crystal waveguide can propagate a specific higher-order mode light, and can further confine the propagation light.
  • the signal light main waveguide 7, the control light incident waveguide 4 and the control light emitting waveguide 5 branched in the middle of the first signal light waveguide 7a and the second signal light waveguide 7b are:
  • Each is a multilayer structure in which the Y-axis direction, which is the direction perpendicular to the main surface of the substrate 2, is the stacking direction, and has a refractive index periodicity in the stacking direction.
  • the signal light main waveguide 7 is configured so that it splits into the first signal light waveguide 7a and the second signal light waveguide 7b on the way and separates them from each other. Be done!
  • the emission-side end face 4a faces the side surface of the first signal light waveguide 7a until it approaches again.
  • the control light incident waveguide 4 is arranged.
  • the incident-side end face 5a is placed on the side surface of the first signal light waveguide 7a until it approaches again.
  • the control light incident waveguide 4 and the control light emitting waveguide 5 are disposed to face each other with the first signal light waveguide 7a interposed therebetween.
  • the first signal light waveguide 7a corresponds to the signal light waveguide 3 of the first embodiment shown in FIGS.
  • the main waveguide 7, the control light incidence waveguide 4, and the control light emission waveguide 5 are the photonic crystal waveguides 140 shown in FIGS. 7A and 7B, respectively, and also satisfy the above equation (3). . Therefore, no leakage of propagating light on the Prill-Ann zone boundary in the direction along the plane perpendicular to the Y-axis direction, which is the refractive index periodic direction, occurs. In the second embodiment, since the air around each waveguide is air, the refractive index n is 1. Also, as mentioned above,
  • Both the lad and the core are made as one-dimensional photonic crystals, so that the propagating light does not leak on the Brillouin zone boundary in the stacking direction.
  • the signal light main waveguide 7a and the second signal light waveguide 7b the signal light main waveguide 7, the control light incident waveguide 4, and the control light emission waveguide 5 branched in the middle. , Side and vertical forces Propagation light on the Brillouin zone boundary will not leak.
  • the signal light 71 having the wavelength ⁇ is propagated through the signal light main waveguide 7.
  • the signal light 71 propagating through the signal light main waveguide 7 is branched and propagated to the first signal light waveguide 7a and the second signal light waveguide 7b.
  • control light 72 having the wavelength ⁇ is propagated through the control light incident waveguide 4.
  • Fabry-Perot resonator having the inner surface of the side surface of the first signal light waveguide 7a as a resonance portion is configured, and the control light 72 resonates in the X-axis direction in the first signal light waveguide 7a. After resonating, the control light 72 is coupled to the control light emitting waveguide 5.
  • the resonance portion of the control light 72 in the first signal light waveguide 7a is made to have a structure in which a nonlinear action is likely to occur. Occurs. Then, by causing the control light 72 to resonate in the first signal light waveguide 7a in this way, it is possible to cause a phase shift in the signal light 71 propagating through the first signal light waveguide 7a. .
  • the signal light 71 propagates without phase shift.
  • first signal light waveguide 7a and the second signal light waveguide 7b approach each other. These distances are the distances at which the propagating light can be coupled by the evanescent wave to form a directional coupler. Because of this arrangement, either the first signal light waveguide 7a or the second signal light waveguide 7b is used as the signal light, depending on whether resonance is performed by the control light 72 or not. It is possible to control whether 71 is output.
  • resonance can be performed by the control light 72, or the branching direction of the signal light 71 can be controlled by a force that is not performed.
  • the waveguide element of Embodiment 3 is perpendicular to the refractive index periodic direction and perpendicular to the signal light propagation direction in a part of the signal light waveguide through which the signal light propagates.
  • the waveguide element is configured to resonate the control light and further resonate the signal light in its propagation direction. With such a configuration, transmission or reflection of signal light can be selected by resonance of control light.
  • the waveguides used in this waveguide element are all one-dimensional photonic crystal waveguides.
  • FIG. 11 is a plan view showing the configuration of the waveguide element according to the third embodiment of the present invention.
  • a waveguide element 11 shown in FIG. 11 includes the waveguide element of the first embodiment shown in FIGS. Therefore, in FIG. 11, members having the same functions as those shown in FIGS. 8 and 9 are denoted by the same reference numerals, and description thereof is omitted.
  • the waveguide element 11 of the third embodiment includes a substrate 2, an incident-side signal light waveguide 12, a signal resonance waveguide (resonance) provided on the substrate 2.
  • the incident-side signal light waveguide 12, the signal resonance waveguide 13, the output-side signal light waveguide 14, the control light incident waveguide 4, and the control light output waveguide 5 are each of the one-dimensional photonics described above. It is a crystal waveguide.
  • the one-dimensional photonic crystal waveguide can propagate a specific higher-order mode light, and can further confine the propagation light.
  • the incident-side signal light waveguide 12, the signal resonance waveguide 13, the output-side signal light waveguide 14, the control-light incident waveguide 4, and the control-light output waveguide 5 are respectively formed on the substrate 2.
  • Hanging on the main surface It is a multilayer structure with the Y-axis direction being the straight direction as the stacking direction, and has a refractive index periodicity in the stacking direction.
  • the optical axes of the incident-side signal light waveguide 12, the signal resonance waveguide 13, and the output-side signal light waveguide 14 are all along the axial direction.
  • the incident-side signal light waveguide 12 and the outgoing-side signal light waveguide 14 are arranged so as to sandwich the signal resonance waveguide 13.
  • the output-side end face 12a of the incident-side signal light waveguide 12 and the incident-side end face 14a of the output-side signal light waveguide 14 correspond to the incident-side end face 13a and the output-side end face 13b of the signal resonance waveguide 13, respectively.
  • the control light incident waveguide 4 and the control light emitting waveguide 5 are disposed to face each other with the signal resonance waveguide 13 interposed therebetween.
  • the exit side end face 4a of the control light incident waveguide 4 and the entrance side end face 5a of the control light exit waveguide 5 are located in the vicinity of the side faces 13c and 13d of the signal resonance waveguide 13, respectively.
  • the incident-side signal light waveguide 12, the signal resonance waveguide 13, the output-side signal light waveguide 14, the control-light incident waveguide 4 and the control-light output waveguide 5 are shown in FIG.
  • the refractive index n is 1. Also, as mentioned above, cladding and core
  • Both of these are made to be one-dimensional photonic crystals so that propagation light does not leak on the Brillouin zone boundary in the stacking direction.
  • the incident-side signal light waveguide 12 the signal resonance waveguide 13, the output-side signal light waveguide 14, the control light incident waveguide 4, and the control light output waveguide 5
  • the side surface and the vertical surface force The transmitted light on the Brillouin zone boundary does not leak.
  • the distances between the side surfaces 13c and 13d of the signal resonance waveguide 13 and the exit-side end face 4a of the control-light entrance waveguide 4 and the entrance-side end face 5a of the control-light exit waveguide 5 are as follows. Is a distance that resonates in the X-axis direction in the signal resonance waveguide 13. As a result, a Fabry-Perot resonator is formed in which the inner surfaces of the side surfaces 13c and 13d of the signal resonance waveguide 13 are resonant portions.
  • the distance between the exit-side end face 12a of the incident-side signal light waveguide 12 and the incident-side end face 13a of the signal resonance waveguide 13 is the signal light propagating through the incident-side signal light waveguide 12.
  • the 71 evanescent waves can be partially coupled to the signal resonance waveguide 13.
  • the distance between the output-side end face 13b of the signal resonance waveguide 13 and the incident-side end face 14a of the output-side signal light waveguide 14 functions as an incomplete reflection surface due to partial coupling of the evanescent wave.
  • the distance is such that the signal light 71 resonates in the Z-axis direction in the signal resonance waveguide 13.
  • a Fabry-Perot resonator is formed in which the inner surfaces of the incident-side end face 13a and the emission-side end face 13b of the signal resonance waveguide 13 are resonant portions.
  • signal light 74 that resonates in the Z-axis direction is generated in the signal resonance waveguide 13.
  • the signal light 74 that resonates is coupled to the output-side signal light waveguide 14.
  • the signal light 71 having the wavelength ⁇ is propagated through the incident-side signal light waveguide 12.
  • the signal light 71 is propagated so as to be in a propagation mode on the Brillouin zone boundary.
  • the signal light 71 propagating in the incident-side signal light waveguide 12 is coupled to the signal resonance waveguide 13, resonates in the signal resonance waveguide 13, and enters the output-side signal light waveguide 14.
  • the signal light does not resonate in the signal resonance waveguide 13, but is reflected by the signal resonance waveguide 13. Return to the incident-side signal light waveguide 12.
  • the control light 72 having a wavelength is resonated in the X-axis direction between the side surfaces 13c and 13d of the signal resonance waveguide 13, the refractive index of the signal resonance waveguide 13 is increased by a non-linear action. Change. As a result, the signal light 71 having the wavelength ⁇ does not resonate in the signal resonance waveguide 13 but is reflected by the signal resonance waveguide 13 and returns to the incident-side signal light waveguide 12. Signal light of other wavelengths slightly different from the wavelength ⁇ is transmitted through the signal resonance waveguide 13 s
  • the wavelength of the signal light transmitted through the signal resonance waveguide 13 can be selected depending on whether or not the control light 72 propagates. Therefore, the waveguide element 11 can be used as a switching element.
  • control light 72 in the signal resonance waveguide 13 is shared.
  • the vibration part should be structured so that non-linear effects are likely to occur.
  • a waveguide element according to Embodiment 4 of the present invention will be described with reference to the drawings.
  • the waveguide element of the fourth embodiment is perpendicular to the refractive index periodic direction in a part of the signal light waveguide through which the signal light propagates.
  • the waveguide element is configured to resonate the control light in a direction perpendicular to the propagation direction of the signal light and further resonate the signal light in the propagation direction.
  • the difference from the waveguide element of the third embodiment is that the propagation directions of signal light and control light are the same. With such a configuration, it is possible to select transmission or reflection of signal light by resonance of control light.
  • the waveguides used in this waveguide element are all one-dimensional photonic crystal waveguides.
  • FIG. 12 is a plan view showing the configuration of the waveguide element according to the fourth embodiment of the present invention.
  • a waveguide element 16 shown in FIG. 12 has a configuration in which the control light incident waveguide 4 and the control light emitting waveguide 5 are removed from the waveguide element 11 of the third embodiment shown in FIG. Therefore, in FIG. 12, members having the same functions as those shown in FIG. 11 are given the same reference numerals, and descriptions thereof are omitted.
  • the waveguide element 16 of the fourth embodiment includes the substrate 2 and the incident-side signal light waveguide 12, the signal resonance waveguide 13, and the waveguide provided on the substrate 2. And an output-side signal light waveguide 14.
  • the incident-side signal light waveguide 12, the signal resonance waveguide 13, and the emission-side signal light waveguide 14 are the above-described one-dimensional photonic crystal waveguides, respectively.
  • the one-dimensional photonic crystal waveguide can propagate a specific higher-order mode light, and can further confine the propagation light.
  • the incident-side signal light waveguide 12, the signal resonance waveguide 13, and the output-side signal light waveguide 14 are the photonic crystal waveguides 140 shown in FIGS. 7A and 7B, respectively. Equation (3) is also satisfied. For this reason, leakage of propagating light on the Brillouin zone boundary in the direction along the plane perpendicular to the Y-axis direction which is the refractive index periodic direction does not occur. In the third embodiment, since the air around each waveguide is air, the refractive index n is 1. Also
  • both the cladding and the core are one-dimensional photonic crystals, and the stacking direction There is no leakage of propagating light on the Brillouin Zone boundary! As a result, the propagation light on the side and upper / lower surface Brillouin zone boundaries does not leak through the incident-side signal light waveguide 12, the signal resonance waveguide 13, and the output-side signal light waveguide 14.
  • the signal light 71 having the wavelength ⁇ is propagated through the incident-side signal light waveguide 12.
  • Light 71 propagates in a propagation mode on the Brillouin zone boundary.
  • the signal light 71 propagating in the incident-side signal light waveguide 12 is coupled to the signal resonance waveguide 13, resonates in the signal resonance waveguide 13, and enters the output-side signal light waveguide 14.
  • control light 72 having the wavelength ⁇ is propagated to the incident-side signal light waveguide 12 to cause signal resonance.
  • the refractive index of the signal resonance waveguide 13 changes due to the nonlinear effect.
  • the signal light 71 having the wavelength ⁇ does not resonate in the signal resonance waveguide 13, and the signal resonance guide is not generated.
  • the light is reflected by the waveguide 13 and returns to the incident-side signal light waveguide 12.
  • the incident-side signal light waveguide 12 and the emission-side signal light waveguide 14 are used as a resonance mechanism for causing resonance in the resonance waveguide 13.
  • the wavelength of the signal light transmitted through the signal resonance waveguide 13 can be selected depending on whether the control light 72 is propagated. Therefore, the waveguide element 16 can be used as a switching element.
  • the resonance portion of the control light 72 in the signal resonance waveguide 13 has a structure in which a nonlinear action is likely to occur.
  • the shape of the signal resonance waveguide 13 is a rectangular parallelepiped, but the shape of the signal resonance waveguide 13 is not limited to a rectangular parallelepiped. Actually, it is desirable that the signal resonance waveguide 13 has a shape optimized so as to obtain desired resonance characteristics.
  • the waveguide element of the fifth embodiment changes the refractive index of the resonance portion by resonating the control light in the direction of the refractive index period in a part of the signal light waveguide through which the signal light propagates. It is a waveguide element configured to cause a shift in the phase of signal light.
  • the waveguides used in this waveguide element are all one-dimensional photonic crystal waveguides.
  • FIG. 13 is a perspective view showing the configuration of the waveguide element according to the fifth embodiment of the present invention.
  • FIG. 13 members having the same functions as those shown in FIGS. 8 and 9 of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the waveguide element 17 includes a substrate 2, a signal light waveguide 3 provided on the substrate 2, and a control light incident optical fiber (resonance mechanism). ) 18 and a control light incident lens 19 (resonance mechanism).
  • the control light incident optical fiber 18 and the control light incident lens 19, which are the light incident portions, of the signal light waveguide 3 are configured so that the control light 72 can be radiated to the upper surface of the signal light waveguide 3 by force. It is arranged above.
  • the signal light waveguide 3 is the above-described one-dimensional photonic crystal waveguide. As described above, the one-dimensional photonic crystal waveguide can propagate specific higher-order mode light, and can further confine the propagation light.
  • the signal light waveguide 3 is a multilayer structure in which the Y-axis direction, which is the direction perpendicular to the main surface of the substrate 2, is the stacking direction, and has a refractive index periodicity in the stacking direction.
  • the optical axis of the signal light waveguide 3 is along the Z-axis direction.
  • the optical axes of the control light incident optical fiber 18 and the control light incident lens 19 are both along the stacking direction (Y-axis direction) of the signal light waveguide 3.
  • the signal light waveguide 3 is the photonic crystal waveguide 140 shown in FIGS. 7A and 7B, and also satisfies the above equation (3). For this reason, the leakage of propagating light on the Brillouin zone boundary in the direction along the plane perpendicular to the Y-axis direction which is the refractive index periodic direction does not occur.
  • the refractive index n since the periphery of the signal light waveguide 3 is air, the refractive index n
  • both the cladding and the core are made of a one-dimensional photonic crystal so that propagating light does not leak on the Brillouin zone boundary in the stacking direction.
  • the Brillouin from the side surface and the top and bottom surfaces The propagating light on the zone boundary will not leak.
  • the distance at which the control light 72 irradiated on the upper surface of the waveguide 3 forms a condensing spot in the signal light waveguide 3 is defined as a distance.
  • the clad on the upper and lower surfaces of the signal light waveguide 3 functions as a reflector, and a Fabry-Perot resonator in which the control light 72 resonates in the Y-axis direction is configured.
  • the signal light 71 having the wavelength ⁇ is propagated through the signal light waveguide 3.
  • the signal light 71 is
  • control light 72 having the wavelength ⁇ is propagated through the control light incident optical fiber 18.
  • the control light 72 from the incident optical fiber 18 is collected by the control light incident lens 19 and coupled to the signal light waveguide 3. Since the upper and lower surfaces of the signal light waveguide 3 are confined as described above, the inner sides of the upper and lower surfaces of the signal light waveguide 3 function like a reflector. Therefore, a Fabry-Perot resonator is formed by the inside of the upper and lower surfaces of the signal light waveguide 3, and the control light 73 that resonates in the axial direction is generated in the signal light waveguide 3.
  • the control light 72 By causing the control light 72 to resonate in the signal light waveguide 3, the electric field in the resonance portion becomes very strong.
  • a nonlinear action occurs only in this resonance portion.
  • the refractive index and the like change, so that the optical path length of the signal light 71 changes, and for example, the characteristics of the signal light 71 such as the phase also change.
  • the waveguide element 17 can be used as a switching element, for example.
  • a cladding which is a one-dimensional photonic crystal, be formed on the upper and lower surfaces of the core for use as a reflector.
  • the waveguide element of the sixth embodiment is a waveguide element having a configuration including the waveguide element of the fifth embodiment, and is a so-called Mach-Zehnder type optical path switching element.
  • FIG. 14 is a perspective view showing the configuration of the waveguide element according to the sixth embodiment of the present invention.
  • a waveguide element 21 shown in FIG. 14 includes the waveguide element of the fifth embodiment shown in FIG. Therefore, in FIG. 14, members having the same functions as those shown in FIG. 13 are denoted by the same reference numerals, and description thereof is omitted. Further, the signal light main waveguide 7 which is a waveguide through which the signal light 71 propagates in the waveguide element 21 of the sixth embodiment is the same as the signal light 71 in the waveguide element 6 of the second embodiment shown in FIG. The configuration is the same as the main waveguide 7 for signal light propagating. Therefore, in FIG. 14, members having the same functions as those shown in FIG. 10 are denoted by the same reference numerals, and description thereof is omitted.
  • the waveguide element 21 of the sixth embodiment includes a substrate 2, a first signal light waveguide 7 a and a second signal light waveguide provided on the substrate 2.
  • a signal light main waveguide 7 branched to 7b, a control light incident optical fiber 18, and a control light incident lens 19 are provided.
  • the control light incident optical fiber 18 and the control light incident lens 19, which are the light incident portions, are arranged so that the control light 72 can be irradiated toward the upper surface of the first signal light waveguide 7 a. It is placed above 7a.
  • the signal light 71 having the wavelength ⁇ is propagated through the main waveguide 7 for signal light.
  • the signal light 71 propagating through the signal light main waveguide 7 is branched and propagated to the first signal light waveguide 7a and the second signal light waveguide 7b.
  • control light 72 having the wavelength ⁇ is propagated through the control light incident optical fiber 18.
  • the control light 72 from the incident optical fiber 18 is collected by the control light incident lens 19 and coupled to the first signal light waveguide 7a.
  • a Fabry-Perot resonator is formed in which the inner surfaces of the upper and lower surfaces of the first signal light waveguide 7a are resonant portions, and the control light 72 is placed in the Y-axis direction in the first signal light waveguide 7a. Resonates.
  • the resonance of the control light 72 in the first signal light waveguide 7a By setting the portion to have a structure in which a non-linear action is likely to occur, a non-linear action occurs only in this resonance portion.
  • a phase shift can be caused in the signal light 71 propagating through the first signal light waveguide 7a.
  • the signal light 71 propagates without being out of phase.
  • first signal light waveguide 7a and the second signal light waveguide 7b approach each other, these distances are the distances at which the propagating light can be coupled by the evanescent wave.
  • the first signal light waveguide 7a or the second signal light waveguide 7b is used as the signal light, depending on whether resonance is performed by the control light 72 or not. It is possible to control whether 71 is output.
  • resonance can be performed by the control light 72, or the branching direction of the signal light 71 can be controlled by a force that is not performed.
  • a waveguide element according to the seventh embodiment of the present invention will be described with reference to the drawings.
  • the waveguide element according to the seventh embodiment is an optical path switching element similarly to the waveguide element according to the sixth embodiment.
  • the waveguides used in this waveguide element are all one-dimensional photonic crystal waveguides.
  • FIG. 15 is a perspective view showing the configuration of the waveguide element according to the seventh embodiment of the present invention.
  • the waveguide element 22 shown in FIG. 15 further includes a signal light main waveguide 7c in addition to the waveguide element 21 of the sixth embodiment shown in FIG. Instead of the lens 19, a VCSEL (Vertical Cavity Surface Emitting Lasers) 23 in which a plurality of laser elements (resonance mechanisms) 24 are arranged is added. Therefore, in FIG. 15, members having the same functions as those shown in FIG. 14 are denoted by the same reference numerals, and description thereof is omitted.
  • VCSEL Very Cavity Surface Emitting Lasers
  • the waveguide element 22 of the seventh embodiment includes a substrate 2, signal light main waveguides 7 and 7 c provided on the substrate 2, and a VCSEL 23.
  • the signal light main waveguide (resonant photonic crystal waveguide) 7c has substantially the same configuration as the signal light main waveguide 7, and the first signal The light is branched to the signal waveguide 7d and the second signal light waveguide 7e.
  • the VCSEL 23 is disposed above the signal light main waveguides 7 and 7c.
  • the VCSEL 23 includes a plate-like portion 25, and a plurality of laser elements 24 are arranged on the surface of the plate-like portion 25 on the substrate 2 side. Light emitted from these laser elements 24 is control light. Control light from the laser element 24 is emitted in a direction perpendicular to the plate-like portion 25. Note that the VCSEL 23 can selectively emit control light from an arbitrary laser element 24.
  • the first signal waveguide 7d and the second signal waveguide 7e which are the same as the approaching portion 9 of the signal light main waveguide 7, propagate through each other.
  • An approaching point (directional coupler) 9c having an interval that is affected by the evanescent wave of propagating light is provided.
  • control light can resonate at an arbitrary position of the signal light main waveguide 7 and the signal light main waveguide 7c. Therefore, the phases of the signal light 71 and the signal light 71c incident on the signal light main waveguide 7 and the signal light main waveguide 7c can be shifted at desired positions. Therefore, if the waveguide element 22 is used, the control light is emitted from an arbitrary laser element 24, and thereby the signal light 71 and the signal light 71c propagated in the signal light main waveguide 7 and the signal light main waveguide 7c, respectively. The optical path can be switched.
  • the waveguide circuits of the signal light 71 and the signal light 71c are integrated, and the light source of the control light is arranged in an array. Therefore, by selecting the irradiation pattern, it is possible to perform a more complicated optical path conversion process of the signal lights 71 and 71c.
  • VCSEL23 optical fibers arranged in an array can be used! ⁇ .
  • the signal light main waveguide 7 and the signal light main waveguide 7c may be used instead of a more complex waveguide. Even in this case, the one-dimensional photonic crystal waveguide may be used.
  • FIG. 16A and 16B show the configuration of the waveguide element according to the eighth embodiment of the present invention, and It is a top view which shows an optical path.
  • FIG. 16A shows a state in which signal light is emitted in the middle of the output waveguide force
  • FIG. 16B shows a state in which signal light is emitted at the end of the output waveguide force.
  • the waveguide element 26 includes a substrate 2 and an S-shaped waveguide (resonant photonic crystal waveguide) 27 provided on the substrate 2. And VCSEL23.
  • the VCSEL 23 is disposed above a part of the slab-shaped portion of the S-shaped waveguide 27, and a plurality of laser elements 24 (see FIG. 15) are arranged on the surface on the substrate 2 side.
  • the S-shaped waveguide 27 is the one-dimensional photonic crystal waveguide described above. As described above, the one-dimensional photonic crystal waveguide can propagate a specific higher-order mode light, and can further confine the propagation light.
  • the S-shaped waveguide 27 is a multilayer structure in which the Y-axis direction that is perpendicular to the main surface of the substrate 2 is the stacking direction, and has a refractive index periodicity in the stacking direction.
  • the S-shaped waveguide 27 is wider than the incident waveguide 28, ie, spreads in a direction parallel to a plane perpendicular to the stacking direction (Y-axis direction).
  • Slab waveguide (slab-like portion) 30 and three output waveguides 29 are provided.
  • the incident waveguide 28 is connected to the slab waveguide 30.
  • the slab waveguide 30 is formed in an S shape as shown in FIGS. 16A and 16B. Further, the three output waveguides 29 are also connected to the slab waveguide 30.
  • the three output waveguides 29 are arranged in parallel.
  • the S-shaped waveguide 27 including the incident waveguide 28, the slab waveguide 30, and the emission waveguide 29 is the photonic crystal waveguide 140 shown in FIGS. 7A and 7B, respectively.
  • the above equation (3) is also satisfied. For this reason, leakage of propagating light on the Brillouin zone boundary in the direction along the plane perpendicular to the Y-axis direction which is the refractive index periodic direction does not occur.
  • the refractive index n is 1.
  • both the cladding and the core are made to be one-dimensional photonic crystals so that the propagation light does not leak on the Brillouin zone boundary in the stacking direction.
  • the propagation light on the Brillouin zone boundary does not leak in the side surface and the vertical surface force.
  • Incident light 76 is propagated through the incident waveguide 28.
  • the incident light 76 is propagated in a propagation mode on the Brillouin zone boundary.
  • Incident light 76 enters the slab waveguide 30 from the incident waveguide 28.
  • the slab waveguide 30 has complete confinement of light on the side surface. Accordingly, the propagating light 71a is concavely reflected by the inner side surface 30a of the slab waveguide 30 and becomes a wide luminous flux. Further, the propagating light 71a is collected by concave reflection at the inner side surface 30b of the slab waveguide 30 and is incident on one of the three output waveguides 29, and is output from the output waveguide 29. It is emitted as 78.
  • the resonance part of the control light in the slab waveguide 30 has a structure in which a nonlinear action is likely to occur, so that the nonlinear action occurs only in this resonance part.
  • the path force of propagating light 71a is in a state as shown in FIG. 16A without emitting control light. That is, it is assumed that the propagating light 71a is emitted from the emission waveguide 29 arranged in the middle.
  • the propagating light 71a is emitted from the emission waveguide 29 arranged in the middle.
  • the path of the propagation light 71a can be converted so that the propagation light 71a is emitted from the emission waveguide 29 arranged at the end.
  • the emission waveguide 29 from which the propagating light 71a is emitted can be selected. It is also possible to prevent the propagating light 71a from being emitted from any of the emission waveguides 29. Note that the number of emission waveguides 29 and the number of laser elements 24 that emit control light are not limited at all.
  • the resonance direction of the control light in the S-shaped waveguide 27 of the waveguide element 26 is the Y-axis direction
  • the Y-axis direction that is the refractive index periodic direction The light must be confined in a direction along a plane perpendicular to the surface. Therefore, a cladding that is a one-dimensional photonic crystal is formed in the vertical direction of the core (Y-axis direction). It is desirable.
  • the waveguide element according to the ninth embodiment is an optical amplification element.
  • the waveguide element according to the ninth embodiment includes the first embodiment shown in FIGS. 8 and 9, the third embodiment shown in FIG. 11, the fourth embodiment shown in FIG. 12, and the embodiment shown in FIG. 5 and because the configuration is almost the same as the waveguide element in the embodiment 8 shown in FIGS. 16A and 16B, refer to FIGS. 8, 9, 11, 12, 13 and 16A and 16B. While explaining.
  • a nonlinear material is used for at least a part of the material constituting the core.
  • the material constituting the core is doped with a substance having an amplifying action in order to cause the resonance part to have an amplifying action rather than a non-linear action.
  • examples of the substance having an amplifying action include erbium and thulium.
  • powerful pump light is used as the control light.
  • the waveguide elements 1, 11, 16, 17 and 26 function as amplification elements. Note that the waveguide element 26 has three output waveguides 29, but in the ninth embodiment, only one is required.
  • the electric field in the resonance part is very high. It will be strong. Since the resonance part is doped with a substance having an amplifying action, the signal light 71 is amplified and propagated to the signal light waveguide 3 and the output-side signal light waveguide 14.
  • the waveguide element 26 when the control light, which is a strong pump light, is resonated while propagating the propagating light 71a, the electric field in the resonance portion becomes very strong. Since the resonance part is doped with a substance having an amplifying action, the propagating light 71 a is amplified and propagated to the emission waveguide 29.
  • the VCSEL 23 is used to emit control light, which is pump light, so that pump light can be irradiated over a wide range. As a result, the total energy of the pump light can be increased, and the amplification factor can be increased.
  • the refractive index distribution is generated as in the eighth embodiment, and the wavefront is There is no need to bend the direction of travel.
  • the waveguide element according to the ninth embodiment functions as an amplifying element and can be easily manufactured because of its simple configuration.
  • FIG. 17 is a perspective view showing the configuration of the laser generator in the tenth embodiment of the present invention.
  • a laser generator 32 shown in FIG. 17 is configured such that the incident-side signal light waveguide 12 is removed from the waveguide element 11 of the third embodiment shown in FIG. In this configuration, a DFB portion 33 is provided that is formed by periodically forming cuts that are perpendicular to the direction. Therefore, in FIG. 17, members having the same functions as those shown in FIG. 11 are denoted by the same reference numerals, and the description thereof is omitted.
  • the DFB section 33 is a reflective layer that selectively reflects a specific wavelength in a DFB (Distributed Feedback) resonator.
  • This structure also has a refractive index periodicity in the optical axis direction (Z-axis direction). In other words, a plurality of one-dimensional photonic crystal waveguides are periodically arranged. Note that if the number of cuts in the DFB section 33 is too large, light does not propagate, so the number of cuts is adjusted to an optimum number.
  • a nonlinear material is used as a material constituting the core of the signal resonance waveguide 13 so that a nonlinear action occurs in the signal resonance waveguide 13. It was.
  • the signal resonance waveguide 13 is used as an excitation photonic crystal waveguide, and the control light incident waveguide 4 and the control light emission waveguide 5 are used as an excitation mechanism.
  • the core of the signal resonance waveguide 13 may be configured using a laser medium.
  • the laser medium for example, Nd-doped YAG (yttrium aluminum garnet crystal), glass, ruby, GaAs, InP, GaAlAs-P, InAs, etc. may be used.
  • quantum media or pigments may be included in the core to form a laser medium.
  • the evanescent wave of the control light 72 which is the excitation light, is coupled to the signal resonance waveguide 13 by the control light incident waveguide 4, and the control light 72 is transmitted to the signal resonance waveguide 13 in the X-axis direction.
  • the signal resonance waveguide 13 is excited, and the laser light resonates (oscillates) in the Z-axis direction between the incident side end face 13a and the emission side end face 13b.
  • the laser generator 32 has wavelength selectivity because the DFB section 33 is provided.
  • FIG. 18 is a perspective view showing the configuration of the laser generator in Embodiment 11 of the present invention.
  • the laser generator 36 shown in FIG. 18 is different from the laser generator 32 of the tenth embodiment shown in FIG. 17 in that the control light incident waveguide 4 and the control light emitting waveguide 5 are removed.
  • This is a configuration in which a control light incident optical fiber 18 and a control light incident lens 19 are provided as an excitation mechanism.
  • the control light incident optical fiber 18 and the control light incident lens 19 have the same functions as the control light incident optical fiber 18 and the control light incident lens 19 shown in FIG. Yes. Since the other configuration is substantially the same as that of the laser generator 32 of the tenth embodiment shown in FIG. 17, members having the same functions as those shown in FIG. 17 are denoted by the same reference numerals. The explanation is omitted.
  • the control light 72 that is the excitation light from the control light incident optical fiber 18 is collected by the control light incident lens 19 and coupled to the upper surface of the signal resonance waveguide 13. Then, the control light 72 resonates in the Y-axis direction in the signal resonance waveguide 13. As a result, the signal resonance waveguide 13 is excited, and the laser beam resonates (oscillates) in the Z-axis direction between the incident side end face 13a and the emission side end face 13b.
  • laser light is emitted from the outgoing-side end face 13b on the DFB portion 33 side, which has low reflectivity, and from the outgoing-side signal light waveguide 14 Laser light 75 is emitted to the outside. Since the laser generator 36 is provided with the DFB section 33, it has wavelength selectivity.
  • FIG. 19 is a perspective view showing the configuration of the laser generator in Embodiment 12 of the present invention.
  • the control light incident waveguide 4 and the control light emitting waveguide 5 are removed from the laser generator 32 of the tenth embodiment shown in FIG.
  • An electrode 38 and an electrode 39 are provided on the upper and signal resonance waveguides 13, respectively, and a voltage source 40 for applying a voltage between the electrode 38 and the electrode 39 is added. Therefore, in FIG. 19, members having the same functions as those shown in FIG. 17 are denoted by the same reference numerals, and description thereof is omitted.
  • the electrode 38, the electrode 39, and the voltage source 40 function as an excitation mechanism.
  • an electrode 38 is provided on the substrate 2. Specifically, an electrode 38 is formed between the substrate 2, the signal resonance waveguide 13, the DFB portion 33, and the emission-side signal light waveguide 14. An electrode 39 is formed on the signal resonance waveguide 13. A voltage source 40 is connected between the electrodes 38 and 39, and a voltage can be applied between the electrodes 39 and 38.
  • the signal resonance waveguide 13 is excited, and the laser light is Z-axis between the incident side end face 13a and the output side end face 13b. Resonates (oscillates) in the direction.
  • laser light is emitted from the emission side end face 13b on the DFB portion 33 side having a low reflectance, and the laser is emitted from the emission side signal light waveguide 14
  • Light 75 is emitted to the outside. Since the laser generator 37 is provided with the DFB section 33, it has wavelength selectivity.
  • FIG. 20 is a perspective view showing the configuration of the laser generator in the thirteenth embodiment of the present invention.
  • the laser generator 41 shown in FIG. 20 has substantially the same configuration as the waveguide element 16 of the fourth embodiment shown in FIG. Therefore, in FIG. 20, members having the same functions as those shown in FIG. 12 are given the same reference numerals, and descriptions thereof are omitted.
  • the waveguide element 16 of the fourth embodiment for example, a non-linear material is used as a material constituting the core of the signal resonance waveguide 13 so that a non-linear action occurs in the signal resonance waveguide 13. It was.
  • the signal resonance The waveguide 13 is used as an excitation photonic crystal waveguide. Therefore, for example, as described in the tenth embodiment, the core of the signal resonance waveguide 13 may be configured using a laser medium.
  • the input-side signal light waveguide 12 and the output-side signal light waveguide 14 function as an excitation mechanism.
  • the evanescent wave of the control light 72 which is the excitation light, is coupled to the signal resonance waveguide 13 by the incident-side signal light waveguide 12, and the control light 72 is transmitted to the signal resonance waveguide 13 as Z Resonate in the axial direction.
  • the signal resonance waveguide 13 is excited, and the laser light resonates (oscillates) in the Y-axis direction between the upper and lower surfaces of the signal resonance waveguide 13.
  • the light confinement by the clad on the upper surface of the signal resonance waveguide 13 is made weaker than the light confinement by the clad on the lower surface of the signal resonance waveguide 13, so that the laser light can be guided by the signal resonance waveguide.
  • the light is emitted from the upper surface of the path 13.
  • FIG. 21 is a perspective view showing the configuration of the waveguide element according to the fourteenth embodiment of the present invention.
  • the waveguide element 42 includes a substrate 2, an incident-side waveguide (incident-side photonic crystal waveguide) 43 provided on the substrate 2, and a resonance unit. (Resonant photonic crystal waveguide) 45 and output side waveguide (output side photonic crystal waveguide) 44.
  • the incident-side waveguide 43, the resonance part 45, and the emission-side waveguide 44 are the above-described one-dimensional photonic crystal waveguides, respectively.
  • the one-dimensional photonic crystal waveguide can propagate specific high-order mode light, and can further confine the propagation light.
  • the incident-side waveguide 43, the resonance unit 45, and the emission-side waveguide 44 are each a multilayer structure in which the Y-axis direction that is perpendicular to the main surface of the substrate 2 is the stacking direction.
  • the incident side waveguide 43 and the emission side waveguide 44 are linear.
  • the incident-side waveguide 43 and the emission-side waveguide 44 are the photonic crystal waveguides 140 shown in FIGS. 7A and 7B, respectively, and also satisfy the above equation (3). Therefore, with respect to the Y-axis direction, which is the periodic direction of the refractive index The leakage of propagating light on the Brillouin zone boundary in the direction along the vertical plane does not occur.
  • the refractive index n is the refractive index
  • both the cladding and the core are made of a one-dimensional photonic crystal so that propagating light does not leak on the Brillouin zone boundary in the stacking direction. Thereby, in the incident side waveguide 43 and the emission side waveguide 44, the propagation light on the Brillouin zone boundary does not leak even in the side surface and the upper and lower surface forces.
  • the resonating part 45 has a cylindrical shape.
  • the resonating unit 45 has a structure in which a plurality of disk-like layers are stacked in the Y-axis direction, and the center axis direction of the circle is the refractive index periodic direction.
  • light is completely confined on the side surface, which is the outer peripheral surface of the cylinder, and the upper and lower surfaces, which are circular.
  • the resonating unit 45 which is a cylindrical one-dimensional photonic crystal having such a configuration, functions as a resonator by coupling an evanescent wave from the side surface thereof. That is, only light of a predetermined frequency is coupled to the resonance unit 45 and resonates inside the resonance unit 45. Therefore, in the waveguide element 42, the distance between the incident-side waveguide 43 and the resonance part 45 and the distance between the resonance part 45 and the emission-side waveguide 44 are set to appropriate distances. Can be used as a resonant element.
  • the resonating unit 45 is designed so that, for example, only light of wavelength ⁇ resonates. Illustration
  • the resonance part 45 having a desired resonance frequency is produced by changing the dimensions and shape thereof.
  • the incident-side waveguide 43 includes a plurality of incident lights with different frequencies, including light of wavelength ⁇ .
  • the incident light 76 is propagated so as to be in a propagation mode on the Brillouin zone boundary.
  • the light of the wavelength resonates in the resonating part 45 and is emitted.
  • the light is coupled to the side waveguide 44 and emitted from the emission side waveguide 44 as selection light 77.
  • the outgoing light 78 other than the selection light 77 is emitted from the outgoing side end face of the incident side waveguide 43.
  • only light of a wavelength is transmitted from the incident side waveguide 43 to the output side waveguide 4.
  • FIG. 22 is a perspective view showing a configuration of a waveguide element having two stages of resonant portions according to the fourteenth embodiment of the present invention.
  • the waveguide element 42a includes two resonance parts, a resonance part 45 and a resonance part (resonant photonic crystal waveguide) 45a. Since the other configuration is the same as that of the waveguide element 42 shown in FIG. 21, members having the same functions as those shown in FIG. 21 are denoted by the same reference numerals, and description thereof is omitted. .
  • the resonance unit 45a has substantially the same configuration as the resonance unit 45. In this way, by providing two stages of the resonating part, the intensity of light in the frequency range to be transmitted can be made uniform, so that a so-called “flat top characteristic” can be realized.
  • the wavelength separation element can be configured by using a plurality of resonance units each having a different resonance frequency.
  • FIG. FIG. 23 is a perspective view showing a configuration of a waveguide element that is a demultiplexing element in Embodiment 14 of the present invention.
  • members having the same functions as those shown in FIG. 21 are given the same reference numerals, and descriptions thereof are omitted.
  • the waveguide element 42b includes three resonance portions (resonant photonic crystal waveguides) 45b, 45c, and 45d each having a different resonance frequency. Further, the waveguide element 42b includes emission-side waveguides (emission-side photonic crystal waveguides) 44b, 44c, and 44d corresponding to the respective resonating portions 45b, 45c, and 45d.
  • the waveguide element 42b has a configuration in which an incident-side waveguide 43, resonating portions 45b, 45c, and 45d and emission-side waveguides 44b, 44c, and 44d are disposed on the substrate 2.
  • the resonating parts 45b, 45c, and 45d are one-dimensional photonic crystal waveguides similarly to the resonating part 45 described above. In addition, the resonating parts 45b, 45c, and 45d resonate light of different wavelengths.
  • the resonating parts 45b, 45c, and 45d are arranged so as to be coupled to the incident-side waveguide 43, and the output-side waveguides 44b, 44c, and 44d are coupled to the resonating parts 45b, 45c, and 45d, respectively. Arranged to get.
  • the incident-side waveguide 43 includes different wavelengths including light of a wavelength, light of a wavelength, and light of a wavelength.
  • a plurality of incident lights 76 having a plurality of wave numbers are propagated.
  • the incident light 76 is propagated in a propagation mode on the Brillouin zone boundary.
  • the light of the wavelength is
  • the light of the wavelength is in the resonator 45c, and the light of the wavelength is in the resonator 45d.
  • the waveguide element 42b it is possible to selectively extract a plurality of light beams having desired wavelengths.
  • FIG. 24 is a perspective view showing the configuration of the waveguide element according to the fifteenth embodiment of the present invention.
  • the waveguide element 47 of the fifteenth embodiment has substantially the same configuration as the waveguide element 42 of the thirteenth embodiment shown in FIG. 21 except that the shape of the resonance part is different. Therefore, in FIG. 24, members having the same functions as those shown in FIG. 21 are given the same reference numerals, and descriptions thereof are omitted.
  • the resonance part (resonant photonic crystal waveguide) 48 of the waveguide element 47 has a ring shape.
  • the resonating part 48 has a multilayer structure in which the Y-axis direction, which is a direction perpendicular to the main surface of the substrate 2, is stacked, specifically, a structure in which a plurality of ring-shaped layers are stacked in the Y-axis direction.
  • the center axis direction of the ring is the refractive index periodic direction.
  • the resonance part 48 satisfies the above formula (3).
  • the resonator 48 has a configuration in which clads are arranged on the upper and lower surfaces of the core. Both the clad and the core are used as a one-dimensional photonic crystal, and propagation light leaks on the Brillouin zone boundary in the stacking direction. Not to be. Thereby, in the resonance part 48, the propagation light on the side surface and upper / lower surface force Brillouin zone boundary does not leak.
  • the resonating part 48 which is a ring-shaped one-dimensional photonic crystal having such a configuration, functions as a resonator by coupling an evanescent wave from its side surface.
  • the predetermined frequency Only a certain number of lights are coupled to the resonance part 48 and resonate inside the resonance part 48. Therefore, in the waveguide element 47, the distance between the incident-side waveguide 43 and the resonance part 48 and the distance between the resonance part 48 and the emission-side waveguide 44 are set to appropriate distances. Can be used as a resonant element.
  • the resonating unit 48 is designed so that, for example, only light of wavelength ⁇ resonates. Illustration
  • the resonance part 48 having a desired resonance frequency is manufactured by changing the size, shape, and the like.
  • the incident-side waveguide 43 includes a plurality of incident light beams having wavelengths ⁇ .
  • the incident light 76 is propagated so as to be in a propagation mode on the Brillouin zone boundary.
  • only light of a wavelength resonates within the resonating section 48 and is emitted.
  • the light is coupled to the side waveguide 44 and emitted from the emission side waveguide 44 as selection light 77.
  • the outgoing light 78 other than the selection light 77 is emitted from the outgoing side end face of the incident side waveguide 43.
  • the waveguide element 47 only light of a wavelength is transmitted from the incident side waveguide 43 to the output side waveguide 4.
  • the resonance length can be increased.
  • the free spectral region (FSR) is narrowed, so that a plurality of frequencies at regular intervals can be resonated.
  • the waveguide element 47 can also function as an optical buffer memory or a multiple pulse generation element.
  • the shape of the resonance portion (resonator) of the resonance element is not limited to a cylindrical shape or a ring shape, but may be a rectangular parallelepiped shape, for example.
  • the shape of the resonance part (resonator) of the resonance element can be freely designed according to the resonance frequency.
  • FIG. 25 is a perspective view showing the configuration of the waveguide element according to the sixteenth embodiment of the present invention.
  • the waveguide element 51 of the sixteenth embodiment includes a substrate 2 and a branching waveguide (resonant photonic crystal waveguide) 52 provided on the substrate 2.
  • the branching waveguide 52 is the one-dimensional photonic crystal waveguide described above. As described above, the one-dimensional photonic crystal waveguide can propagate a specific higher-order mode light, and can further confine the propagation light.
  • the branching waveguide 52 is a multilayer structure in which the Y-axis direction that is perpendicular to the main surface of the substrate 2 is the stacking direction, and has a refractive index periodicity in the stacking direction.
  • the branching waveguide 52 is composed of an incident-side waveguide (incident-side photonic crystal waveguide) 53 and a slab waveguide (slab slab width) wider than the incident-side waveguide 53 (length in the X-axis direction). And a plurality of output side waveguides (output side photonic crystal waveguides) 55.
  • the slab waveguide 54 is connected to the entrance-side waveguide 53 and the exit-side waveguide 55, respectively.
  • the exit-side guide is formed on the surface opposite to the surface to which the entrance-side waveguide 53 is connected. Waveguide 55 is connected.
  • the branching waveguide 52 is the photonic crystal waveguide 140 shown in FIGS. 7A and 7B, and also satisfies the above equation (3). For this reason, the leakage of propagating light on the Brillouin zone boundary in the direction along the plane perpendicular to the Y-axis direction which is the refractive index periodic direction does not occur.
  • the refractive index n is 1.
  • both the cladding and the core are made to be one-dimensional photonic crystals so that the propagation light does not leak on the Brillouin zone boundary in the stacking direction.
  • the propagation light on the Brillouin zone boundary does not leak from the side surface and the upper and lower surfaces.
  • the incident light 75 is propagated through the incident side waveguide 53.
  • the incident light 75 is propagated so as to be in a propagation mode on the Brillouin zone boundary.
  • Incident light 75 that has entered the slab waveguide 54 from the incident-side waveguide 53 propagates through the slab waveguide 54 and is branched into four by the action of the multimode cover, and each of the four incident-side waveguides 55 The light is emitted as outgoing light 78.
  • FIG. 17 is a perspective view showing the configuration of the waveguide element according to the seventeenth embodiment of the present invention.
  • a waveguide element 56 includes a substrate 2 and a wavelength separation waveguide (resonant photonic crystal waveguide) 57 provided on the substrate 2.
  • the wavelength separation waveguide 57 is the one-dimensional photonic crystal waveguide described above.
  • the one-dimensional photonic crystal waveguide can propagate a specific higher-order mode light, and can further confine the propagation light.
  • the wavelength separation waveguide 57 is a multilayer structure in which the Y-axis direction, which is the direction perpendicular to the main surface of the substrate 2, is the lamination direction, and has a refractive index periodicity in the lamination direction.
  • the wavelength separation waveguide 57 includes an incident-side waveguide (incident-side photonic crystal waveguide) 58 and a slab waveguide (slab length) that is wider than the incident-side waveguide 58 (length in the X-axis direction). And a plurality of output-side waveguides (output-side photonic crystal waveguides) 60.
  • the slab waveguide 59 is connected to the entrance-side waveguide 58 and the exit-side waveguide 60, respectively. In the slab waveguide 59, the exit-side surface faces the surface where the entrance-side waveguide 58 is connected. Waveguide 60 is connected.
  • the wavelength separation waveguide 57 is the photonic crystal waveguide 140 shown in FIGS. 7A and 7B, and also satisfies the above equation (3). For this reason, leakage of propagating light on the Brillouin zone boundary in a direction along a plane perpendicular to the Y-axis direction that is the refractive index periodic direction does not occur.
  • the refractive index n is 1.
  • both the cladding and the core are made of a one-dimensional photonic crystal so that propagating light does not leak on the Brillouin zone boundary in the stacking direction.
  • the propagating light on the Brillouin zone boundary does not leak from the side surface and the upper and lower surfaces.
  • the waveguide element 56 can function as a wavelength separation element.
  • the incident light 75 is propagated in the incident-side waveguide 58.
  • the incident light 75 is propagated so as to be in a propagation mode on the Brillouin zone boundary.
  • the incident light 75 incident on the slab waveguide 59 from the incident-side waveguide 58 is separated for each wavelength by propagating through the slab waveguide 59, and is output as the selection light 77 from the two output-side waveguides 60, respectively. Is done.
  • the waveguide element and the laser generator in the embodiment of the present invention are configured using a one-dimensional photonic crystal waveguide capable of performing complete light confinement. For this reason, there is no restriction on the shape and size with which the degree of freedom of design is high. Even when used as a resonator, the resonance frequency, the number of modes, the resonance direction, and the like can be set to desired values and directions without restrictions. As a result, it is possible to realize a waveguide element and a laser generator that can be integrated and have higher performance.
  • the one-dimensional photonic crystal waveguide is a multilayer structure having a refractive index periodicity only in one direction, and thus can be easily manufactured.
  • the one-dimensional photonic crystal waveguide for resonating light and the one-dimensional photonic crystal waveguide for exciting laser light have no restrictions on the shape in the direction that does not have refractive index periodicity. Therefore, the degree of freedom in design is high.
  • each one-dimensional photonic crystal waveguide can be easily manufactured by forming a multilayer structure on the substrate and performing an etching process or the like.
  • each one-dimensional photonic crystal waveguide the refractive index period, the wavelength of propagating light in a vacuum, the refractive index of a homogeneous medium in contact with the side surface parallel to the refractive index periodic direction, etc. are not necessarily the same.
  • the waveguide element and laser generator of the above embodiment can be realized. Industrial applicability
  • the waveguide element and laser generator of the present invention can be used as various optical elements such as a switching element, an optical amplification element, a resonance element, a wavelength separation element, and a demultiplexing element.

Abstract

A waveguide element (1) comprising a resonance photonic crystal waveguide (3) composed of a photonic crystal having a refractive index periodicity in one direction and having a core for propagating in a non-refractive-index-periodicity direction an electromagnetic wave existing on Brillouin zone boundary, and resonance mechanisms (4, 5). The resonance photonic crystal waveguide (3) satisfies the condition, a/λ0<1/(2nS), when the refractive index of a homogenous medium in contact with side surface of the core in parallel to the refractive-index-periodicity direction of the core is nS, the refractive index periodicity of the core a, and the wavelength in vacuum of an electromagnetic wave propagating through the core λ0. Accordingly, the waveguide element is easy to produce due to its simple structure and high in design freedom, and can be integrated.

Description

明 細 書  Specification
導波路素子及びレーザ発生器  Waveguide element and laser generator
技術分野  Technical field
[0001] 本発明は、 1次元フォトニック結晶を用いた、導波路素子及びレーザ発生器に関す る。  The present invention relates to a waveguide element and a laser generator using a one-dimensional photonic crystal.
背景技術  Background art
[0002] 基板上に導波路を配置した構成の光学素子、すなわち、導波路素子は、すでに種 々実用化されている。特に、最近、 2次元フォトニック結晶を用いた欠陥導波路(2次 元フォトニック結晶欠陥導波路)が注目され、その研究開発が盛んに行なわれて 、る [0002] Various optical elements having a structure in which a waveguide is disposed on a substrate, that is, waveguide elements, have already been put into practical use. In particular, recently, a defect waveguide using a two-dimensional photonic crystal (a two-dimensional photonic crystal defect waveguide) has attracted attention, and its research and development has been actively conducted.
。以下、この欠陥導波路の構造について説明する。まず、高屈折率の例えば Siを用 いた薄膜層に規則的な空孔を配置することにより、屈折率周期構造を有する 2次元 フォトニック結晶が構成される。尚、この 2次元フォトニック結晶は、屈折率周期性を有 する方向(以下「屈折率周期方向」 t 、う)にお 、て、使用周波数域における完全フォ トニックバンドギャップを形成するように構成される。さらに、この 2次元フォトニック結 晶に線状の欠陥 (線欠陥)を設けることにより、欠陥導波路が構成される。光は、この 欠陥導波路の欠陥部分を伝播することができ、欠陥が設けられていない個所を伝播 することはできない。この欠陥導波路は、急峻な角度 (急角度)で曲げることが可能で あるという特徴を有している。従って、この欠陥導波路を配線として用いることにより、 光学回路の設計の自由度が高くなり、当該光学回路の小型化又は集積化が可能と なる。そして、この欠陥導波路を光学素子の一部として用いることにより、光学素子の 小型化が可能となる。 . Hereinafter, the structure of the defect waveguide will be described. First, a two-dimensional photonic crystal having a refractive index periodic structure is constructed by arranging regular vacancies in a thin film layer using, for example, Si having a high refractive index. This two-dimensional photonic crystal is configured to form a complete photonic band gap in the operating frequency range in a direction having refractive index periodicity (hereinafter referred to as “refractive index periodic direction” t). Is done. Furthermore, a defect waveguide is formed by providing a linear defect (line defect) in the two-dimensional photonic crystal. Light can propagate through the defect portion of the defect waveguide, and cannot propagate through the area where no defect is provided. This defect waveguide has a feature that it can be bent at a steep angle (steep angle). Therefore, by using this defect waveguide as a wiring, the degree of freedom in designing the optical circuit is increased, and the optical circuit can be miniaturized or integrated. By using this defect waveguide as a part of the optical element, the optical element can be miniaturized.
[0003] さらに、この欠陥導波路中を伝播する光に群速度異常を生じさせることも可能であ る。従って、この欠陥導波路を光学素子の一部として用いた場合に、非線型作用を 大きくして、光学素子の特性を改善したり、サイズを小さくしたりすることができる。  [0003] Furthermore, it is possible to cause a group velocity abnormality in the light propagating in the defect waveguide. Therefore, when this defect waveguide is used as a part of the optical element, the nonlinear effect can be increased to improve the characteristics of the optical element or to reduce the size.
[0004] さらに、この欠陥導波路は、完全な光の閉じ込めを行うことができるという特徴も有し ている。  [0004] Further, the defect waveguide has a feature that it can completely confine light.
[0005] 以上のことから、 2次元フォトニック結晶欠陥導波路の性質を生力した、様々な光学 素子が提案されている (例えば、特許文献 1〜5、及び非特許文献 1〜10参照)。以 下、これらについて説明する。 [0005] Based on the above, various optics that take advantage of the properties of two-dimensional photonic crystal defect waveguides Devices have been proposed (see, for example, Patent Documents 1 to 5 and Non-Patent Documents 1 to 10). These are described below.
[0006] まず、特許文献 1及び 2には、 2次元フォトニック結晶に線欠陥を設けることによって 構成された欠陥導波路、及び点欠陥を設けることによって構成された共振器を備え た光学素子が開示されている。さらに、非特許文献 1には、点欠陥による共振器を多 段化することによって高効率ィ匕を図った光学素子が開示されている。  [0006] First, Patent Documents 1 and 2 describe an optical element including a defect waveguide configured by providing a line defect in a two-dimensional photonic crystal and a resonator configured by providing a point defect. It is disclosed. Furthermore, Non-Patent Document 1 discloses an optical element that achieves high efficiency by providing multistage resonators due to point defects.
[0007] また、特許文献 3には、 2次元フォトニック結晶に線欠陥をリング状に設けることによ つて構成された共振器を備えた光学素子が開示されている。  [0007] Further, Patent Document 3 discloses an optical element including a resonator configured by providing a line defect in a ring shape in a two-dimensional photonic crystal.
[0008] また、非特許文献 2には、 2次元フォトニック結晶欠陥導波路の幅を部分的に広くし たマルチモード力ブラによって 2波長を分離するようにした光学素子が開示されてい る。また、特許文献 4には、マルチモード力ブラを用いた全光フリップフロップ素子が 開示されている。  [0008] Further, Non-Patent Document 2 discloses an optical element in which two wavelengths are separated by a multimode force bra in which the width of a two-dimensional photonic crystal defect waveguide is partially increased. Patent Document 4 discloses an all-optical flip-flop element using a multimode force bra.
[0009] また、特許文献 5、非特許文献 3及び 4には、フォトニック結晶の欠陥中に量子ドット を組み込んだ発光素子が開示されて 、る。  [0009] Patent Document 5, Non-Patent Documents 3 and 4 disclose light-emitting elements in which quantum dots are incorporated in defects of a photonic crystal.
[0010] また、特許文献 6、非特許文献 5、 6、 7、 8、 9及び 10には、 2次元フォトニック結晶 欠陥導波路を用いた、非線型作用による光スィッチが開示されている。 [0010] Further, Patent Document 6, Non-Patent Documents 5, 6, 7, 8, 9 and 10 disclose an optical switch using a non-linear action using a two-dimensional photonic crystal defect waveguide.
[0011] このように、 2次元フォトニック結晶欠陥導波路は、様々な光学素子に用いられてい る。 As described above, the two-dimensional photonic crystal defect waveguide is used in various optical elements.
特許文献 1:特開 2004 - 119671号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2004-119671
特許文献 2:特開 2004 - 212416号公報  Patent Document 2: JP 2004-212416 A
特許文献 3:特開 2004 - 170478号公報  Patent Document 3: Japanese Patent Laid-Open No. 2004-170478
特許文献 4:特許第 3578737号公報  Patent Document 4: Japanese Patent No. 3578737
特許文献 5:特開 2004 - 296560号公報  Patent Document 5: Japanese Patent Application Laid-Open No. 2004-296560
特許文献 6:特開 2004— 93787号公報  Patent Document 6: Japanese Unexamined Patent Application Publication No. 2004-93787
非特許文献 1: 3p— ZC— 6、 2004年秋季第 65回応用物理学会学術講演会予稿集 、 2004年 9月 1日、 p. 934  Non-Patent Document 1: 3p— ZC— 6, Proceedings of the 65th JSAP Autumn Meeting 2004, September 1, 2004, p. 934
非特許文献 2 : OPTICS EXPRESS (米国) 2004年 10月 31日 12卷 23号 p. 5625 非特許文献 3: 3a— ZC— 10、 2004年秋季第 65回応用物理学会学術講演会予稿 集、 2004年 9月 1日、 p. 931 Non-Patent Document 2: OPTICS EXPRESS (USA) October 31, 2004 No.12 卷 23 p. 5625 Non-Patent Document 3: 3a—ZC—10, Proceedings of the 65th JSAP Autumn Meeting 2004, September 1, 2004, p. 931
非特許文献 4: 3a— ZC— 11、 2004年秋季第 65回応用物理学会学術講演会予稿 集、 2004年 9月 1日、 p. 931  Non-Patent Document 4: 3a- ZC-11, Proceedings of the 65th JSAP Autumn Meeting 2004, September 1, 2004, p. 931
非特許文献 5 :4a— ZC— 10、 2004年秋季第 65回応用物理学会学術講演会予稿 集、 2004年 9月 1日、 p. 941  Non-Patent Document 5: 4a— ZC— 10, Proceedings of the 65th JSAP Autumn Meeting 2004, September 1, 2004, p. 941
非特許文献 6 :4p— ZC— 2、 2004年秋季第 65回応用物理学会学術講演会予稿集 、 2004年 9月 1日、 p. 942  Non-Patent Document 6: 4p— ZC— 2, Proceedings of the 65th JSAP Autumn Meeting 2004, September 1, 2004, p. 942
非特許文献 7 :4p— ZC— 3、 2004年秋季第 65回応用物理学会学術講演会予稿集 、 2004年 9月 1日、 p. 942  Non-Patent Document 7: 4p— ZC— 3, Proceedings of the 65th JSAP Autumn Meeting 2004, September 1, 2004, p. 942
非特許文献 8 :4p— ZC— 5、 2004年秋季第 65回応用物理学会学術講演会予稿集 、 2004年 9月 1日、 p. 943  Non-Patent Document 8: 4p— ZC— 5, Proceedings of the 65th JSAP Autumn Meeting 2004, September 1, 2004, p. 943
非特許文献 9 :4p— ZC— 6、 2004年秋季第 65回応用物理学会学術講演会予稿集 、 2004年 9月 1日、 p. 943  Non-Patent Document 9: 4p— ZC— 6, Proceedings of the 65th JSAP Autumn Meeting 2004, September 1, 2004, p. 943
非特許文献 10 :4p— ZC— 7、 2004年秋季第 65回応用物理学会学術講演会予稿 集、 2004年 9月 1日、 p. 944  Non-Patent Document 10: 4p— ZC— 7, Proceedings of the 65th JSAP Autumn Meeting 2004, September 1, 2004, p. 944
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0012] しかし、 2次元フォトニック結晶欠陥導波路には、以下に述べるような問題点がある However, the two-dimensional photonic crystal defect waveguide has the following problems.
[0013] まず、第 1の問題点について説明する。屈折率周期方向(平面方向)においては、 フォトニックバンドギャップによって完全な光の閉じ込めが行なわれている力 屈折率 が一定である方向(上下方向)では、光の閉じ込めは不完全であり、伝播損失が大き い。尚、この導波路においては、上下方向への光の漏れを防止するために、上下方 向のクラッドを空気層とする 、わゆる「エアブリッジ構造」が考案されて 、るが、このェ アブリッジ構造は、複雑で製造コストが高 、と 、う問題点を有して 、る。 [0013] First, the first problem will be described. In the refractive index periodic direction (plane direction), the light is completely confined by the photonic band gap. In the direction where the refractive index is constant (vertical direction), the light confinement is incomplete and propagation. The loss is large. In this waveguide, in order to prevent light leakage in the vertical direction, a so-called “air bridge structure” has been devised in which the upper and lower claddings are air layers. The structure is complicated and has high manufacturing costs.
[0014] 次に、第 2の問題点について説明する。平面方向(屈折率周期方向)のフォト ック バンドギャップを完全なものとするためには、屈折率周期構造を形成する物質同士の 屈折率差を大きくする必要がある。そのため、一般的には、高屈折率物質 (例えば、 屈折率 3. 48の Si)と空気とによるフォトニック結晶が作製される。しかし、この場合に は、導波路のコアをなす欠陥部分の屈折率が非常に大きくなるので、シングルモード 条件を満たすためにコアの断面が非常に小さくなる(典型的には、 1 m X 1 m以 下)。そして、導波路のコアの断面と、導波路に結合させるシングルモードファイバ (コ ァの直径が 程度)の断面との差が大きくなり、両者を効率良く結合させること が困難となる。また、屈折率差の大きい界面では、わず力な欠陥によっても漏れ光が 発生しやくなり、導波路の伝播損失が大きくなる。 [0014] Next, the second problem will be described. In order to complete the photonic band gap in the planar direction (refractive index periodic direction), the materials forming the refractive index periodic structure It is necessary to increase the refractive index difference. Therefore, in general, a photonic crystal made of a high refractive index material (for example, Si having a refractive index of 3.48) and air is produced. However, in this case, the refractive index of the defect portion forming the core of the waveguide becomes very large, so that the cross section of the core becomes very small to satisfy the single mode condition (typically 1 m x 1 m or less). And the difference between the cross section of the core of the waveguide and the cross section of the single mode fiber (about the diameter of the core) coupled to the waveguide becomes large, making it difficult to efficiently couple them. Also, at the interface where the refractive index difference is large, leaking light is more likely to occur due to a weak defect, and the propagation loss of the waveguide increases.
[0015] 次に、第 3の問題点について説明する。 2次元フォトニック結晶においては、その配 列が導波路素子を設計する上での制約になるという問題がある。ここで、例えば、均 一媒質に空孔を三角配列することによって 2次元フォトニック結晶を構成する場合に ついての、設計上の制約について説明する。まず、光の曲げの角度としては、 60° と 120° の 2種類である。また、導波路の幅は、「1列抜き」、「2列抜き」など、周期の N倍 (Nは自然数)である。また、点欠陥の大きさと形状は、空孔 N個分であり、導波 路ゃ点欠陥の間隔は、周期の N倍である。このような構成とすることが、 2次元フォト ニック結晶において自然で好ましいものである力 そのために、設計パラメータ、例え ば、共振器の共振周波数等が離散的な値をとり、所望の値を選択することができなか つた。この問題を解決するためには、例えば、上記非特許文献 1に開示されているよ うな面内へテロ構造 2次元フォトニック結晶を用いればよいが、設計コストや製造コス トが高くなるという問題点があった。  Next, the third problem will be described. In the two-dimensional photonic crystal, there is a problem that the arrangement becomes a restriction in designing the waveguide element. Here, for example, a description will be given of design constraints when a two-dimensional photonic crystal is formed by arranging triangular holes in a uniform medium. First, there are two types of light bending angles: 60 ° and 120 °. The width of the waveguide is N times the period (N is a natural number), such as “without one row” or “without two rows”. In addition, the size and shape of point defects is N holes, and the distance between point defects in the waveguide is N times the period. Such a configuration is a natural and preferable force in a two-dimensional photonic crystal. Therefore, design parameters, such as the resonance frequency of the resonator, take discrete values and select a desired value. I couldn't. In order to solve this problem, for example, an in-plane heterostructure two-dimensional photonic crystal as disclosed in Non-Patent Document 1 may be used. However, the design cost and the manufacturing cost increase. There was a point.
[0016] 本発明は、従来技術における前記課題を解決するためになされたものであり、構成 が簡単であるために容易に作製することができ、設計の自由度が高ぐ集積化も可能 な、導波路素子及びレーザ発生器を提供することを目的とする。  [0016] The present invention has been made to solve the above-described problems in the prior art, and can be easily manufactured because of its simple configuration, and can be integrated with a high degree of design freedom. An object of the present invention is to provide a waveguide element and a laser generator.
課題を解決するための手段  Means for solving the problem
[0017] 前記目的を達成するため、本発明に係る導波路素子の第 1の構成は、一方向に屈 折率周期性を有するフォトニック結晶により構成され、前記屈折率周期性を有しない 方向にブリルアンゾーン境界上に存在する電磁波を伝播させるコアを有する共振フ オトニック結晶導波路を備えた導波路素子であって、前記共振フォトニック結晶導波 路は、前記コアの前記屈折率周期性を有する方向に平行な前記コアの側面に接し ている均質媒体の屈折率を n 、前記コアの屈折率周期を a、前記コア内を伝播する In order to achieve the above object, a first configuration of the waveguide element according to the present invention is configured by a photonic crystal having a refractive index periodicity in one direction, and does not have the refractive index periodicity. A waveguide device comprising a resonant photonic crystal waveguide having a core for propagating electromagnetic waves existing on the Brillouin zone boundary, wherein the resonant photonic crystal waveguide The path propagates through the core with n as the refractive index of the homogeneous medium in contact with the side of the core parallel to the direction having the refractive index periodicity of the core, a as the refractive index period of the core.
S  S
電磁波の真空中における波長をえ とした場合に、  When the wavelength of electromagnetic waves in vacuum is estimated,
0  0
a/ λ < l/ (2n )  a / λ <l / (2n)
0 S  0 S
の条件を満たすことを特徴とする。  It satisfies the following conditions.
[0018] また、本発明に係る導波路素子の第 2の構成は、スラブ状フォトニック結晶導波路、 入射側フォトニック結晶導波路及び複数の出射側フォトニック結晶導波路を備えた導 波路素子であって、前記スラブ状フォトニック結晶導波路は、屈折率周期性を有する 方向に対して垂直な面に平行な方向に広がり、前記入射側フォトニック結晶導波路 は、前記スラブ状フォトニック結晶導波路に接続され、前記複数の出射側フォトニック 結晶導波路は、前記スラブ状フォトニック結晶導波路において、前記入射側フォト二 ック結晶導波路が接続された面と対向する面に接続され、前記スラブ状フォトニック 結晶導波路、前記入射側フォトニック結晶導波路及び前記複数の出射側フォトニック 結晶導波路は、それぞれ、一方向に屈折率周期性を有するフォトニック結晶により構 成され、前記屈折率周期性を有しな 、方向にブリルアンゾーン境界上に存在する電 磁波を伝播させるコアを有し、前記屈折率周期性を有する方向に平行な前記コアの 側面に接している均質媒体の屈折率を n 、前記コアの屈折率周期を a、前記コア内  [0018] A second configuration of the waveguide element according to the present invention is a waveguide element including a slab-like photonic crystal waveguide, an incident-side photonic crystal waveguide, and a plurality of output-side photonic crystal waveguides. The slab-like photonic crystal waveguide extends in a direction parallel to a plane perpendicular to a direction having a refractive index periodicity, and the incident-side photonic crystal waveguide is the slab-like photonic crystal The plurality of output-side photonic crystal waveguides are connected to a surface of the slab-like photonic crystal waveguide that faces the surface to which the incident-side photonic crystal waveguide is connected. The slab photonic crystal waveguide, the incident side photonic crystal waveguide, and the plurality of output side photonic crystal waveguides each have a refractive index periodicity in one direction. The photonic crystal has a core that propagates electromagnetic waves that exist on the Brillouin zone boundary in the direction without the refractive index periodicity, and is parallel to the direction having the refractive index periodicity. The refractive index of the homogeneous medium in contact with the side of the core is n, the refractive index period of the core is a,
S  S
を伝播する電磁波の真空中における波長をえ 0とした場合に、  If the wavelength of the electromagnetic wave propagating in the vacuum is 0,
a/ λ < l/ (2n )  a / λ <l / (2n)
0 S  0 S
の条件を満たすことを特徴とする。  It satisfies the following conditions.
[0019] また、本発明に係るレーザ発生器の構成は、一方向に屈折率周期性を有するフォ トニック結晶により構成され、前記屈折率周期性を有しない方向にブリルアンゾーン 境界上に存在する電磁波を伝播させるコアを有する励起フォトニック結晶導波路と、 前記励起フォトニック結晶導波路を励起させてレーザ光を発振させる励起機構とを備 えたレーザ発生器であって、前記励起フォトニック結晶導波路は、前記コアの前記屈 折率周期性を有する方向に平行な前記コアの側面に接している均質媒体の屈折率 を n 、前記コアの屈折率周期を a、前記コア内を伝播する電磁波の真空中における In addition, the configuration of the laser generator according to the present invention is configured by a photonic crystal having a refractive index periodicity in one direction, and an electromagnetic wave existing on the Brillouin zone boundary in a direction not having the refractive index periodicity. A laser generator comprising an excitation photonic crystal waveguide having a core for propagating light, and an excitation mechanism for exciting the excitation photonic crystal waveguide to oscillate laser light, the excitation photonic crystal waveguide The refractive index of the homogeneous medium in contact with the side surface of the core parallel to the direction of the refractive index periodicity of the core is n, the refractive index period of the core is a, and the electromagnetic wave propagating in the core In vacuum
S S
波長をえ とした場合に、 a/ λ < l/ (2n ) When the wavelength is estimated, a / λ <l / (2n)
0 s  0 s
の条件を満たし、前記コアは、発光作用を有していることを特徴とする。  The above core is satisfied, and the core has a light emitting action.
発明の効果  The invention's effect
[0020] 本発明によれば、構成が簡単であるために容易に作製することができ、設計の自由 度が高ぐ集積化も可能な、導波路素子及びレーザ発生器を提供することができる。 図面の簡単な説明  [0020] According to the present invention, it is possible to provide a waveguide element and a laser generator that can be easily manufactured because of a simple configuration and that can be integrated with a high degree of design freedom. . Brief Description of Drawings
[0021] [図 1]図 1は、本発明の実施の形態における 1次元フォトニック結晶の構成を示す断 面図である。  FIG. 1 is a cross-sectional view showing a configuration of a one-dimensional photonic crystal in an embodiment of the present invention.
[図 2]図 2は、図 1に示したフォトニック結晶のバンド図である。  FIG. 2 is a band diagram of the photonic crystal shown in FIG.
[図 3]図 3は、本発明の実施の形態における 1次元フォトニック結晶の入射側端面に 対して、入射光を斜め入射させた場合のバンド図である。  FIG. 3 is a band diagram when incident light is obliquely incident on the incident side end face of the one-dimensional photonic crystal in the embodiment of the present invention.
[図 4]図 4は、本発明の実施の形態における第 1バンド及び第 2バンドの伝播光の伝 播方向がともに Z軸方向である場合の 1次元フォトニック結晶のバンド図である。  FIG. 4 is a band diagram of the one-dimensional photonic crystal when the propagation directions of the propagation light of the first band and the second band are both in the Z-axis direction in the embodiment of the present invention.
[図 5]図 5は、図 4のブリルアンゾーン境界上のバンド図を、 Z軸方向に限定して示し たバンド図である。  FIG. 5 is a band diagram showing the band diagram on the Brillouin zone boundary in FIG. 4 limited to the Z-axis direction.
[図 6]図 6は、本発明の実施の形態における 1次元フォトニック結晶内を伝播光力 ¾軸 方向に対して傾 ヽて進む場合の電場を示す模式図である。  [Fig. 6] Fig. 6 is a schematic diagram showing an electric field when traveling in the one-dimensional photonic crystal in an embodiment of the present invention while being inclined with respect to the direction of the propagating light force and the third axis.
[図 7A]図 7Aは、本発明の実施の形態における 1次元フォトニック結晶のクラッド及び コアを有するフォトニック結晶導波路の構成を示す断面図である。  FIG. 7A is a cross-sectional view showing a configuration of a photonic crystal waveguide having a cladding and a core of a one-dimensional photonic crystal in an embodiment of the present invention.
[図 7B]図 7Bは、本発明の実施の形態における 1次元フォトニック結晶のクラッド及び コアを有するフォトニック結晶導波路の構成を示す斜視図である。  FIG. 7B is a perspective view showing a configuration of a photonic crystal waveguide having a cladding and a core of a one-dimensional photonic crystal in an embodiment of the present invention.
[図 8]図 8は、本発明の実施の形態 1における導波路素子の構成を示す斜視図であ る。  FIG. 8 is a perspective view showing a configuration of a waveguide element in accordance with the first exemplary embodiment of the present invention.
[図 9]図 9は、本発明の実施の形態 1における導波路素子の構成を示す平面図であ る。  FIG. 9 is a plan view showing the configuration of the waveguide element according to the first embodiment of the present invention.
[図 10]図 10は、本発明の実施の形態 2における導波路素子の構成を示す斜視図で ある。  FIG. 10 is a perspective view showing a configuration of a waveguide element in accordance with the second exemplary embodiment of the present invention.
[図 11]図 11は、本発明の実施の形態 3における導波路素子の構成を示す平面図で ある。 FIG. 11 is a plan view showing the configuration of the waveguide element according to the third embodiment of the present invention. is there.
[図 12]図 12は、本発明の実施の形態 4における導波路素子の構成を示す平面図で ある。  FIG. 12 is a plan view showing a configuration of a waveguide element in the fourth exemplary embodiment of the present invention.
[図 13]図 13は、本発明の実施の形態 5における導波路素子の構成を示す斜視図で ある。  FIG. 13 is a perspective view showing a configuration of a waveguide element in accordance with the fifth exemplary embodiment of the present invention.
[図 14]図 14は、本発明の実施の形態 6における導波路素子の構成を示す斜視図で ある。  FIG. 14 is a perspective view showing a configuration of a waveguide element according to the sixth embodiment of the present invention.
[図 15]図 15は、本発明の実施の形態 7における導波路素子の構成を示す斜視図で ある。  FIG. 15 is a perspective view showing a configuration of a waveguide element according to the seventh embodiment of the present invention.
[図 16A]図 16Aは、本発明の実施の形態 8における導波路素子の構成、及び光路を 示す平面図であり、信号光が真中の出射用導波路力 出射されている状態を示して いる。  FIG. 16A is a plan view showing a configuration of a waveguide element and an optical path in Embodiment 8 of the present invention, and shows a state in which signal light is emitted in the middle as an output waveguide force. .
圆 16B]図 16Bは、本発明の実施の形態 8における導波路素子の構成、及び光路を 示す平面図であり、信号光が端の出射用導波路力 出射されている状態を示してい る。 FIG. 16B is a plan view showing the configuration of the waveguide element and the optical path in the eighth embodiment of the present invention, and shows a state in which the signal light is emitted from the end of the output waveguide force.
[図 17]図 17は、本発明の実施の形態 10におけるレーザ発生器の構成を示す斜視図 である。  FIG. 17 is a perspective view showing a configuration of a laser generator according to the tenth embodiment of the present invention.
[図 18]図 18は、本発明の実施の形態 11におけるレーザ発生器の構成を示す斜視図 である。  FIG. 18 is a perspective view showing a configuration of a laser generator in an eleventh embodiment of the present invention.
[図 19]図 19は、本発明の実施の形態 12におけるレーザ発生器の構成を示す斜視図 である。  FIG. 19 is a perspective view showing a configuration of a laser generator according to the twelfth embodiment of the present invention.
[図 20]図 20は、本発明の実施の形態 13におけるレーザ発生器の構成を示す斜視図 である。  FIG. 20 is a perspective view showing a configuration of a laser generator in the thirteenth embodiment of the present invention.
[図 21]図 21は、本発明の実施の形態 14における導波路素子の構成を示す斜視図 である。  FIG. 21 is a perspective view showing a configuration of a waveguide element according to the fourteenth embodiment of the present invention.
[図 22]図 22は、本発明の実施の形態 14における共振部を二段にした導波路素子の 構成を示す斜視図である。  FIG. 22 is a perspective view showing a configuration of a waveguide element having two resonance portions according to the fourteenth embodiment of the present invention.
[図 23]図 23は、本発明の実施の形態 14における、分波素子である導波路素子の構 成を示す斜視図である。 FIG. 23 shows the structure of a waveguide element that is a branching element in Embodiment 14 of the present invention. It is a perspective view which shows composition.
[図 24]図 24は、本発明の実施の形態 15における導波路素子の構成を示す斜視図 である。  FIG. 24 is a perspective view showing a configuration of a waveguide element according to the fifteenth embodiment of the present invention.
[図 25]図 25は、本発明の実施の形態 16における導波路素子の構成を示す斜視図 である。  FIG. 25 is a perspective view showing a configuration of a waveguide element according to the sixteenth embodiment of the present invention.
[図 26]図 26は、本発明の実施の形態 17における導波路素子の構成を示す斜視図 である。  FIG. 26 is a perspective view showing the configuration of the waveguide element according to the seventeenth embodiment of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 本発明の導波路素子の第 1の構成は、 1次元フォトニック結晶導波路により構成さ れた、共振を行う共振フォトニック結晶導波路を備えている。このため、共振フォト-ッ ク結晶導波路は、コアの屈折率周期性を有する方向に対して垂直なすべての方向 力ものエバネッセント波を共振することができる。また、共振フォトニック結晶導波路は [0022] A first configuration of the waveguide element of the present invention includes a resonant photonic crystal waveguide configured to resonate, which is configured by a one-dimensional photonic crystal waveguide. For this reason, the resonant photonic crystal waveguide can resonate evanescent waves of all directional forces perpendicular to the direction having the refractive index periodicity of the core. The resonant photonic crystal waveguide is
、その設計の自由度が高ぐその大きさや形状、電磁波の曲げ角度等を自由に設計 することができる。これにより、集積化が可能で、より高機能な導波路素子を実現する ことができる。また、 1次元フォトニック結晶導波路は、多層構造体であるため、作製も 容易である。 It is possible to freely design the size, shape, electromagnetic wave bending angle, etc., which has a high degree of design freedom. As a result, it is possible to realize a waveguide element that can be integrated and has a higher function. In addition, the one-dimensional photonic crystal waveguide is a multilayer structure and can be easily manufactured.
[0023] また、前記本発明の導波路素子の第 1の構成においては、前記共振フォトニック結 晶導波路に共振を生じさせる共振機構をさらに備えているのが好ましい。  [0023] The first configuration of the waveguide element of the present invention preferably further includes a resonance mechanism that causes resonance in the resonant photonic crystal waveguide.
[0024] また、この場合には、前記共振機構は、前記共振フォトニック結晶導波路の光軸に 対して略垂直で、かつ、前記共振フォトニック結晶導波路の前記コアの前記屈折率 周期性を有する方向に対して略垂直な方向から前記共振フォトニック結晶導波路の 前記コアにエバネッセント波を結合させ、前記共振フォトニック結晶導波路内におい て、前記共振フォトニック結晶導波路の光軸に対して略垂直で、かつ、前記共振フォ トニック結晶導波路の前記コアの前記屈折率周期性を有する方向に対して略垂直な 方向に共振を生じさせるのが好ましい。この好ましい例によれば、共振を生じさせる 電磁波を伝播させるための導波路を、基板上に配置することができる。このため、そ の導波路もフォトニック結晶導波路とすればよいので、導波路素子の作製が容易とな る。 [0025] この場合にはさらに、前記共振機構は、前記共振フォトニック結晶導波路の光軸に 対して略垂直で、かつ、前記共振フォトニック結晶導波路の前記コアの前記屈折率 周期性を有する方向に対して略垂直な光軸を有し、前記共振フォトニック結晶導波 路とは離間して、前記共振フォトニック結晶導波路を挟んで配置された 2つの導波路 を備え、前記 2つの導波路は、それぞれ、一方向に屈折率周期性を有するフォトニッ ク結晶により構成され、前記屈折率周期性を有しない方向にブリルアンゾーン境界 上に存在する電磁波を伝播させるコアを有するフォトニック結晶導波路であり、前記 フォトニック結晶導波路は、前記フォトニック結晶導波路の前記コアの前記屈折率周 期性を有する方向に平行な前記フォトニック結晶導波路の前記コアの側面に接して いる均質媒体の屈折率を n 、前記フォトニック結晶導波路の前記コアの屈折率周期 In this case, the resonance mechanism is substantially perpendicular to the optical axis of the resonant photonic crystal waveguide, and the refractive index of the core of the resonant photonic crystal waveguide is periodic. An evanescent wave is coupled to the core of the resonant photonic crystal waveguide from a direction substantially perpendicular to the direction having the optical axis, and the optical axis of the resonant photonic crystal waveguide is within the resonant photonic crystal waveguide. It is preferable that resonance is generated in a direction substantially perpendicular to the core and substantially perpendicular to the direction having the refractive index periodicity of the core of the resonant photonic crystal waveguide. According to this preferred example, a waveguide for propagating electromagnetic waves that cause resonance can be disposed on the substrate. For this reason, since the waveguide may be a photonic crystal waveguide, the fabrication of the waveguide element is facilitated. [0025] In this case, the resonance mechanism further includes the refractive index periodicity of the core of the resonant photonic crystal waveguide and substantially perpendicular to the optical axis of the resonant photonic crystal waveguide. Two waveguides having an optical axis substantially perpendicular to the direction in which they are disposed, spaced apart from the resonant photonic crystal waveguide and sandwiching the resonant photonic crystal waveguide, Each of the two waveguides is composed of a photonic crystal having a refractive index periodicity in one direction, and a photonic crystal having a core for propagating an electromagnetic wave existing on the Brillouin zone boundary in a direction not having the refractive index periodicity. The photonic crystal waveguide is parallel to a direction having the refractive index periodicity of the core of the photonic crystal waveguide. N is the refractive index of the homogeneous medium in contact with the side surface of the photonic crystal waveguide, and the refractive index period of the core of the photonic crystal waveguide is
S1  S1
を a 、前記フォトニック結晶導波路の前記コア内を伝播する電磁波の真空中におけ A in a vacuum of electromagnetic waves propagating in the core of the photonic crystal waveguide
1 1
る波長をえ 01とした場合に、  If the wavelength is 01,
a / λ < 1/ (2η )  a / λ <1 / (2η)
1 01 SI  1 01 SI
の条件を満たすのが好ましい。この好ましい例によれば、共振フォトニック結晶導波 路内において共振を生じさせることのできる導波路素子を実現することができる。  It is preferable to satisfy the following condition. According to this preferred example, it is possible to realize a waveguide element capable of causing resonance in the resonant photonic crystal waveguide.
[0026] また、この場合には、前記共振機構は、前記共振フォトニック結晶導波路の光軸と 同一の方向力 前記共振フォトニック結晶導波路の前記コアにエバネッセント波を結 合させるのが好ましい。この好ましい例によれば、共振フォトニック結晶導波路を伝播 する信号光と共振フォトニック結晶導波路内で共振する制御光を、同一の導波路を 用いて伝播させることができるので、部品点数を削減して、導波路素子の小型化を図 ることがでさる。  [0026] In this case, the resonance mechanism preferably couples an evanescent wave to the core of the resonant photonic crystal waveguide in the same directional force as the optical axis of the resonant photonic crystal waveguide. . According to this preferred example, the signal light propagating in the resonant photonic crystal waveguide and the control light resonating in the resonant photonic crystal waveguide can be propagated using the same waveguide. This will reduce the size of the waveguide element.
[0027] この場合にはさらに、前記共振機構は、前記共振フォトニック結晶導波路の光軸と 同一の光軸を有し、前記共振フォトニック結晶導波路とは離間して、前記共振フォト ニック結晶導波路を挟んで配置された 2つの導波路を備え、前記 2つの導波路は、そ れぞれ、一方向に屈折率周期性を有するフォトニック結晶により構成され、前記屈折 率周期性を有しな ヽ方向にブリルアンゾーン境界上に存在する電磁波を伝播させる コアを有するフォトニック結晶導波路であり、前記フォトニック結晶導波路は、前記フ オトニック結晶導波路の前記コアの前記屈折率周期性を有する方向に平行な前記フ オトニック結晶導波路の前記コアの側面に接している均質媒体の屈折率を n 、前記 [0027] In this case, the resonance mechanism further has the same optical axis as the optical axis of the resonant photonic crystal waveguide, and is separated from the resonant photonic crystal waveguide so as to be separated from the resonant photonic crystal waveguide. The two waveguides are arranged by sandwiching a crystal waveguide, and each of the two waveguides is composed of a photonic crystal having a refractive index periodicity in one direction, and the refractive index periodicity is A photonic crystal waveguide having a core that propagates electromagnetic waves existing on the Brillouin zone boundary in the ヽ direction, wherein the photonic crystal waveguide is the refractive index period of the core of the photonic crystal waveguide Parallel to the direction The refractive index n of the homogeneous medium in contact with the side surface of the core of the tonic crystal waveguide is n
S1 フォトニック結晶導波路の前記コアの屈折率周期を a 、前記フォトニック結晶導波路  S1 The refractive index period of the core of the photonic crystal waveguide is a, the photonic crystal waveguide
1  1
の前記コア内を伝播する電磁波の真空中における波長をえ とした場合に、  When the wavelength of the electromagnetic wave propagating in the core is in vacuum,
01  01
a / λ < 1/ (2η )  a / λ <1 / (2η)
1 01 SI  1 01 SI
の条件を満たすのが好ましい。この好ましい例によれば、共振フォトニック結晶導波 路内において共振を生じさせることのできる導波路素子を実現することができる。  It is preferable to satisfy the following condition. According to this preferred example, it is possible to realize a waveguide element capable of causing resonance in the resonant photonic crystal waveguide.
[0028] また、この場合には、前記共振フォトニック結晶導波路は、前記コアの前記屈折率 周期性を有する方向から前記コアを挟み、前記コアの前記屈折率周期性を有する方 向と同一の方向に屈折率周期性を有するクラッドをさらに備え、前記共振機構は、前 記共振フォトニック結晶導波路の前記コアの前記屈折率周期性を有する方向から前 記共振フォトニック結晶導波路の前記コアに光波を結合させ、前記共振フォトニック 結晶導波路内において、前記共振フォトニック結晶導波路の前記コアの前記屈折率 周期性を有する方向に共振を生じさせるのが好ましい。この好ましい例によれば、共 振フォトニック結晶導波路内において共振を生じさせることのできる導波路素子を実 現することができる。  In this case, the resonant photonic crystal waveguide sandwiches the core from the direction having the refractive index periodicity of the core, and is the same as the direction of the core having the refractive index periodicity. A clad having a refractive index periodicity in the direction of the resonance photonic crystal waveguide from the direction of the refractive index periodicity of the core of the resonant photonic crystal waveguide. It is preferable to couple a light wave to the core to cause resonance in the resonant photonic crystal waveguide in a direction having the refractive index periodicity of the core of the resonant photonic crystal waveguide. According to this preferred example, it is possible to realize a waveguide element capable of causing resonance in the resonant photonic crystal waveguide.
[0029] この場合にはさらに、前記共振機構は、前記共振フォトニック結晶導波路の前記コ ァの前記屈折率周期性を有する方向に沿った光軸を有し、前記共振フォトニック結 晶導波路とは離間して配置された光入射部を備えて 、るのが好ま 、。この好ま U、 例によれば、共振フォトニック結晶導波路内において共振を生じさせることのできる導 波路素子を実現することができる。  [0029] In this case, the resonance mechanism further includes an optical axis along a direction having the refractive index periodicity of the core of the resonance photonic crystal waveguide, and the resonance photonic crystal guide It is preferable to have a light incident portion that is spaced apart from the waveguide. According to this preferred example, it is possible to realize a waveguide element capable of causing resonance in a resonant photonic crystal waveguide.
[0030] さらにこの場合には、前記光入射部は、光導波路と、前記光導波路からの光を集光 するレンズとを備えているのが好ましい。この好ましい例によれば、共振フォトニック結 晶導波路内において共振を生じさせることのできる導波路素子を実現することができ る。  Furthermore, in this case, it is preferable that the light incident portion includes an optical waveguide and a lens that collects light from the optical waveguide. According to this preferred example, it is possible to realize a waveguide element capable of causing resonance in the resonant photonic crystal waveguide.
[0031] さらにこの場合には、前記光入射部は、前記共振フォトニック結晶導波路の前記コ ァの前記屈折率周期性を有する方向に対して垂直な面に沿って並んで配置された 複数の光源を備え、前記複数の光源は、それぞれ独立して光を出射するのが好まし い。この好ましい例によれば、共振を生じさせる制御光の出力を大きくすることができ る。また、複数の光源力も選択的に制御光を出射させることができるので、導波路の 数を増加させたり、導波路の形状を複雑化したりしても、伝播光の進路を制御するこ とがでさる。 [0031] Further, in this case, the light incident portions are arranged in a line along a plane perpendicular to the direction of the refractive index periodicity of the core of the resonant photonic crystal waveguide. Preferably, each of the plurality of light sources emits light independently. According to this preferred example, the output of the control light that causes resonance can be increased. The In addition, since multiple light sources can selectively emit control light, the path of propagating light can be controlled even if the number of waveguides is increased or the shape of the waveguides is complicated. I'll do it.
[0032] さらには、前記共振フォトニック結晶導波路は、前記共振フォトニック結晶導波路の 前記コアの前記屈折率周期性を有する方向に対して垂直な面に沿って広がるスラブ 状部分を有しているのが好ましい。この好ましい例によれば、複数の光源から選択的 に制御光を出射させることにより、スラブ状部分内の伝播光の進路を、所望の方向と なるように制御することができる。  [0032] Furthermore, the resonant photonic crystal waveguide has a slab-like portion that extends along a plane perpendicular to the direction of the refractive index periodicity of the core of the resonant photonic crystal waveguide. It is preferable. According to this preferred example, by selectively emitting control light from a plurality of light sources, the path of propagation light in the slab-like portion can be controlled to be in a desired direction.
[0033] また、この場合には、前記共振フォトニック結晶導波路の前記コアは、非線型作用 を有しているのが好ましい。この好ましい例によれば、大きな非線型作用を生じさせ て、光制御素子としての特性を向上させることができる。  [0033] In this case, it is preferable that the core of the resonant photonic crystal waveguide has a non-linear action. According to this preferable example, it is possible to improve the characteristics as a light control element by causing a large non-linear effect.
[0034] また、この場合には、前記共振フォトニック結晶導波路の前記コアは、増幅作用を 有しているのが好ましい。この好ましい例によれば、増幅素子である導波路素子を実 現することができる。  In this case, it is preferable that the core of the resonant photonic crystal waveguide has an amplifying function. According to this preferable example, a waveguide element which is an amplifying element can be realized.
[0035] また、前記本発明の導波路素子の第 1の構成においては、前記共振フォトニック結 晶導波路は、リング状であるのが好ましい。このように、この好ましい例は、 1次元フォ トニック結晶導波路により構成された、共振を行うリング状の共振フォトニック結晶導 波路を備えている。これにより、共振フォトニック結晶導波路の共振長を長くすること ができるので、一定間隔の複数の周波数を共振させることができる。また、伝播に要 する時間の遅延を用いることにより、光バッファメモリや多連パルス発生素子である導 波路素子を実現することができる。  [0035] In the first configuration of the waveguide element of the present invention, the resonant photonic crystal waveguide is preferably ring-shaped. As described above, this preferable example includes a ring-shaped resonant photonic crystal waveguide that is configured by a one-dimensional photonic crystal waveguide and that performs resonance. As a result, the resonant length of the resonant photonic crystal waveguide can be lengthened, so that a plurality of frequencies at regular intervals can be resonated. In addition, by using a time delay required for propagation, an optical buffer memory or a waveguide element that is a multiple pulse generating element can be realized.
[0036] また、前記本発明の導波路素子の第 1の構成においては、入射側フォトニック結晶 導波路及び出射側フォトニック結晶導波路をさらに備え、前記入射側フォトニック結 晶導波路中を伝播している波長の異なる複数の電磁波のうち、前記共振フォトニック 結晶導波路の共振周波数を有する電磁波が、前記共振フォトニック結晶導波路で共 振して、前記出射側フォトニック結晶導波路に伝播するように、前記入射側フォトニッ ク結晶導波路と、前記共振フォトニック結晶導波路と、前記出射側フォトニック結晶導 波路とが配置され、前記入射側フォトニック結晶導波路及び前記出射側フォトニック 結晶導波路は、それぞれ、一方向に屈折率周期性を有するフォトニック結晶により構 成され、前記屈折率周期性を有しな 、方向にブリルアンゾーン境界上に存在する電 磁波を伝播させるコアを有するフォトニック結晶導波路であり、前記フォトニック結晶 導波路は、前記フォトニック結晶導波路の前記コアの前記屈折率周期性を有する方 向に平行な前記フォトニック結晶導波路の前記コアの側面に接している均質媒体の 屈折率を n 、前記フォトニック結晶導波路の前記コアの屈折率周期を a 、前記フォト [0036] Further, in the first configuration of the waveguide element of the present invention, an incident-side photonic crystal waveguide and an exit-side photonic crystal waveguide are further provided, and the incident-side photonic crystal waveguide is disposed inside the waveguide element. Among a plurality of propagating electromagnetic waves having different wavelengths, an electromagnetic wave having a resonance frequency of the resonant photonic crystal waveguide is resonated in the resonant photonic crystal waveguide and is emitted to the output side photonic crystal waveguide. The incident-side photonic crystal waveguide, the resonant photonic crystal waveguide, and the output-side photonic crystal waveguide are disposed so as to propagate, and the incident-side photonic crystal waveguide and the output-side photonic crystal waveguide are disposed. Nick Each of the crystal waveguides is composed of a photonic crystal having a refractive index periodicity in one direction, and a core that propagates an electromagnetic wave that exists on the Brillouin zone boundary in the direction without the refractive index periodicity. A side surface of the core of the photonic crystal waveguide parallel to a direction having the refractive index periodicity of the core of the photonic crystal waveguide. The refractive index of the homogeneous medium in contact with n is n and the refractive index period of the core of the photonic crystal waveguide is a.
S1 1 ニック結晶導波路の前記コア内を伝播する電磁波の真空中における波長をえ とし  S1 1 The wavelength of the electromagnetic wave propagating in the core of the nick crystal waveguide in vacuum.
01 た場合に、  01
a / λ < l/ (2n )  a / λ <l / (2n)
1 01 SI  1 01 SI
の条件を満たすのが好ましい。この好ましい例によれば、共振素子である導波路素 子を実現することができる。 It is preferable to satisfy the following condition. According to this preferred example, a waveguide element that is a resonant element can be realized.
また、前記本発明の導波路素子の第 1の構成においては、入射側フォトニック結晶 導波路及び出射側フォトニック結晶導波路をさらに備え、前記共振フォトニック結晶 導波路を複数有し、前記入射側フォトニック結晶導波路中を伝播している波長の異 なる複数の電磁波のうち、前記共振フォトニック結晶導波路の共振周波数を有する 電磁波が、前記複数の共振フォトニック結晶導波路で順次共振して、前記出射側フ オトニック結晶導波路に伝播するように、前記入射側フォトニック結晶導波路と、前記 複数の共振フォトニック結晶導波路と、前記出射側フォトニック結晶導波路とが配置 され、前記入射側フォトニック結晶導波路及び前記出射側フォトニック結晶導波路は 、それぞれ、一方向に屈折率周期性を有するフォトニック結晶により構成され、前記 屈折率周期性を有しな ヽ方向にブリルアンゾーン境界上に存在する電磁波を伝播さ せるコアを有するフォトニック結晶導波路であり、前記フォトニック結晶導波路は、前 記フォトニック結晶導波路の前記コアの前記屈折率周期性を有する方向に平行な前 記フォトニック結晶導波路の前記コアの側面に接している均質媒体の屈折率を n 、  The first configuration of the waveguide element of the present invention further includes an incident-side photonic crystal waveguide and an output-side photonic crystal waveguide, and includes a plurality of the resonant photonic crystal waveguides. Among the plurality of electromagnetic waves having different wavelengths propagating in the side photonic crystal waveguide, the electromagnetic waves having the resonance frequency of the resonant photonic crystal waveguide sequentially resonate in the plurality of resonant photonic crystal waveguides. The incident-side photonic crystal waveguide, the plurality of resonant photonic crystal waveguides, and the output-side photonic crystal waveguide are disposed so as to propagate to the output-side photonic crystal waveguide, The entrance-side photonic crystal waveguide and the exit-side photonic crystal waveguide are each made of a photonic crystal having a refractive index periodicity in one direction. The photonic crystal waveguide has a core that propagates electromagnetic waves that exist on the Brillouin zone boundary in the negative direction without the refractive index periodicity, and the photonic crystal waveguide is a photonic crystal waveguide described above. The refractive index of the homogeneous medium in contact with the side surface of the core of the photonic crystal waveguide parallel to the direction having the refractive index periodicity of the core of the nic crystal waveguide is n,
SI  SI
前記フォトニック結晶導波路の前記コアの屈折率周期を a 、前記フォトニック結晶導 The refractive index period of the core of the photonic crystal waveguide is a, and the photonic crystal guide
1  1
波路の前記コア内を伝播する電磁波の真空中における波長をえ とした場合に、 When the wavelength in the vacuum of the electromagnetic wave propagating in the core of the waveguide is estimated,
01  01
a / λ < 1/ (2η )  a / λ <1 / (2η)
1 01 SI  1 01 SI
の条件を満たすのが好ましい。この好ましい例によれば、フラットトップ特性を有する 導波路素子を実現することができる。 It is preferable to satisfy the following condition. According to this preferred example, it has a flat top characteristic. A waveguide element can be realized.
[0038] また、前記本発明の導波路素子の第 1の構成においては、入射側フォトニック結晶 導波路及び複数の出射側フォトニック結晶導波路をさらに備え、前記複数の出射側 フォトニック結晶導波路と同数の前記共振フォトニック結晶導波路を有し、前記複数 の共振フォトニック結晶導波路の共振周波数は互いに異なっており、前記入射側フ オトニック結晶導波路中を伝播している波長の異なる複数の電磁波のうち、前記共振 フォトニック結晶導波路ごとの共振周波数を有する各電磁波が、それぞれ、対応する 前記共振フォトニック結晶導波路で共振して、対応する前記出射側フォトニック結晶 導波路に伝播するように、前記入射側フォトニック結晶導波路と、前記複数の共振フ オトニック結晶導波路と、前記複数の出射側フォトニック結晶導波路とが配置され、前 記入射側フォトニック結晶導波路及び前記複数の出射側フォトニック結晶導波路は、 それぞれ、一方向に屈折率周期性を有するフォトニック結晶により構成され、前記屈 折率周期性を有しな ヽ方向にブリルアンゾーン境界上に存在する電磁波を伝播させ るコアを有するフォトニック結晶導波路であり、前記フォトニック結晶導波路は、前記 フォトニック結晶導波路の前記コアの前記屈折率周期性を有する方向に平行な前記 フォトニック結晶導波路の前記コアの側面に接している均質媒体の屈折率を n 、前  In the first configuration of the waveguide element of the present invention, the waveguide device further includes an incident-side photonic crystal waveguide and a plurality of emission-side photonic crystal waveguides, and the plurality of emission-side photonic crystal waveguides are provided. There are as many resonant photonic crystal waveguides as there are waveguides, the resonant frequencies of the plurality of resonant photonic crystal waveguides are different from each other, and the wavelengths propagating through the incident-side photonic crystal waveguide are different. Among a plurality of electromagnetic waves, each electromagnetic wave having a resonance frequency for each of the resonant photonic crystal waveguides resonates in the corresponding resonant photonic crystal waveguide, and enters the corresponding output-side photonic crystal waveguide. The incident-side photonic crystal waveguide, the plurality of resonant photonic crystal waveguides, and the plurality of exit-side photonic connections so as to propagate. The incident-side photonic crystal waveguide and the plurality of exit-side photonic crystal waveguides are each composed of a photonic crystal having a refractive index periodicity in one direction, and the bending is performed. A photonic crystal waveguide having a core for propagating electromagnetic waves existing on a Brillouin zone boundary in the ヽ direction without rate periodicity, wherein the photonic crystal waveguide is the core of the photonic crystal waveguide The refractive index of the homogeneous medium in contact with the side of the core of the photonic crystal waveguide parallel to the direction having the refractive index periodicity of n
S1 記フォトニック結晶導波路の前記コアの屈折率周期を a 、前記フォトニック結晶導波  The refractive index period of the core of the photonic crystal waveguide S1 is a, and the photonic crystal waveguide
1  1
路の前記コア内を伝播する電磁波の真空中における波長をえ 01とした場合に、 a / λ < 1/ (2η )  When the wavelength of the electromagnetic wave propagating in the core of the path is set to 01, a / λ <1 / (2η)
1 01 SI  1 01 SI
の条件を満たすのが好ましい。この好ましい例によれば、波長分離素子である導波 路素子を実現することができる。  It is preferable to satisfy the following condition. According to this preferable example, a waveguide element which is a wavelength separation element can be realized.
[0039] また、本発明の導波路素子の第 2の構成は、 1次元フォトニック結晶導波路を備え、 マルチモード力ブラとして機能する。 1次元フォトニック結晶導波路を用いての導波路 の設計は、自由度が高ぐ導波路の大きさや形状、電磁波の曲げ角度等を自由に設 計することができる。これにより、集積化が可能で、より高機能な導波路素子を実現す ることができる。また、 1次元フォトニック結晶導波路は、多層構造体であるため、作製 も容易である。  The second configuration of the waveguide element of the present invention includes a one-dimensional photonic crystal waveguide and functions as a multimode force bra. The design of a waveguide using a one-dimensional photonic crystal waveguide can freely design the size and shape of the waveguide, the bending angle of the electromagnetic wave, etc. with a high degree of freedom. As a result, it is possible to realize integration and a higher-performance waveguide element. In addition, since the one-dimensional photonic crystal waveguide is a multilayer structure, it can be easily manufactured.
[0040] また、前記本発明の導波路素子の第 2の構成においては、前記スラブ状フォト-ッ ク結晶導波路は、前記入射側フォトニック結晶導波路から入射される光を分岐して、 前記複数の出射側フォトニック結晶導波路のそれぞれに入射させるのが好ましい。こ の好ましい例によれば、分岐素子である導波路素子を実現することができる。 [0040] Further, in the second configuration of the waveguide element of the present invention, the slab-like photomask is used. The crystal waveguide preferably splits the light incident from the incident-side photonic crystal waveguide and causes the light to enter each of the plurality of output-side photonic crystal waveguides. According to this preferred example, a waveguide element that is a branch element can be realized.
[0041] また、前記本発明の導波路素子の第 2の構成においては、前記スラブ状フォト-ッ ク結晶導波路は、前記入射側フォトニック結晶導波路から入射される波長の異なる複 数の光を波長ごとに分離して、前記複数の出射側フォトニック結晶導波路のそれぞ れに入射させるのが好ましい。この好ましい例によれば、波長分離素子である導波路 素子を実現することができる。  [0041] In the second configuration of the waveguide element of the present invention, the slab-shaped photonic crystal waveguide has a plurality of different wavelengths incident from the incident-side photonic crystal waveguide. It is preferable that the light is separated for each wavelength and is incident on each of the plurality of emission-side photonic crystal waveguides. According to this preferred example, a waveguide element that is a wavelength separation element can be realized.
[0042] また、本発明のレーザ発生器の構成は、 1次元フォトニック結晶内の共振によってレ 一ザ光を励起させることができる。そして、 1次元フォトニック結晶導波路を用いている ので、設計の自由度が高ぐ導波路の大きさや形状、電磁波の曲げ角度等を自由に 設計することができる。これにより、集積化が可能で、より高機能なレーザ発生器を実 現することができる。また、 1次元フォトニック結晶導波路は、多層構造体であるため、 作製も容易である。  In addition, the configuration of the laser generator of the present invention can excite laser light by resonance in the one-dimensional photonic crystal. Since a one-dimensional photonic crystal waveguide is used, the size and shape of the waveguide, the bending angle of the electromagnetic wave, etc. can be freely designed. As a result, integration can be realized and a more sophisticated laser generator can be realized. Also, the one-dimensional photonic crystal waveguide is a multilayer structure and can be easily manufactured.
[0043] また、前記本発明のレーザ発生器の構成においては、前記励起フォトニック結晶導 波路の前記コアの前記屈折率周期性を有する方向に対して略垂直な光軸を有する 出射側フォトニック結晶導波路をさらに備え、前記出射側フォトニック結晶導波路は、 一方向に屈折率周期性を有するフォトニック結晶により構成され、前記屈折率周期 性を有しな 、方向にブリルアンゾーン境界上に存在する電磁波を伝播させるコアを 有するフォトニック結晶導波路であり、前記フォトニック結晶導波路は、前記フォトニッ ク結晶導波路の前記コアの前記屈折率周期性を有する方向に平行な前記フォトニッ ク結晶導波路の前記コアの側面に接している均質媒体の屈折率を n 、前記フォト二  [0043] In the configuration of the laser generator of the present invention, the exit-side photonic has an optical axis substantially perpendicular to the direction of the refractive index periodicity of the core of the excitation photonic crystal waveguide. The exit-side photonic crystal waveguide is formed of a photonic crystal having a refractive index periodicity in one direction, and has no refractive index periodicity on a Brillouin zone boundary in the direction. A photonic crystal waveguide having a core for propagating existing electromagnetic waves, wherein the photonic crystal waveguide is parallel to the direction having the refractive index periodicity of the core of the photonic crystal waveguide. Let n be the refractive index of the homogeneous medium in contact with the side of the core of the waveguide.
S1  S1
ック結晶導波路の前記コアの屈折率周期を a 、前記フォトニック結晶導波路の前記  The refractive index period of the core of the crystal crystal waveguide is a, the photonic crystal waveguide of the core
1  1
コア内を伝播する電磁波の真空中における波長をえ 01とした場合に、  When the wavelength of electromagnetic waves propagating in the core is set to 01,
a / λ < 1/ (2η )  a / λ <1 / (2η)
1 01 SI  1 01 SI
の条件を満たし、前記励起機構は、前記励起フォトニック結晶導波路の前記コアの 前記屈折率周期性を有する方向から前記励起フォトニック結晶導波路を挟んで配置 された 2つの電極と、前記 2つの電極間に電圧を印加する電圧源とを備え、前記 2つ の電極間に電圧を印加することにより、前記励起フォトニック結晶導波路を励起させ て前記レーザ光を発振させ、発振された前記レーザ光は、前記出射側フォトニック結 晶導波路に入射されるのが好ましい。この好ましい例によれば、レーザ発生器を実現 することができる。 And the excitation mechanism includes two electrodes arranged with the excitation photonic crystal waveguide sandwiched from the direction of the refractive index periodicity of the core of the excitation photonic crystal waveguide, and the 2 A voltage source for applying a voltage between the two electrodes. By applying a voltage between the electrodes, the excitation photonic crystal waveguide is excited to oscillate the laser light, and the oscillated laser light is incident on the emission-side photonic crystal waveguide Is preferred. According to this preferred example, a laser generator can be realized.
[0044] また、前記本発明のレーザ発生器の構成においては、前記励起機構は、前記励起 フォトニック結晶導波路に励起光を照射することにより、前記励起フォトニック結晶導 波路を励起させて前記レーザ光を発振させるのが好ましい。この好ましい例によれば 、レーザ発生器を実現することができる。  Further, in the configuration of the laser generator of the present invention, the excitation mechanism excites the excitation photonic crystal waveguide by irradiating the excitation photonic crystal waveguide with excitation light. It is preferable to oscillate laser light. According to this preferred example, a laser generator can be realized.
[0045] また、この場合には、前記励起光を照射する方向に対して略垂直で、かつ、前記励 起フォトニック結晶導波路の前記コアの前記屈折率周期性を有する方向に対して略 垂直な光軸を有する出射側フォトニック結晶導波路をさらに備え、前記出射側フォト ニック結晶導波路は、一方向に屈折率周期性を有するフォトニック結晶により構成さ れ、前記屈折率周期性を有しな 、方向にブリルアンゾーン境界上に存在する電磁波 を伝播させるコアを有するフォトニック結晶導波路であり、前記フォトニック結晶導波 路は、前記フォトニック結晶導波路の前記コアの前記屈折率周期性を有する方向に 平行な前記フォトニック結晶導波路の前記コアの側面に接している均質媒体の屈折 率を n 、前記フォトニック結晶導波路の前記コアの屈折率周期を a 、前記フォトニッ[0045] In this case, it is substantially perpendicular to the direction of irradiating the excitation light and substantially perpendicular to the direction of the refractive index periodicity of the core of the excitation photonic crystal waveguide. The output-side photonic crystal waveguide further includes a vertical optical axis, and the output-side photonic crystal waveguide is composed of a photonic crystal having a refractive index periodicity in one direction, and has the refractive index periodicity. A photonic crystal waveguide having a core that propagates electromagnetic waves present on a Brillouin zone boundary in a direction, wherein the photonic crystal waveguide is the refractive index of the core of the photonic crystal waveguide The refractive index of the homogeneous medium in contact with the side surface of the core of the photonic crystal waveguide parallel to the direction having periodicity is n, and the refractive index period of the core of the photonic crystal waveguide A, the photonic
S1 1 ク結晶導波路の前記コア内を伝播する電磁波の真空中における波長をえ 01とした場 合に、 When the wavelength in the vacuum of the electromagnetic wave propagating in the core of the S1 1 crystal waveguide is set to 01,
a / λ < l/ (2n )  a / λ <l / (2n)
1 01 SI  1 01 SI
の条件を満たし、前記励起機構は、前記励起フォトニック結晶導波路の前記コアの 前記屈折率周期性を有する方向に対して略垂直な方向から前記励起フォトニック結 晶導波路に前記励起光を照射することにより、前記励起フォトニック結晶導波路を励 起させて前記レーザ光を発振させ、発振された前記レーザ光は、前記出射側フォト二 ック結晶導波路に入射されるのが好ましい。この好ましい例によれば、レーザ発生器 を実現することができる。  The excitation mechanism causes the excitation light to enter the excitation photonic crystal waveguide from a direction substantially perpendicular to the direction of the refractive index periodicity of the core of the excitation photonic crystal waveguide. Irradiation excites the excitation photonic crystal waveguide to oscillate the laser beam, and the oscillated laser beam is preferably incident on the emission-side photonic crystal waveguide. According to this preferred example, a laser generator can be realized.
[0046] この場合にはさらに、前記励起機構は、前記出射側フォトニック結晶導波路の光軸 に対して略垂直で、かつ、前記励起フォトニック結晶導波路の前記コアの前記屈折 率周期性を有する方向に対して略垂直な光軸を有し、前記励起フォトニック結晶導 波路とは離間して、前記励起フォトニック結晶導波路を挟んで配置された 2つの導波 路を備え、前記 2つの導波路は、それぞれ、一方向に屈折率周期性を有するフォト二 ック結晶により構成され、前記屈折率周期性を有しない方向にブリルアンゾーン境界 上に存在する電磁波を伝播させるコアを有するフォトニック結晶導波路であり、前記 フォトニック結晶導波路は、前記フォトニック結晶導波路の前記コアの前記屈折率周 期性を有する方向に平行な前記フォトニック結晶導波路の前記コアの側面に接して いる均質媒体の屈折率を n 、前記フォトニック結晶導波路の前記コアの屈折率周期 [0046] In this case, the excitation mechanism is further substantially perpendicular to the optical axis of the emission-side photonic crystal waveguide and the refraction of the core of the excitation photonic crystal waveguide. Two waveguides having an optical axis substantially perpendicular to a direction having a rate periodicity and spaced apart from the excitation photonic crystal waveguide and sandwiching the excitation photonic crystal waveguide Each of the two waveguides is made of a photonic crystal having a refractive index periodicity in one direction, and propagates an electromagnetic wave existing on the Brillouin zone boundary in a direction not having the refractive index periodicity. A photonic crystal waveguide having a core, wherein the photonic crystal waveguide is parallel to a direction having the refractive index periodicity of the core of the photonic crystal waveguide. N is the refractive index of the homogeneous medium in contact with the side surface of the core, and the refractive index period of the core of the photonic crystal waveguide is
S2  S2
を a 、前記フォトニック結晶導波路の前記コア内を伝播する電磁波の真空中におけA in a vacuum of electromagnetic waves propagating in the core of the photonic crystal waveguide
2 2
る波長をえ とした場合に、 If the wavelength is
02  02
a / λ < 1/ (2η )  a / λ <1 / (2η)
2 02 S2  2 02 S2
の条件を満たすのが好ましい。この好ましい例によれば、レーザ発生器を実現するこ とがでさる。 It is preferable to satisfy the following condition. According to this preferred example, a laser generator can be realized.
また、この場合には、前記励起フォトニック結晶導波路の前記コアの前記屈折率周 期性を有する方向に対して略垂直な光軸を有する出射側フォトニック結晶導波路を さらに備え、前記出射側フォトニック結晶導波路は、一方向に屈折率周期性を有する フォトニック結晶により構成され、前記屈折率周期性を有しない方向にブリルアンゾ ーン境界上に存在する電磁波を伝播させるコアを有するフォトニック結晶導波路であ り、前記フォトニック結晶導波路は、前記フォトニック結晶導波路の前記コアの前記屈 折率周期性を有する方向に平行な前記フォトニック結晶導波路の前記コアの側面に 接している均質媒体の屈折率を n 、前記フォトニック結晶導波路の前記コアの屈折  In this case, the emission photonic crystal waveguide further includes an emission-side photonic crystal waveguide having an optical axis substantially perpendicular to the direction of the refractive index periodicity of the core of the excitation photonic crystal waveguide. The side photonic crystal waveguide is a photonic crystal composed of a photonic crystal having a refractive index periodicity in one direction, and having a core for propagating an electromagnetic wave existing on the Brillouin zone boundary in a direction not having the refractive index periodicity. The photonic crystal waveguide is formed on a side surface of the core of the photonic crystal waveguide parallel to a direction having the refractive index periodicity of the core of the photonic crystal waveguide. N is the refractive index of the contacting homogeneous medium and n is the refractive index of the core of the photonic crystal waveguide.
S1  S1
率周期を a 、前記フォトニック結晶導波路の前記コア内を伝播する電磁波の真空中 A in a vacuum of electromagnetic waves propagating through the core of the photonic crystal waveguide
1  1
における波長をえ 01とした場合に、 If the wavelength at is 01,
a / λ < 1/ (2η )  a / λ <1 / (2η)
1 01 SI  1 01 SI
の条件を満たし、前記励起フォトニック結晶導波路は、前記励起フォトニック結晶導 波路の前記コアの前記屈折率周期性を有する方向から前記励起フォトニック結晶導 波路の前記コアを挟み、前記励起フォトニック結晶導波路の前記コアの前記屈折率 周期性を有する方向と同一の方向に屈折率周期性を有するクラッドをさらに備え、前 記励起機構は、前記励起フォトニック結晶導波路の前記コアの前記屈折率周期性を 有する方向から前記励起フォトニック結晶導波路に前記励起光を照射することにより 、前記励起フォトニック結晶導波路を励起させて前記レーザ光を発振させ、発振され た前記レーザ光は、前記出射側フォトニック結晶導波路に入射されるのが好ましい。 この好まし!/、例によれば、レーザ発生器を実現することができる。 And the excitation photonic crystal waveguide sandwiches the core of the excitation photonic crystal waveguide from the direction having the refractive index periodicity of the core of the excitation photonic crystal waveguide, and A clad having a refractive index periodicity in the same direction as the direction having the refractive index periodicity of the core of the nick crystal waveguide; The excitation mechanism irradiates the excitation photonic crystal waveguide by irradiating the excitation photonic crystal waveguide with the excitation light from a direction having the refractive index periodicity of the core of the excitation photonic crystal waveguide. Preferably, the laser beam is excited to oscillate, and the oscillated laser beam is preferably incident on the emission-side photonic crystal waveguide. According to this preference! / Example, a laser generator can be realized.
[0048] この場合にはさらに、前記励起機構は、前記励起フォトニック結晶導波路の前記コ ァの前記屈折率周期性を有する方向に沿った光軸を有し、前記励起フォトニック結 晶導波路とは離間して配置された光入射部を備えて 、るのが好ま 、。この好ま U、 例によれば、レーザ発生器を実現することができる。  [0048] In this case, the excitation mechanism further includes an optical axis along a direction having the refractive index periodicity of the core of the excitation photonic crystal waveguide, and the excitation photonic crystal guide It is preferable to have a light incident portion that is spaced apart from the waveguide. According to this preferred example, a laser generator can be realized.
[0049] さらに、この場合には、前記光入射部は、光導波路と、前記光導波路からの光^^ 光するレンズとを備えているのが好ましい。この好ましい例によれば、レーザ発生器を 実現することができる。  Further, in this case, it is preferable that the light incident portion includes an optical waveguide and a lens that emits light from the optical waveguide. According to this preferred example, a laser generator can be realized.
[0050] また、この場合には、前記励起機構は、前記励起フォトニック結晶導波路の前記コ ァの前記屈折率周期性を有する方向に対して略垂直な方向から前記励起フォトニッ ク結晶導波路に前記励起光を照射することにより、前記励起フォトニック結晶導波路 を励起させて前記レーザ光を発振させ、前記励起フォトニック結晶導波路から、前記 励起フォトニック結晶導波路の前記コアの前記屈折率周期性を有する方向に、発振 された前記レーザ光が出射されるのが好ましい。この好ましい例によれば、励起光を 伝播させるための導波路を、基板上に配置することができる。このため、その導波路 もフォトニック結晶導波路とすればよいので、レーザ発生器の作製が容易となる。  [0050] Also, in this case, the excitation mechanism is configured so that the excitation photonic crystal waveguide from a direction substantially perpendicular to the direction of the core of the excitation photonic crystal waveguide having the refractive index periodicity. By irradiating the excitation light to the excitation photonic crystal waveguide, the excitation photonic crystal waveguide is excited to oscillate the laser light, and from the excitation photonic crystal waveguide, the refraction of the core of the excitation photonic crystal waveguide The oscillated laser beam is preferably emitted in a direction having a rate periodicity. According to this preferable example, the waveguide for propagating the excitation light can be arranged on the substrate. For this reason, it is sufficient that the waveguide is also a photonic crystal waveguide, which facilitates the production of the laser generator.
[0051] この場合にはさらに、前記励起機構は、前記励起フォトニック結晶導波路の前記コ ァの前記屈折率周期性を有する方向に対して略垂直な光軸を有し、前記励起フォト ニック結晶導波路とは離間して、前記励起フォトニック結晶導波路を挟んで配置され た 2つの導波路を備え、前記 2つの導波路は、それぞれ、一方向に屈折率周期性を 有するフォトニック結晶により構成され、前記屈折率周期性を有しない方向にブリル アンゾーン境界上に存在する電磁波を伝播させるコアを有するフォトニック結晶導波 路であり、前記フォトニック結晶導波路は、前記フォトニック結晶導波路の前記コアの 前記屈折率周期性を有する方向に平行な前記フォトニック結晶導波路の前記コアの 側面に接している均質媒体の屈折率を n 、前記フォトニック結晶導波路の前記コア [0051] In this case, the excitation mechanism further includes an optical axis substantially perpendicular to the direction of the refractive index periodicity of the core of the excitation photonic crystal waveguide, and the excitation photonic Two waveguides are disposed apart from the crystal waveguide and sandwich the excitation photonic crystal waveguide, and each of the two waveguides has a refractive index periodicity in one direction. And a photonic crystal waveguide having a core for propagating an electromagnetic wave existing on a Brillouin zone boundary in a direction not having the refractive index periodicity, wherein the photonic crystal waveguide is the photonic crystal waveguide. Of the core of the photonic crystal waveguide parallel to the direction of the refractive index periodicity of the core of the waveguide The refractive index of the homogeneous medium in contact with the side surface is n, and the core of the photonic crystal waveguide is
S1  S1
の屈折率周期を a 、前記フォトニック結晶導波路の前記コア内を伝播する電磁波の  The refractive index period of a, and the electromagnetic wave propagating in the core of the photonic crystal waveguide
1  1
真空中における波長をえ とした場合に、  When the wavelength in vacuum is estimated,
01  01
a / λ < 1/ (2η )  a / λ <1 / (2η)
1 01 SI  1 01 SI
の条件を満たすのが好ましい。この好ましい例によれば、レーザ発生器を実現するこ とがでさる。  It is preferable to satisfy the following condition. According to this preferred example, a laser generator can be realized.
[0052] また、前記本発明のレーザ発生器の構成においては、前記励起フォトニック結晶導 波路と前記出射側フォトニック結晶導波路との間に、分布帰還型共振器の反射層が 配置されているのが好ましい。この好ましい例によれば、波長選択性を有するレーザ 発生器を実現することができる。  [0052] In the configuration of the laser generator of the present invention, a reflection layer of a distributed feedback resonator is disposed between the excitation photonic crystal waveguide and the emission side photonic crystal waveguide. It is preferable. According to this preferred example, a laser generator having wavelength selectivity can be realized.
[0053] 以下、本発明の実施の形態について、図を参照しながら具体的に説明する。  Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
[0054] まず、本実施の形態の基本構造をなす 1次元フォトニック結晶導波路における光( 電磁波)の伝播と閉じ込め条件について説明する。 First, light (electromagnetic wave) propagation and confinement conditions in the one-dimensional photonic crystal waveguide that forms the basic structure of the present embodiment will be described.
[0055] 図 1は、 1次元フォトニック結晶の構成を示す断面図である。図 1にお 、て、光の伝 播方向を Z軸方向とし、光の伝播方向(Z軸方向)に対して垂直で、かつ、それぞれ互 いに垂直な方向を X軸方向及び Y軸方向とする。フォトニック結晶 101は、 Y軸方向 にのみ屈折率周期性を有する 1次元フォトニック結晶である。物質 105a及び物質 10 5bが Y軸方向に交互に積層されて、多層構造体が形成されている。物質 105aの厚 さ(Y軸方向の長さ)を t 、物質 105aの屈折率を n とする。また、物質 105bの厚さ( FIG. 1 is a cross-sectional view showing a configuration of a one-dimensional photonic crystal. In Fig. 1, the light propagation direction is the Z-axis direction, the directions perpendicular to the light propagation direction (Z-axis direction) and perpendicular to each other are the X-axis direction and the Y-axis direction. And The photonic crystal 101 is a one-dimensional photonic crystal having a refractive index periodicity only in the Y-axis direction. A material 105a and a material 105b are alternately stacked in the Y-axis direction to form a multilayer structure. The thickness (length in the Y-axis direction) of the material 105a is t, and the refractive index of the material 105a is n. Also, the thickness of substance 105b (
A A  A A
Y軸方向の長さ)を t 、物質 105bの屈折率を n とする。フォトニック結晶 101は、物  The length in the Y-axis direction is t, and the refractive index of the substance 105b is n. Photonic crystal 101
B B  B B
質 105a及び物質 105bが交互に積層された周期 (屈折率周期) aの多層構造体であ る。尚、周期 aは、(t +t )である。  It is a multilayer structure having a period (refractive index period) a in which the material 105a and the substance 105b are alternately laminated. Note that the period a is (t + t).
A B  A B
[0056] 図 1において、フォトニック結晶 101がコアであり、フォトニック結晶 101の周りの空 気(図示せず)がクラッドとなり、これらコアとクラッドとにより光導波路が構成されてい る。フォトニック結晶 101の入射端である、 Z軸方向に対して垂直な端面 (入射側端面 ) 101aから、真空中における波長が λ の平面波を入射光 102として入射させると、  In FIG. 1, a photonic crystal 101 is a core, and air (not shown) around the photonic crystal 101 is a clad, and the core and the clad constitute an optical waveguide. When a plane wave having a wavelength of λ in vacuum is incident as incident light 102 from an end surface (incident side end surface) 101a perpendicular to the Z-axis direction, which is the incident end of the photonic crystal 101,
0  0
当該入射光 102は、伝播光 104としてフォトニック結晶 101内を伝播する。伝播光 10 4は、入射端とは反対側の出射端である端面(出射側端面) 101bから出射光 103と して出射される。伝播光 104がフォトニック結晶 101内の物質 105a及び物質 105bの 多層膜内をどのように伝播するかは、フォトニックバンドを計算し、それを図示すること によって知ることができる。フォトニックバンドのバンド計算の方法は、例えば、「Photo nicし rystals, Princeton University Press, (1995)」、ある ヽ ίま、「Physical Review B, 19 91年, 44卷, 16号, p.8565」などに詳しく述べられている。 The incident light 102 propagates in the photonic crystal 101 as propagating light 104. The propagating light 104 is transmitted from the end face (exit-side end face) 101b which is the exit end opposite to the entrance end to the exit light 103. And emitted. How the propagating light 104 propagates in the multilayer film of the substance 105a and the substance 105b in the photonic crystal 101 can be known by calculating a photonic band and illustrating it. The method for calculating the band of the photonic band is, for example, “Photonics rystals, Princeton University Press, (1995)”, Arima Takama, “Physical Review B, 19 91, 44 卷, 16, p.8565”. Are described in detail.
[0057] バンド計算に際しては、図 1に示すフォトニック結晶 101は、 Y軸方向(積層方向)に は無限に続く周期構造を有し、 X軸方向及び Z軸方向(層面の広がる方向)には無限 に広がっているものと仮定する。以下、バンド計算によって求められた内容について 説明する。このバンド計算は、図 1に示すフォトニック結晶 101に関するものであるの で、バンド計算によって求められた内容については、図 1を参照しながら説明する。  In the band calculation, the photonic crystal 101 shown in FIG. 1 has an infinite periodic structure in the Y-axis direction (stacking direction), and in the X-axis direction and the Z-axis direction (direction in which the layer surface spreads). Is assumed to be infinite. The contents obtained by band calculation will be described below. Since this band calculation is related to the photonic crystal 101 shown in FIG. 1, the content obtained by the band calculation will be described with reference to FIG.
[0058] 図 2は、図 1に示したフォトニック結晶 101のバンド図である。このときのフォトニック 結晶 101の条件は、以下のとおりである。まず、物質 105aは、屈折率 n が 2. 1011  FIG. 2 is a band diagram of the photonic crystal 101 shown in FIG. The conditions of the photonic crystal 101 at this time are as follows. First, substance 105a has a refractive index n of 2. 1011.
A  A
であり、その厚さ t は、周期 aを用いて表わすと、 t =0· 3aである。また、物質 105b  And its thickness t is t = 0 · 3a when expressed using the period a. In addition, substance 105b
A A  A A
は、屈折率 n が 1 · 4578であり、その厚さ t は、周期 aを用いて表わすと、 t =0. 7  Has a refractive index n of 1 · 4578, and its thickness t is expressed as t = 0.7
B B B  B B B
aである。このような物質 105a及び物質 105bを交互に積層した周期 aの多層構造体 であるフォトニック結晶 101の、 Y軸方向及び Z軸方向におけるバンド計算の結果を、 図 2に示している。尚、図 2は、 TE偏光の第 1、第 2及び第 3バンドについて、第 1プリ ルアンゾーンの範囲内で示したものである。図 2は、規格化周波数 co aZ2 7u cが同じ 値となる点を結んだもので、等高線状となっている。以下、この等高線状の線のことを 「等周波数線」という。各線の添字は、規格ィ匕周波数 co aZ2 7u cの値を表わしている 。尚、規格ィ匕周波数 co aZ2 Cは、入射光 102の角振動数 ω、多層構造体の周期 a 及び真空中における光速 cを用いて表わされている。また、規格化周波数は、入射光 a. FIG. 2 shows the results of band calculations in the Y-axis direction and the Z-axis direction of the photonic crystal 101, which is a multilayer structure having a period a in which the materials 105a and 105b are alternately stacked. FIG. 2 shows the first, second and third bands of TE-polarized light within the range of the first prior zone. Figure 2 connects the points where the normalized frequency co aZ2 7uc has the same value, and is contoured. Hereinafter, this contour line is referred to as “equal frequency line”. The suffix of each line represents the value of the standard frequency coaZ2 7uc. The standard frequency co aZ2 C is expressed using the angular frequency ω of the incident light 102, the period a of the multilayer structure, and the speed of light c in vacuum. The normalized frequency is the incident light
102の真空中における波長え を用いて、 aZ と表わすこともできる。以下におい Using the wavelength of 102 in vacuum, it can also be expressed as aZ. Smell
0 0  0 0
ては、規格化周波数を簡単に aZ  The standardized frequency can be easily
0と記述する。  Write 0.
[0059] 図 2において、フォトニック結晶 101におけるブリルアンゾーンの Y軸方向の幅は 2 π Zaである力 Z軸方向には周期性がないので、横方向(Z軸方向)には、ブリルァ ンゾーンの境界が存在せず、どこまでも広がっている。尚、 TE偏光とは、電場の向き が X軸方向の偏光のことである。また、磁場の向きが X軸方向の偏光である TM偏光 のバンド図は示されていない。 TM偏光のバンド図は、 TE偏光のバンド図に類似し ているが、幾分異なった形状となる。 In FIG. 2, the force in the Y-axis direction of the Brillouin zone in the photonic crystal 101 is 2 π Za. Since there is no periodicity in the Z-axis direction, the Brillouin zone in the lateral direction (Z-axis direction) There is no boundary, and it extends everywhere. TE polarized light is polarized light whose electric field direction is in the X-axis direction. Also, TM polarized light whose direction of magnetic field is polarized in the X-axis direction The band diagram is not shown. The band diagram for TM polarization is similar to the band diagram for TE polarization, but has a slightly different shape.
[0060] ここで、フォトニック結晶の入射側端面に対して、入射光を入射角 Θ で斜め入射さ せた場合の伝播につ!、て検討する。  Here, the propagation when incident light is obliquely incident on the incident-side end face of the photonic crystal at an incident angle Θ will be examined.
[0061] 図 3は、 1次元フォトニック結晶の入射側端面に対して、入射光を斜め入射させた場 合のバンド図である。図 3に示すように、作図によってフォトニック結晶の結合バンドを 求めることができる。ここで、 1次元フォトニック結晶は、図 1に示したフォトニック結晶 1 01とし、図 1も参照する。尚、入射角 Θ は、入射側端面 101aに対して垂直な方向つ まり Z軸方向と入射光 102の進行方向とのなす角度である。また、入射光 102の傾き は、 YZ平面内に限られるものとする。また、フォトニック結晶 101の入射側端面 101a は、 Z軸に対して垂直である。  FIG. 3 is a band diagram when incident light is obliquely incident on the incident side end face of the one-dimensional photonic crystal. As shown in Fig. 3, the photonic crystal bond band can be determined by drawing. Here, the one-dimensional photonic crystal is the photonic crystal 101 shown in FIG. 1, and FIG. 1 is also referred to. The incident angle Θ is an angle formed between the direction perpendicular to the incident side end face 101a, that is, the Z-axis direction and the traveling direction of the incident light 102. In addition, the inclination of the incident light 102 is limited to the YZ plane. Further, the incident side end face 101a of the photonic crystal 101 is perpendicular to the Z-axis.
[0062] 図 3は、具体的には、図 1のフォト ック結晶 101の端面 101aから、特定の周波数 a / λ の平面波 (ΤΕ偏光)を、入射側端面 (入射面) 101aに対して入射角 Θ で入射 [0062] Specifically, FIG. 3 shows a plane wave (polarized light) having a specific frequency a / λ from the end face 101a of the photonic crystal 101 in FIG. 1 with respect to the incident end face (incident face) 101a. Incident at an incident angle Θ
0 I させた場合のバンド図である。尚、 Z軸に対して垂直な端面 (入射面) 101aに接して いる媒体は、その屈折率 n がー様な均質媒体である。 It is a band diagram when 0 I is applied. Note that the medium in contact with the end face (incident surface) 101a perpendicular to the Z-axis is a homogeneous medium having a different refractive index n.
h  h
[0063] 図 3において、右側がフォトニック結晶 101中のバンド図であり、左側がフォトニック 結晶 101の外側である均質媒体のバンド図である。また、図 3において、上段が入射 光 102と第 1バンドとの結合を表わし、下段が入射光 102と第 2バンドとの結合を表わ している。入射光 102は均質媒体力も端面 101aに入射しているので、入射光 102の バンド図は、均質媒体中でのバンド図となる。  In FIG. 3, the right side is a band diagram in the photonic crystal 101, and the left side is a band diagram of a homogeneous medium outside the photonic crystal 101. In FIG. 3, the upper part represents the coupling between the incident light 102 and the first band, and the lower stage represents the coupling between the incident light 102 and the second band. Since the incident light 102 has the homogeneous medium force also incident on the end face 101a, the band diagram of the incident light 102 is a band diagram in the homogeneous medium.
[0064] ここで、均質媒体のバンド図は、半径 rが下記式で表わされる球 (YZ平面にぉ 、て は円)となる。  [0064] Here, the band diagram of the homogeneous medium is a sphere whose radius r is expressed by the following equation (in the YZ plane, a circle).
[0065] r=n - (a/ λ ) - (2 a)  [0065] r = n-(a / λ)-(2 a)
h 0  h 0
尚、上記式の右辺の(2 π Ζ&)は、フォトニック結晶 101のバンド図に対応させるた めの係数である。  Note that (2πΖ &) on the right side of the above equation is a coefficient for corresponding to the band diagram of the photonic crystal 101.
[0066] 図 3に示すバンド図において、フォトニック結晶 101内を伝播する伝播光の進行方 向は、等周波数線の法線方向となる。図 3から分力るように、フォトニック結晶 101内 を伝播する伝播光の方向は、第 1バンドと第 2バンドとで異なるために 2種類となり、ど ちらも Z軸方向とはならな!、。 In the band diagram shown in FIG. 3, the traveling direction of propagating light propagating in the photonic crystal 101 is the normal direction of the equal frequency line. As shown in Fig. 3, the direction of propagating light propagating in the photonic crystal 101 is different in the first band and the second band. Neither is it in the Z-axis direction!
[0067] 図 3のバンド図について、具体的に説明する。第 1及び第 2バンド上には、規格ィ匕 周波数 aZ が入射光 102と一致する対応点 115及び対応点 116があるので、フ [0067] The band diagram of Fig. 3 will be specifically described. On the first and second bands, there are corresponding points 115 and 116 where the standard frequency aZ matches the incident light 102.
0  0
オトニック結晶 101内ではそれぞれのバンドに対応した波動が伝播することになる。 入射光 102の波数ベクトルは矢印 110であり、伝播光の波数ベクトルは矢印 113 (第 1バンド)及び矢印 114 (第 2バンド)である。また、伝播光の第 1バンドのエネルギー 進行方向は矢印 111で、伝播光の第 2バンドのエネルギー進行方向は矢印 112でそ れぞれ表わすことができる。  Within the tonic crystal 101, waves corresponding to each band propagate. The wave number vector of the incident light 102 is an arrow 110, and the wave vector of the propagating light is an arrow 113 (first band) and an arrow 114 (second band). In addition, the energy traveling direction of the first band of propagating light can be represented by an arrow 111, and the energy traveling direction of the second band of propagating light can be represented by the arrow 112, respectively.
[0068] 次に、 1次元フォトニック結晶中を、第 1バンド及び第 2バンドの伝播光がともに Z軸 方向に伝播する場合について説明する。図 4は、第 1バンド及び第 2バンドの伝播光 の伝播方向がともに Z軸方向である場合の 1次元フォトニック結晶のバンド図である。 このような伝播を実現するためには、具体的には、入射角 Θ を下記式(1)の条件を 満たすように設定する。ここで、 1次元フォトニック結晶は、図 1に示したフォトニック結 晶 101とする。尚、フォトニック結晶 101の入射側端面 101aが光の伝播方向である Z 軸方向に対して垂直であるので、「入射角 0 で入射する」とは、 Z軸方向に対して角 度 0 傾いた光が入射することである。  [0068] Next, a case will be described in which both the first-band and second-band propagated light propagates in the Z-axis direction in the one-dimensional photonic crystal. FIG. 4 is a band diagram of the one-dimensional photonic crystal when the propagation directions of the propagation light of the first band and the second band are both in the Z-axis direction. In order to realize such propagation, specifically, the incident angle Θ is set so as to satisfy the condition of the following formula (1). Here, the one-dimensional photonic crystal is the photonic crystal 101 shown in FIG. Since the incident side end face 101a of the photonic crystal 101 is perpendicular to the Z-axis direction, which is the light propagation direction, “incident at an incident angle of 0” is inclined at an angle of 0 with respect to the Z-axis direction. The incident light is incident.
[0069] n - sin 0 - (a/ λ ) = ± 0. 5 ( 1)  [0069] n-sin 0-(a / λ) = ± 0.5 (1)
h I 0  h I 0
上記式(1)中、 n は、フォトニック結晶 101の端面 101aに接する媒体の屈折率で  In the above formula (1), n is the refractive index of the medium in contact with the end face 101a of the photonic crystal 101.
h  h
ある。  is there.
[0070] 上記式(1)の条件を満たす入射角 0 でフォトニック結晶 101に対して入射光 102 を入射させると、図 4から分かるように、ブリルアンゾーン境界 127上に第 1及び第 2の 伝播バンドが存在する。図 4において、入射光 102の波数ベクトルは矢印 120で表わ され、フォトニック結晶中 101の伝播光 104のエネルギー進行方向は矢印 121 (第 1 バンド)及び矢印 122 (第 2バンド)で表わされている。また、ブリルアンゾーン境界 12 7上には、第 1及び第 2バンド上の規格化周波数 aZ 2  When the incident light 102 is incident on the photonic crystal 101 at an incident angle 0 that satisfies the condition of the above formula (1), as shown in FIG. 4, the first and second on the Brillouin zone boundary 127 There is a propagation band. In Fig. 4, the wave number vector of incident light 102 is represented by arrow 120, and the energy traveling direction of propagating light 104 in photonic crystal 101 is represented by arrow 121 (first band) and arrow 122 (second band). Has been. Also, on the Brillouin zone boundary 127, the normalized frequency aZ 2 on the first and second bands
0が入射光 10 と一致するそ れぞれの対応点 125、 126がある。伝播光 104の波数ベクトルは、矢印 123 (第 1バ ンド)及び矢印 124 (第 2バンド)である。  There are corresponding points 125 and 126 where 0 matches the incident light 10, respectively. The wave vector of the propagating light 104 is an arrow 123 (first band) and an arrow 124 (second band).
[0071] ブリルアンゾーン境界 127での対称性より、波動エネルギーの進行方向は Z軸方向 に一致しているので、伝播光 104は Z軸方向に進行する。ここで、 Z軸方向への伝播 を実現するための入射角 Θ が満たす条件は、ブリルアンゾーンの Y軸方向の周期 性を考慮して、例えば、 [0071] Due to symmetry at Brillouin zone boundary 127, the wave energy travels in the Z-axis direction Therefore, the propagating light 104 travels in the Z-axis direction. Here, the condition that the incident angle Θ to satisfy the propagation in the Z-axis direction satisfies the periodicity of the Brillouin zone in the Y-axis direction, for example,
n - sin 0 - (a/ λ ) = ± 1. 0, ± 1. 5, ± 2. 0, · · ·  n-sin 0-(a / λ) = ± 1. 0, ± 1. 5, ± 2. 0,
h I 0  h I 0
としてもよいが、右辺の値 (絶対値)が増加するにつれて、 n 及び Θ を大きい値とす h I  However, as the value on the right side (absolute value) increases, n and Θ become larger values h I
る必要があるので、実現が難しくなる。  This makes it difficult to implement.
[0072] 図 4のブリルアンゾーン境界上のバンド図を、 Z軸方向に限定して示したバンド図が 図 5である。図 5においては、横軸が波数ベクトルの Z軸方向成分 kzであり、縦軸が 規格化周波数である。入射光 102の真空中における波長が λ である場合、規格ィ匕 FIG. 5 shows a band diagram on the Brillouin zone boundary in FIG. 4 limited to the Z-axis direction. In Fig. 5, the horizontal axis is the Z-axis direction component kz of the wave vector, and the vertical axis is the normalized frequency. When the wavelength of the incident light 102 in vacuum is λ,
0  0
周波数の値は aZ によって決まる。このため、図 5に示すように、入射光 102の真  The frequency value is determined by aZ. For this reason, as shown in FIG.
0  0
空中における波長が λ である場合、フォトニック結晶 101内では各バンドに対応す  When the wavelength in the air is λ, it corresponds to each band in the photonic crystal 101.
0  0
る波数ベクトルの Ζ軸方向成分 k 、k が存在する。すなわち、伝播光 104が波長え  Ζ axis components k and k of the wave vector. That is, the propagation light 104 is
1 2 1 1 2 1
= 2 k 及び波長え = 2 k の波動としてフォトニック結晶 101内を Z軸方向 = Z-axis direction inside photonic crystal 101 as wave of 2k and wavelength = 2k
1 2 2  1 2 2
に伝播する。  Propagate to.
[0073] ここで、真空中における光の波長え を、フォトニック結晶 101内を伝播する場合の  [0073] Here, the wavelength of light in a vacuum is propagated through the photonic crystal 101.
0  0
光の波長 (例えば、 X 、 X  Wavelength of light (e.g., X, X
1 2など)で除した数値を、「実効屈折率」と定義する。図 5 から分かるように、ブリルアンゾーン境界上に存在する伝播光の伝播においては、実 効屈折率が λ によって大きく変化する。屈折率力^である線 128 (ライトライン)の左  The value divided by 1 or 2) is defined as the “effective refractive index”. As can be seen from Fig. 5, in the propagation of propagating light existing on the Brillouin zone boundary, the effective refractive index varies greatly with λ. Left of line 128 (light line) with refractive power ^
0  0
側の領域は実効屈折率が 1未満であり、線 128 (ライトライン)の右側の領域は実効屈 折率が 1よりも大きい。図 5から、ブリルアンゾーン境界上に存在する伝播光の伝播に おいては、線 128 (ライトライン)の左側、すなわち、実効屈折率が 1未満となることも あることが分力ゝる。  The area on the side has an effective refractive index of less than 1, and the area to the right of line 128 (light line) has an effective index of refraction greater than 1. From Fig. 5, it can be seen that in the propagation of propagating light existing on the Brillouin zone boundary, the left side of the line 128 (light line), that is, the effective refractive index may be less than 1.
[0074] また、図 5に示すバンド曲線を kzで微分した値 (すなわち、接線の傾き)が伝播光の 群速度となることはよく知られている。図 5の場合、 kzの値が小さくなるにつれてバン ド曲線の接線の傾きは急速に小さくなり、 a/ λ が下限値の場合、バンド曲線の接  [0074] It is well known that the value obtained by differentiating the band curve shown in Fig. 5 with respect to kz (ie, the slope of the tangent) is the group velocity of propagating light. In Fig. 5, the slope of the tangent of the band curve decreases rapidly as the value of kz decreases, and when a / λ is the lower limit, the tangent of the band curve
0  0
線の傾き (群速度)は 0となる。これが、フォトニック結晶に特有の群速度異常である。 フォトニック結晶における群速度異常は、極めて大きぐかつ、通常の均質物質の分 散とは逆である(入射光の波長が長くなるにつれて群速度が遅くなる)。従って、この 導波路は、光遅延素子や光通信における分散補償素子などの光制御素子として用 いることができる。図 5から分力るように、ブリルアンゾーン境界上においては、第 1バ ンドを含む全てのバンドで「実効屈折率の波長による大きな変化」や「群速度異常」が 起こっている。このような、ブリルアンゾーン境界上のバンドによる伝播を実現する導 波路は、低損失で上記特性を示す光を伝播させることができるので、光制御素子等 に応用することができる。尚、ブリルアンゾーン境界上のバンドによる伝播光は、節の ある電場パターンを形成するので、一種の高次モード伝播光である。 The slope of the line (group velocity) is zero. This is a group velocity abnormality peculiar to the photonic crystal. The group velocity anomaly in the photonic crystal is extremely large and is opposite to the dispersion of the normal homogeneous material (the group velocity decreases as the wavelength of incident light increases). So this The waveguide can be used as an optical control element such as an optical delay element or a dispersion compensation element in optical communication. As shown in Fig. 5, on the Brillouin zone boundary, all the bands including the first band have “a large change in the effective refractive index due to wavelength” and “group velocity anomaly”. Such a waveguide that realizes propagation by a band on the Brillouin zone boundary can propagate light exhibiting the above characteristics with low loss, and thus can be applied to a light control element or the like. Note that the propagation light from the band on the Brillouin zone boundary forms a knotted electric field pattern, and is a kind of higher-order mode propagation light.
[0075] フォトニック結晶の外部の平面波と、フォトニック結晶内を伝播するブリルアンゾーン 境界上における伝播光とを結合させるいくつかの方法が、本発明者らの研究により明 らかになつている。これら、「ブリルアンゾーン境界上における伝播」を実現する方法 は、例えば、特開 2003— 215362号公報、国際公開第 04/81625号パンフレット、 国際公開第 04Z81626号パンフレット及び国際公開第 05Z8305号パンフレット等 に開示されている。尚、フォトニック結晶内を伝播する光は、信号の多モード分散を 防止する意味で、シングルモードであるのが望まし 、。  [0075] The present inventors have clarified several methods for coupling a plane wave outside the photonic crystal and propagating light on the Brillouin zone boundary propagating in the photonic crystal. . The methods for realizing “propagation on the Brillouin zone boundary” are disclosed in, for example, Japanese Patent Application Laid-Open No. 2003-215362, International Publication No. 04/81625, International Publication No. 04Z81626 and International Publication No. 05Z8305. It is disclosed. The light propagating in the photonic crystal is preferably single mode in order to prevent multimode dispersion of signals.
[0076] 次に、図 1に示す 1次元フォトニック結晶 101における光の閉じ込めについて説明 する。  Next, light confinement in the one-dimensional photonic crystal 101 shown in FIG. 1 will be described.
[0077] まず、フォトニック結晶 101の、屈折率周期方向に対して垂直な面に沿った方向へ の側面 (YZ平面に平行な側面)からの光の漏れを防止するための、光の閉じ込め条 件について説明する。すなわち、図 1に示すフォトニック結晶 101の XZ平面に沿った 方向における光の閉じ込め条件について説明する。そこで、伝播光が、フォトニック 結晶 101内を、 XZ平面内にお 、て Z軸方向に対して角度 φだけ傾 、た方向に進む 場合を考える。図 6は、 1次元フォトニック結晶内を伝播光が Z軸方向に対して傾いて 進む場合の電場を示す模式図である。図 6に示すように、フォトニック結晶 101内を 伝播光が XZ平面内にぉ 、て Z軸方向に対して傾 、た方向に進む場合の、フォト-ッ ク結晶 101の周期構造が露出している側面 (YZ平面に平行な側面) 130には、巿松 状の模様として示す電場パターンが生じている。具体的には、電場の山 131と電場 の谷 132とが図 6に示されている。尚、図示していないが、フォトニック結晶 101の側 面に存在するクラッドとなる媒体は、その屈折率 n がー様な均質媒体である。よって 、フォトニック結晶 101の周期構造が露出している側面 130は、屈折率が n の均質 First, light confinement to prevent leakage of light from the side surface (side surface parallel to the YZ plane) of the photonic crystal 101 in a direction along a plane perpendicular to the refractive index periodic direction. Explain the conditions. That is, the light confinement condition in the direction along the XZ plane of the photonic crystal 101 shown in FIG. 1 will be described. Thus, let us consider a case in which propagating light travels in a direction inclined by an angle φ with respect to the Z-axis direction in the photonic crystal 101 in the XZ plane. Fig. 6 is a schematic diagram showing the electric field when propagating light travels through the one-dimensional photonic crystal while tilting with respect to the Z-axis direction. As shown in FIG. 6, the periodic structure of the photonic crystal 101 is exposed when propagating light in the photonic crystal 101 travels in the XZ plane and is inclined with respect to the Z-axis direction. On the side surface 130 (side surface parallel to the YZ plane) 130, an electric field pattern shown as a pinecone-like pattern is generated. Specifically, electric field mountain 131 and electric field valley 132 are shown in FIG. Although not shown in the drawing, the medium serving as the cladding existing on the side surface of the photonic crystal 101 is a homogeneous medium having a different refractive index n. Therefore The side surface 130 where the periodic structure of the photonic crystal 101 is exposed has a uniform refractive index of n.
S  S
媒体に接している。  Touching the medium.
[0078] フォトニック結晶 101の周期 aを用いて、これら電場の特性について説明する。図 6 に示すように、均質媒体に接している、周期構造が露出した側面 130には、周期 133 を有する波面が均質媒体側に生じている。この波が、漏れ光となり得る。図 6には、互 いに垂直な補助線 134、 135と、補助線 136 (斜辺)とからなる直角三角形が形成さ れており、補助線 134、 135の長さは、それぞれ Z2cos φ及び aとなることなどから 、補助線 136の大きさを求めることができ、これにより、周期 133の大きさ (長さ)は容 易に求められる。ここで、 λは、 Υ軸方向に対して垂直な方向における伝播モードの 周期である。  [0078] Using the period a of the photonic crystal 101, the characteristics of these electric fields will be described. As shown in FIG. 6, a wavefront having a period 133 is generated on the side of the homogeneous medium on the side face 130 exposed to the periodic structure that is in contact with the homogeneous medium. This wave can be leaking light. In Fig. 6, a right triangle consisting of auxiliary lines 134 and 135 perpendicular to each other and auxiliary line 136 (the hypotenuse) is formed. The lengths of auxiliary lines 134 and 135 are Z2cos φ and a Therefore, the size of the auxiliary line 136 can be obtained, and thus the size (length) of the period 133 can be easily obtained. Here, λ is the period of the propagation mode in the direction perpendicular to the axial direction.
[0079] すなわち、周期 133の大きさは、具体的には、  [0079] That is, the magnitude of the period 133 is specifically:
Ά λ / cos φ ) / { { λ / 2cos ) + a }  Ά λ / cos φ) / {(λ / 2cos) + a}
と表わされる。従って、周期 133の大きさが、屈折率 n の  It is expressed as Therefore, the period 133 has a refractive index n
S 均質媒体中における波長 S Wavelength in homogeneous media
X Zn よりも大きい場合に、この波が漏れ光となる。よって、屈折率 n の均質媒体This wave becomes leakage light when it is larger than XZn. Thus, a homogeneous medium with a refractive index n
O S S O S S
中を伝播する光がフォトニック結晶 101の YZ平面に平行な側面力 漏れないための 条件は、  The condition for the light propagating inside to not leak side force parallel to the YZ plane of the photonic crystal 101 is
X / n > a ( λ / cos φ ) / { \ λ / 2cos φ ' + a }  X / n> a (λ / cos φ) / {\ λ / 2cos φ '+ a}
o s  o s
の式を満たすことである。  Is to satisfy the following formula.
[0080] また、周期 133の大きさは、角度 φが 90° の場合に最大値 2aとなる。つまり、下記 式(2)が満たされれば、角度 φの値によらず漏れ光は生じない。  [0080] In addition, the size of the period 133 becomes the maximum value 2a when the angle φ is 90 °. In other words, if the following formula (2) is satisfied, no leakage light occurs regardless of the value of the angle φ.
[0081] λ Zn > 2a (2) [0081] λ Zn> 2a (2)
0 s  0 s
また、フォトニック結晶 101の屈折率周期を a 又は a とし、フォトニック結晶 101の  Also, the refractive index period of the photonic crystal 101 is a or a, and the photonic crystal 101
1 2  1 2
周期構造が露出している側面 (YZ平面に平行な側面) 130が屈折率 n 又は n の均  The side where the periodic structure is exposed (the side parallel to the YZ plane) 130 is the refractive index n or n
SI S2 質媒体に接しており、フォトニック結晶 101中の伝播光の真空中における波長をえ  It is in contact with the SI S2 material and determines the wavelength of the propagating light in the photonic crystal 101 in vacuum.
01 又は λ とする。この場合には、上記式(2)と同様の以下の条件が満たされれば、角 01 or λ. In this case, if the following conditions similar to the above equation (2) are satisfied,
02 02
度 Φの値によらず漏れ光は生じない。  No light leaks regardless of the value of Φ.
[0082] λ Zn > 2a 又はえ /n > 2a [0082] λ Zn> 2a or / n> 2a
01 SI 1 02 S2 2  01 SI 1 02 S2 2
尚、上記式 (2)を、規格化周波数 aZ を含む式に変形すると、 a/ λ < l/ (2n ) (3) Note that if the above equation (2) is transformed into an equation including the normalized frequency aZ, a / λ <l / (2n) (3)
0 s  0 s
と表わすこともできる。つまり、上記式(3)を満たすことにより、フォトニック結晶 101の YZ平面に平行な側面においては、光は完全な閉じ込め状態となり、伝播光を急峻 な角度 (急角度)で曲げても、フォトニック結晶 101の外部に光が漏れることはない。  It can also be expressed as In other words, by satisfying the above equation (3), the light is completely confined on the side surface parallel to the YZ plane of the photonic crystal 101, and even if the propagating light is bent at a steep angle (steep angle), Light does not leak outside the nick crystal 101.
[0083] また、上記と同様に、この条件式は、 [0083] As in the above, this conditional expression is
a / λ < 1/ (2η )又は a / λ < 1/ (2η )  a / λ <1 / (2η) or a / λ <1 / (2η)
1 01 SI 2 02 S2  1 01 SI 2 02 S2
と表わしてもよい。  It may be expressed as
[0084] 次に、フォトニック結晶 101の、屈折率周期方向に対して垂直である面での光の閉 じ込めについて説明する。すなわち、フォトニック結晶 101の上下方向(Y軸方向)の 光の閉じ込め、つまり、フォトニック結晶 101の XZ平面と平行な面での光の閉じ込め について説明する。  Next, the confinement of light on the surface of the photonic crystal 101 that is perpendicular to the refractive index periodic direction will be described. That is, light confinement in the vertical direction (Y-axis direction) of the photonic crystal 101, that is, light confinement in a plane parallel to the XZ plane of the photonic crystal 101 will be described.
[0085] 例えば、フォトニック結晶 101の上下面に接した状態で、フォトニック結晶 101の実 効屈折率よりも屈折率の小さい媒体を配置すれば、それらの屈折率差により、フォト ニック結晶 101内に光が閉じ込められる。屈折率差による光の閉じ込めを行うために は、伝播光のフォトニック結晶 101における実効屈折率がある程度大きくなくてはなら ない。  [0085] For example, if a medium having a refractive index smaller than the effective refractive index of the photonic crystal 101 is placed in contact with the upper and lower surfaces of the photonic crystal 101, the photonic crystal 101 is caused by the difference in refractive index. Light is confined inside. In order to confine light by the refractive index difference, the effective refractive index of the propagating light in the photonic crystal 101 must be large to some extent.
[0086] フォトニック結晶 101の上下面に接して配置された媒体を、例えば空気 (屈折率: 1) とした場合、光の閉じ込めは十分であるが、製造が困難となる。このため、低屈折率 であるガラス (例えば、屈折率が 1. 45の石英ガラス)等により、光の閉じ込めを行うこ とが多い。しかし、その場合には、フォトニック結晶 101の上下面に接して配置される 媒体の屈折率が空気の場合に比べて高いことから、光の閉じ込めを行うことはできる 力 上述したフォトニック結晶導波路の大きな特徴である、「実効屈折率の波長による 大きな変化」や「群速度異常」の効果が小さくなると!、う問題がある。  [0086] When the medium disposed in contact with the upper and lower surfaces of the photonic crystal 101 is, for example, air (refractive index: 1), light confinement is sufficient, but manufacturing becomes difficult. For this reason, light is often confined by a glass having a low refractive index (for example, quartz glass having a refractive index of 1.45). However, in this case, the refractive index of the medium disposed in contact with the upper and lower surfaces of the photonic crystal 101 is higher than that of air, so that the light can be confined. If the effect of “large change of effective refractive index with wavelength” or “group velocity anomaly”, which is a major feature of waveguides, is reduced, there is a problem.
[0087] 十分な光の閉じ込めを行い、かつ、フォトニック結晶導波路の大きな特徴である、「 実効屈折率の波長による大きな変化」や「群速度異常」の効果を得るためには、フォト ニックバンドギャップを利用した閉じ込めが有効である。以下、フォトニックバンドギヤ ップを利用した、フォトニック結晶 101の上下方向(Y軸方向)の光の閉じ込めについ て説明する。図 7は、 1次元フォトニック結晶のクラッド及びコアを有するフォトニック結 晶導波路の構成を示す図であって、図 7Aは断面図、図 7Bは斜視図である。図 7A 及び図 7Bに示すフォトニック結晶導波路 140は、図 1に示した 1次元フォトニック結晶 101をコアとし、その屈折率周期方向と同一の方向に屈折率周期性を有する 1次元 フォトニック結晶であるクラッド 141が設けられた構成である。クラッド 141は、フォト- ック結晶 101を上下方向(Y軸方向)で挟むように設けられている。クラッド 141は、フ オトニック結晶 101の屈折率周期方向と同一の方向に、フォトニック結晶 101を構成 している物質 105a及び物質 105bが周期的に交互に積層されて構成されている。つ まり、クラッド 141は、フォトニック結晶 101と同一の物質で構成され、 Y軸方向に屈折 率周期性を有している。尚、クラッド 141の周期(屈折率周期) bは、フォトニック結晶 1 01の周期 aと異なっている。 [0087] In order to sufficiently confine light and to obtain the effects of "a large change in the effective refractive index with wavelength" and "group velocity anomaly", which are major features of the photonic crystal waveguide, Confinement using a band gap is effective. Hereinafter, light confinement in the vertical direction (Y-axis direction) of the photonic crystal 101 using the photonic band gap will be described. Figure 7 shows a photonic connection with a one-dimensional photonic crystal cladding and core. FIG. 7A is a cross-sectional view and FIG. 7B is a perspective view showing a configuration of a crystal waveguide. The photonic crystal waveguide 140 shown in FIGS. 7A and 7B is a one-dimensional photonic crystal having a refractive index periodicity in the same direction as the refractive index periodic direction, with the one-dimensional photonic crystal 101 shown in FIG. 1 as a core. In this configuration, a crystal clad 141 is provided. The clad 141 is provided so as to sandwich the photonic crystal 101 in the vertical direction (Y-axis direction). The clad 141 is configured by periodically and alternately laminating materials 105 a and 105 b constituting the photonic crystal 101 in the same direction as the refractive index periodic direction of the photonic crystal 101. That is, the clad 141 is made of the same material as the photonic crystal 101 and has a refractive index periodicity in the Y-axis direction. The period (refractive index period) b of the clad 141 is different from the period a of the photonic crystal 101.
[0088] このように、フォトニック結晶導波路 140は、 1次元フォトニック結晶であって、屈折 率周期方向にぉ 、て、屈折率周期が周期 bの個所 (クラッド 141)と周期 aの個所 (コ ァであるフォトニック結晶 101)とを有し、周期 aの個所が周期 bの個所によって挟まれ た構成となっている。フォトニック結晶 101 (コア)を伝播し得る光がクラッド 141には伝 播しないようにすることは、フォトニックバンドギャップにより可能となり、具体的には、 周期 aと周期 bとの値を調整すればょ ヽ。  [0088] Thus, the photonic crystal waveguide 140 is a one-dimensional photonic crystal, and is located in the refractive index period direction, where the refractive index period is the period b (cladding 141) and the period a. (A photonic crystal 101 that is a core), and a portion with a period a is sandwiched between places with a period b. It is possible to prevent light that can propagate through the photonic crystal 101 (core) from propagating in the clad 141 by the photonic band gap. Specifically, the values of the period a and the period b can be adjusted. Bho.
[0089] 理論的には、周期 aと周期 bとの値を調整することにより、どのような場合でも、フォト ニック結晶 101をコアとして、上下方向(Y軸方向)の光の閉じ込めを実現することが できる。しかし、クラッド 141の閉じ込め作用が弱くなる場合もあり、実際のフォトニック 結晶導波路 140を設計するにあたっては、クラッド 141の周期 bの実用的な上限、十 分な閉じ込めが可能な、周期 aと周期 bとの値の間隔、及びコアであるフォトニック結 晶 101の周期 aの値等の様々な条件を考慮して、これらのバランスが取れた構成とす る必要がある。また、周期 aと周期 bとを等しい値にして、フォトニック結晶を構成する 各物質の厚さ比率を変化させてもょ ヽ。  [0089] Theoretically, confinement of light in the vertical direction (Y-axis direction) is realized with photonic crystal 101 as the core by adjusting the values of period a and period b. be able to. However, the confinement action of the clad 141 may be weak, and when designing the actual photonic crystal waveguide 140, the practical upper limit of the period b of the clad 141, the period a Considering various conditions such as the interval of the value with the period b and the value of the period a of the photonic crystal 101 that is the core, it is necessary to make a configuration in which these are balanced. It is also possible to change the thickness ratio of each material composing the photonic crystal by setting the period a and the period b to the same value.
[0090] また、 1次元フォトニック結晶 101であるコアを構成する物質 (物質 105a及び物質 1 05b)とは異なる物質を積層することによって 1次元フォトニック結晶であるクラッド 141 を構成したフォトニック結晶導波路 140においても、上下方向(Y軸方向)の光の閉じ 込めを実現することができる。また、 3種類以上の物質を積層することによってコア又 はクラッドを構成し、コア又はクラッドの 1周期を 3層以上としたフォトニック結晶導波路 においても、上下方向(Y軸方向)の光の閉じ込めを実現することができる。また、上 記した、 Y軸方向の光の閉じ込めを実現するためのそれぞれの方法は、単独で用い ても、あるいは複合して用いてもよい。 [0090] In addition, a photonic crystal comprising a clad 141 which is a one-dimensional photonic crystal by laminating a material different from the materials (substance 105a and substance 105b) constituting the core which is the one-dimensional photonic crystal 101 Also in the waveguide 140, confinement of light in the vertical direction (Y-axis direction) can be realized. In addition, the core or Can also confine light in the vertical direction (Y-axis direction) even in photonic crystal waveguides that form a clad and have three or more core or clad periods. In addition, the above-described methods for realizing light confinement in the Y-axis direction may be used alone or in combination.
[0091] 以上のように、フォトニック結晶導波路 140の XZ平面と平行な面は、完全な光の閉 じ込めを実現することができる。さらに、フォトニック結晶導波路 140が上記式(3)を 満たすようにすれば、光は、フォトニック結晶導波路 140内を、損失をほとんど生じさ せることなく伝播することが可能となる。また、上記したように、フォトニック結晶導波路 140は、ブリルアンゾーン境界上に存在する特定の伝播光を容易に伝播させることが 可能であるため、「実効屈折率の波長による大きな変化」や「群速度異常」等の効果 を大きくすることができる。  [0091] As described above, the plane parallel to the XZ plane of the photonic crystal waveguide 140 can realize complete light confinement. Furthermore, if the photonic crystal waveguide 140 satisfies the above formula (3), light can propagate through the photonic crystal waveguide 140 with almost no loss. In addition, as described above, the photonic crystal waveguide 140 can easily propagate specific propagating light existing on the Brillouin zone boundary. Effects such as “group velocity abnormality” can be increased.
[0092] 上記式(3)を満たすフォトニック結晶導波路 140は、ブリルアンゾーン境界上に存 在する特定の伝播光を伝播させることができる。さらに、フォトニック結晶導波路 140 は、上記のように完全な光の閉じ込めを実現することができ、その大きさや形状の制 限がないので、これを用いて導波路素子を作製する場合に、設計の自由度が高い。 また、フォトニック結晶導波路 140は、多層構造体であるため、作製も容易である。例 えば、基板に多層膜を積層した後、導波路部分にマスク形成してエッチングを行うこ とにより、容易に作製することができる。また、耐久性を高めるために、この導波路部 分に石英などのオーバークラッドをかけて、密封状態としてもょ 、。  [0092] The photonic crystal waveguide 140 satisfying the above formula (3) can propagate specific propagating light existing on the Brillouin zone boundary. Furthermore, since the photonic crystal waveguide 140 can realize complete light confinement as described above and there is no limit on the size and shape thereof, when producing a waveguide element using this, High degree of design freedom. Further, since the photonic crystal waveguide 140 is a multilayer structure, it can be easily manufactured. For example, a multilayer film can be easily formed by laminating a multilayer film on a substrate, then forming a mask on the waveguide portion and performing etching. In order to enhance the durability, an overcladding such as quartz is put on the waveguide part to make it sealed.
[0093] この 1次元フォトニック結晶導波路は、一般的に薄膜の材料として用いられている材 料により構成されればよい。 1次元フォトニック結晶導波路の材料としては、例えば、 耐久性や成膜コストの点で優れた、シリカ、シリコン、酸化チタン、酸ィ匕タンタル、酸ィ匕 ニオブ、フッ化マグネシウム、窒化シリコン等が適している。これらの材料は、スパッタ リング、真空蒸着、イオンアシスト蒸着、プラズマ CVDなどの一般的な方法により、容 易に薄膜とすることができる。なかでも、シリカと酸ィ匕タンタルは、どちらも、光の透過 率が高い、粒界などのない均質な成膜が可能である、ガラスと同様の方法によって端 面を研磨することができる、 t 、つた特徴を有して 、る。  [0093] The one-dimensional photonic crystal waveguide may be formed of a material generally used as a thin film material. As a material for the one-dimensional photonic crystal waveguide, for example, silica, silicon, titanium oxide, tantalum oxide, niobium oxide, magnesium fluoride, silicon nitride, etc., which are excellent in terms of durability and film formation cost, etc. Is suitable. These materials can be easily formed into thin films by general methods such as sputtering, vacuum deposition, ion-assisted deposition, and plasma CVD. Of these, both silica and tantalum oxide can polish the end face by the same method as glass, which enables high-light transmittance and uniform film formation without grain boundaries. t has the following characteristics.
[0094] また、 1次元フォトニック結晶導波路が基板上に形成される場合、その基板の材料 には特に制限は無ぐ一般的な石英やシリコン力もなる基板を用いることができる。 1 次元フォトニック結晶導波路の作用は、材料を適切に選定することにより、通常使用 される光の波長域である 200ηπ!〜 20 μ m程度の波長範囲で発揮される。 [0094] When the one-dimensional photonic crystal waveguide is formed on a substrate, the material of the substrate In general, there is no particular limitation, and it is possible to use a general quartz or silicon substrate. The action of the one-dimensional photonic crystal waveguide is 200ηπ, which is the wavelength range of light normally used by selecting materials appropriately. It is demonstrated in the wavelength range of ~ 20 μm.
[0095] また、この 1次元フォトニック結晶導波路は、入射側端面及び出射側端面の大きさ を、例えば 5 m X 5 mといった大きさにすることができる。従って、コリメータと対物 レンズの光学系により、光ファイバと端面のモードフィールド径をマッチングさせて、 結合効率を高くすることができる。  In addition, in the one-dimensional photonic crystal waveguide, the size of the incident side end surface and the emission side end surface can be set to, for example, 5 m × 5 m. Therefore, the optical field system of the collimator and the objective lens can match the mode field diameter of the optical fiber and the end face to increase the coupling efficiency.
[0096] 以下においては、上記式(3)を満たすフォトニック結晶導波路 140と同様の構成を 有する 1次元フォトニック結晶導波路を複数用いて構成された、種々の光学素子であ る導波路素子及びレーザ発生器について具体的に説明する。尚、このような導波路
Figure imgf000030_0001
ヽては、光以外の電磁波を伝播させてもよ!、。
[0096] In the following, waveguides that are various optical elements configured by using a plurality of one-dimensional photonic crystal waveguides having the same configuration as the photonic crystal waveguide 140 that satisfies the above formula (3). The element and the laser generator will be specifically described. In addition, such a waveguide
Figure imgf000030_0001
In the meantime, you can propagate electromagnetic waves other than light!
[0097] 尚、以下に示す導波路素子を構成する 1次元フォトニック結晶導波路においては、 すべて、ブリルアンゾーン境界上に存在する伝播光が伝播される。また、これらは、 上記式(3)を満たすフォトニック結晶導波路 140と同様の構成であり、コアであるフォ トニック結晶 101の XZ平面に平行な面(上下面)及び YZ平面に平行な面 (側面)に おいて、完全な光の閉じ込めがなされているものとする。  [0097] In all of the one-dimensional photonic crystal waveguides constituting the waveguide elements shown below, the propagation light existing on the Brillouin zone boundary is propagated. Also, these are the same configurations as the photonic crystal waveguide 140 that satisfies the above formula (3), and the plane (upper and lower planes) parallel to the XZ plane and the plane parallel to the YZ plane of the core photonic crystal 101 On the (side) side, complete light confinement is assumed.
[0098] また、 1次元フォトニック結晶導波路の外部の平面波と、 1次元フォトニック結晶導波 路内を伝播するブリルアンゾーン境界上における伝播光とを結合させる具体的な方 法ついては、上記した特許公報に開示されているので、その説明は省略する。  [0098] Further, the specific method for coupling the plane wave outside the one-dimensional photonic crystal waveguide and the propagating light on the Brillouin zone boundary propagating in the one-dimensional photonic crystal waveguide has been described above. Since it is disclosed in the patent publication, its description is omitted.
[0099] [実施の形態 1]  [0099] [Embodiment 1]
本発明の実施の形態 1における導波路素子について、図を参照しながら説明する 。実施の形態 1の導波路素子は、信号光が伝播する信号光用導波路の一部におい て、屈折率周期方向に対して垂直で、かつ、信号光の伝播方向に対して垂直な方向 に制御光を共振させることにより、共振部分の屈折率を変化させて、信号光の位相に ずれを生じさせる導波路素子である。尚、この導波路素子に用いられている導波路 は、すべて 1次元フォトニック結晶導波路である。  A waveguide element according to the first embodiment of the present invention will be described with reference to the drawings. The waveguide element according to the first embodiment is perpendicular to the refractive index periodic direction and perpendicular to the signal light propagation direction in a part of the signal light waveguide through which the signal light propagates. This is a waveguide element that changes the refractive index of the resonance part by causing the control light to resonate, thereby causing a shift in the phase of the signal light. The waveguides used in this waveguide element are all one-dimensional photonic crystal waveguides.
[0100] 図 8は、本発明の実施の形態 1における導波路素子の構成を示す斜視図である。  FIG. 8 is a perspective view showing the configuration of the waveguide element in the first exemplary embodiment of the present invention.
また、図 9は、本発明の実施の形態 1における導波路素子の構成を示す平面図であ る。図 8及び図 9に示すように、実施の形態 1の導波路素子 1は、基板 2と、基板 2上 に設けられた、信号光用導波路 (共振フォトニック結晶導波路) 3、制御光入射用導 波路 (共振機構) 4及び制御光出射用導波路 (共振機構) 5とを備えて 、る。信号光 用導波路 3、制御光入射用導波路 4及び制御光出射用導波路 5は、それぞれ、上記 の 1次元フォトニック結晶導波路である。 1次元フォトニック結晶導波路は、上記のよう に、特定の高次モード光を伝播させることができ、さらに、伝播光の閉じ込めを完全 なちのとすることができる。 FIG. 9 is a plan view showing the configuration of the waveguide element according to the first embodiment of the present invention. The As shown in FIGS. 8 and 9, the waveguide element 1 according to the first embodiment includes a substrate 2, a signal light waveguide (resonant photonic crystal waveguide) 3 provided on the substrate 2, and control light. An incident waveguide (resonance mechanism) 4 and a control light emission waveguide (resonance mechanism) 5 are provided. The signal light waveguide 3, the control light incidence waveguide 4, and the control light emission waveguide 5 are the above-described one-dimensional photonic crystal waveguides, respectively. As described above, the one-dimensional photonic crystal waveguide can propagate a specific higher-order mode light, and can further confine the propagation light.
[0101] 信号光用導波路 3、制御光入射用導波路 4及び制御光出射用導波路 5は、それぞ れ、基板 2の主面に垂直な方向である Y軸方向を積層方向とする多層構造体であり、 積層方向に屈折率周期性を有して ヽる。  [0101] The signal light waveguide 3, the control light incidence waveguide 4, and the control light emission waveguide 5 each have a stacking direction in the Y-axis direction, which is a direction perpendicular to the main surface of the substrate 2. It is a multilayer structure and has a refractive index periodicity in the stacking direction.
[0102] 信号光用導波路 3の光軸は、 Z軸方向に沿っている。制御光入射用導波路 4及び 制御光出射用導波路 5の光軸は同一であり、信号光用導波路 3の光軸 (Z軸方向)に 対して垂直で、かつ、積層方向(Y軸方向)に対して垂直である。すなわち、制御光 入射用導波路 4及び制御光出射用導波路 5の光軸は、 X軸方向に沿っている。制御 光入射用導波路 4及び制御光出射用導波路 5は、信号光用導波路 3を挟んで対向 配置されている。制御光入射用導波路 4の出射側端面 4aと制御光出射用導波路 5 の入射側端面 5aとは、信号光用導波路 3の側面近傍に位置している。制御光入射 用導波路 4の出射側端面 4a及び制御光出射用導波路 5の入射側端面 5aの近傍で は、信号光用導波路 3の幅 (X軸方向の長さ)が他の個所に比べて広くなつている。こ れは、この箇所を共振器として使用するために、その共振周波数に合わせてこの箇 所 (共振部分)の幅が決まり、他の箇所のように幅を狭くすることができな 、からである 。尚、共振周波数によっては、信号光用導波路 3の幅は、共振部分も含めて一定で ある場合もあり、共振部分が他の箇所よりも狭くなる場合もあり得る。  [0102] The optical axis of the signal light waveguide 3 is along the Z-axis direction. The optical axes of the control light incident waveguide 4 and the control light emitting waveguide 5 are the same, perpendicular to the optical axis (Z-axis direction) of the signal light waveguide 3, and in the stacking direction (Y-axis). Direction). That is, the optical axes of the control light incident waveguide 4 and the control light emitting waveguide 5 are along the X-axis direction. The control light incident waveguide 4 and the control light emitting waveguide 5 are disposed opposite to each other with the signal light waveguide 3 interposed therebetween. The exit side end face 4a of the control light incident waveguide 4 and the entrance side end face 5a of the control light exit waveguide 5 are located in the vicinity of the side face of the signal light waveguide 3. In the vicinity of the exit end face 4a of the control light entrance waveguide 4 and the entrance end face 5a of the control light exit waveguide 5, the width of the signal light waveguide 3 (the length in the X-axis direction) is another place. Compared to This is because this part is used as a resonator, so the width of this part (resonant part) is determined according to the resonance frequency, and the width cannot be reduced like other parts. is there . Depending on the resonance frequency, the width of the signal light waveguide 3 may be constant including the resonance portion, and the resonance portion may be narrower than other portions.
[0103] 信号光用導波路 3、制御光入射用導波路 4及び制御光出射用導波路 5は、それぞ れ、図 7A及び図 7Bに示したフォトニック結晶導波路 140であり、上記式(3)も満たし ている。このため、屈折率周期方向である Y軸方向に対して垂直な面に沿った方向 へのブリルアンゾーン境界上の伝播光の漏れ出しは生じない。尚、実施の形態 1に おいては、各導波路の周りは空気であるため、屈折率 n は 1である。また、上記した ように、クラッド及びコアの両方を 1次元フォトニック結晶として、積層方向へのブリル アンゾーン境界上の伝播光の漏れ出しが生じないようにされている。これにより、信号 光用導波路 3、制御光入射用導波路 4及び制御光出射用導波路 5において、側面 及び上下面力 ブリルアンゾーン境界上の伝播光が漏れることはない。 [0103] The signal light waveguide 3, the control light incident waveguide 4, and the control light emitting waveguide 5 are the photonic crystal waveguides 140 shown in FIGS. 7A and 7B, respectively. (3) is also satisfied. For this reason, leakage of propagating light on the Brillouin zone boundary in the direction along the plane perpendicular to the Y-axis direction which is the refractive index periodic direction does not occur. In the first embodiment, the refractive index n is 1 because each waveguide is air. Also mentioned above As described above, both the clad and the core are formed as one-dimensional photonic crystals so that propagation light does not leak on the Brillouin zone boundary in the stacking direction. Accordingly, in the signal light waveguide 3, the control light incident waveguide 4, and the control light emitting waveguide 5, the propagation light on the side surface and the upper and lower surface force Brillouin zone boundaries does not leak.
[0104] 信号光用導波路 3の側面と、制御光入射用導波路 4の出射側端面 4aとの間隔は、 制御光入射用導波路 4中を伝播している制御光 72のエバネッセント波が、信号光用 導波路 3に結合し得る距離とする。また、信号光用導波路 3の側面と、制御光出射用 導波路 5の入射側端面 5aとの間隔も、同様に、エバネッセント波が結合し得る距離と する。信号光用導波路 3の側面と、制御光入射用導波路 4の出射側端面 4a及び制 御光出射用導波路 5の入射側端面 5aとのそれぞれの間隔を、このように設定するこ とにより、エバネッセント波が結合する効率、すなわち、反射率を調整することができ る。従って、信号光用導波路 3の側面の内面が共振器として機能し、信号光用導波 路 3内において制御光 72が X軸方向に共振する。つまり、制御光入射用導波路 4、 制御光出射用導波路 5及び信号光用導波路 3により、フアブリペロー共振器が構成さ れている。このようにエバネッセント波が結合し得るのは、信号光用導波路 3が、上記 の 1次元フォトニック結晶導波路であって、側面における光の閉じ込めが完全である 力 である。 [0104] The distance between the side surface of the signal light waveguide 3 and the output side end surface 4a of the control light incident waveguide 4 is such that the evanescent wave of the control light 72 propagating in the control light incident waveguide 4 is The distance that can be coupled to the waveguide 3 for signal light. Similarly, the distance between the side surface of the signal light waveguide 3 and the incident-side end surface 5a of the control light emitting waveguide 5 is also a distance at which an evanescent wave can be coupled. The distance between the side surface of the signal light waveguide 3 and the output side end surface 4a of the control light incident waveguide 4 and the incident side end surface 5a of the control light output waveguide 5 is set in this way. Thus, the efficiency at which the evanescent wave is coupled, that is, the reflectance can be adjusted. Accordingly, the inner surface of the side surface of the signal light waveguide 3 functions as a resonator, and the control light 72 resonates in the X-axis direction in the signal light waveguide 3. That is, the control light incident waveguide 4, the control light emitting waveguide 5, and the signal light waveguide 3 constitute a Fabry-Perot resonator. The evanescent wave can be coupled in this way because the signal light waveguide 3 is the above-described one-dimensional photonic crystal waveguide, and the light is completely confined on the side surface.
[0105] 次に、実施の形態 1の導波路素子 1の動作について説明する。  [0105] Next, the operation of the waveguide element 1 of the first embodiment will be described.
[0106] 信号光用導波路 3に、波長 λ の信号光 71を伝播させる。この場合、信号光 71は  A signal light 71 having a wavelength λ is propagated through the signal light waveguide 3. In this case, the signal light 71 is
S  S
、ブリルアンゾーン境界上の伝播モードとなるように伝播させる。  Propagate to become a propagation mode on the Brillouin zone boundary.
[0107] ここで、制御光入射用導波路 4に、波長 λ の制御光 72を伝播させる。制御光 72  Here, the control light 72 having the wavelength λ is propagated through the control light incident waveguide 4. Control light 72
C  C
も、ブリルアンゾーン境界上の伝播モードとなるように伝播させる。これにより、制御光 入射用導波路 4の出射側端面 4aからのエバネッセント波が信号光用導波路 3と一部 結合し、残りは反射される。また、信号光用導波路 3の側面と制御光出射用導波路 5 の入射側端面 5aとの間にも僅かな間隔があり、そのために、エバネッセント波は一部 結合し、残りは反射される。つまり、信号光用導波路 3の側面と制御光出射用導波路 5の入射側端面 5aとの間隔が、反射体のような働きをする。すなわち、信号光用導波 路 3の側面の内側により、フアブリペロー共振器が構成され、信号光用導波路 3内に おいて X軸方向に共振する制御光 73が生じる。共振している制御光 73は、制御光 出射用導波路 5に結合する。 Is also propagated in a propagation mode on the Brillouin zone boundary. As a result, the evanescent wave from the output-side end face 4a of the control light incident waveguide 4 is partially coupled to the signal light waveguide 3, and the rest is reflected. In addition, there is a slight gap between the side surface of the signal light waveguide 3 and the incident side end surface 5a of the control light emitting waveguide 5, so that the evanescent wave is partially coupled and the rest is reflected. . That is, the distance between the side surface of the signal light waveguide 3 and the incident side end surface 5a of the control light emitting waveguide 5 functions like a reflector. That is, a Fabry-Perot resonator is formed by the inside of the side surface of the signal light waveguide 3, and is formed in the signal light waveguide 3. Then, control light 73 resonating in the X-axis direction is generated. The resonating control light 73 is coupled to the control light emitting waveguide 5.
[0108] 信号光用導波路 3の側面と、制御光入射用導波路 4の出射側端面 4a及び制御光 出射用導波路 5の入射側端面 5aとのそれぞれの間隔は、具体的には、制御光の特 性及び共振周波数により決定される。信号光用導波路 3の側面と、制御光入射用導 波路 4の出射側端面 4a及び制御光出射用導波路 5の入射側端面 5aとのそれぞれの 間隔を調整することにより、信号光用導波路 3の側面の内側での反射率を調整するこ とかできる。 [0108] The distance between the side surface of the signal light waveguide 3 and the exit side end surface 4a of the control light incident waveguide 4 and the incident side end surface 5a of the control light exit waveguide 5 is specifically, It is determined by the characteristics of the control light and the resonance frequency. By adjusting the distance between the side surface of the signal light waveguide 3 and the output side end surface 4a of the control light incident waveguide 4 and the incident side end surface 5a of the control light output waveguide 5, the signal light guide is adjusted. The reflectance inside the side surface of the waveguide 3 can be adjusted.
[0109] 制御光 72を信号光用導波路 3内において共振させることにより、共振部分の電場 は非常に強いものとなり、大きい非線型作用を生じさせることができる。非線型作用 は、電場の 2乗、 3乗 (あるいはそれ以上)に比例して生じる。そのため、制御光 72の 共振部分のみで非線型作用が生じ、共振部分以外の箇所を伝播する信号光 71は 何ら影響を受けない。非線型作用を生じさせるためには、例えば、信号光用導波路 3 のコアを非線型作用が生じやすい構造にすればよい。例えば、コアを構成する材料 の少なくとも一部に非線型材料を用いたり、コアを構成する材料に非線型作用を有 する希土類等の物質をドープしたり、コアを構成する材料に非線型作用を大きくする 微粒子 (量子ドットなど)を分散させたりすればよい。非線型作用を生じさせることによ り、屈折率が変化するので、信号光 71の光路長が変化し、従って、位相も変化する。 尚、信号光 71と制御光 72の波長は異なるので、制御光 72が信号光 71のノイズとな ることはない。  By causing the control light 72 to resonate in the signal light waveguide 3, the electric field in the resonance portion becomes very strong, and a large nonlinear effect can be generated. Nonlinear effects occur in proportion to the square, cube (or higher) of the electric field. Therefore, a non-linear action occurs only in the resonance part of the control light 72, and the signal light 71 propagating through the part other than the resonance part is not affected at all. In order to generate the nonlinear effect, for example, the core of the signal light waveguide 3 may be configured to easily generate the nonlinear effect. For example, a nonlinear material is used for at least a part of the material constituting the core, a material such as a rare earth having a nonlinear action is doped in the material constituting the core, or a nonlinear action is applied to the material constituting the core. Increase the size of fine particles (quantum dots, etc.). By causing a non-linear effect, the refractive index changes, so the optical path length of the signal light 71 changes, and therefore the phase also changes. Since the wavelengths of the signal light 71 and the control light 72 are different, the control light 72 does not become noise of the signal light 71.
[0110] 例えば、制御光 72を共振させた状態と共振させていない状態とでは、非線型作用 によって屈折率が変化するので、上記のように信号光 71の光路長が異なり、このた めに、位相のずれが生じる。従って、導波路素子 1は、例えば、スイッチング素子とし て用いることができる。  [0110] For example, the optical path length of the signal light 71 differs between the state in which the control light 72 is made to resonate and the state in which the control light 72 is not made to resonate. A phase shift occurs. Therefore, the waveguide element 1 can be used as a switching element, for example.
[0111] [実施の形態 2]  [0111] [Embodiment 2]
本発明の実施の形態 2における導波路素子について、図を参照しながら説明する 。実施の形態 2の導波路素子は、実施の形態 1の導波路素子を含む構成の導波路 素子であり、いわゆるマッハツェンダー式の光路切り換え素子である。 [0112] 図 10は、本発明の実施の形態 2における導波路素子の構成を示す斜視図である。 図 10に示す導波路素子 6は、図 8、図 9に示す実施の形態 1の導波路素子を含んで いる。そこで、図 10において、図 8、図 9に示す部材と同様の機能を有する部材には 同一の参照符号を付し、その説明は省略する。 A waveguide element according to the second embodiment of the present invention will be described with reference to the drawings. The waveguide element according to the second embodiment is a waveguide element having a configuration including the waveguide element according to the first embodiment, and is a so-called Mach-Zehnder type optical path switching element. FIG. 10 is a perspective view showing the configuration of the waveguide element according to the second embodiment of the present invention. A waveguide element 6 shown in FIG. 10 includes the waveguide element of the first embodiment shown in FIGS. Therefore, in FIG. 10, members having the same functions as those shown in FIGS. 8 and 9 are denoted by the same reference numerals, and description thereof is omitted.
[0113] 図 10に示すように、実施の形態 2の導波路素子 6は、基板 2と、基板 2上に設けられ た、第 1信号光用導波路 (共振フォトニック結晶導波路) 7a及び第 2信号光用導波路 7bに途中で分岐された信号光用主導波路 7、制御光入射用導波路 4及び制御光出 射用導波路 5とを備えている。第 1信号光用導波路 7a及び第 2信号光用導波路 7bに 途中で分岐された信号光用主導波路 7、制御光入射用導波路 4及び制御光出射用 導波路 5は、それぞれ、上記の 1次元フォトニック結晶導波路である。 1次元フォトニッ ク結晶導波路は、上記のように、特定の高次モード光を伝播させることができ、さらに 、伝播光の閉じ込めを完全なものとすることができる。  As shown in FIG. 10, the waveguide element 6 of the second embodiment includes a substrate 2 and a first signal light waveguide (resonant photonic crystal waveguide) 7a provided on the substrate 2. A signal light main waveguide 7, a control light incident waveguide 4, and a control light emitting waveguide 5 branched in the middle of the second signal light waveguide 7 b are provided. The signal light main waveguide 7, the control light incident waveguide 4 and the control light emitting waveguide 5 branched in the middle of the first signal light waveguide 7a and the second signal light waveguide 7b, respectively, This is a one-dimensional photonic crystal waveguide. As described above, the one-dimensional photonic crystal waveguide can propagate a specific higher-order mode light, and can further confine the propagation light.
[0114] 第 1信号光用導波路 7a及び第 2信号光用導波路 7bに途中で分岐された信号光用 主導波路 7、制御光入射用導波路 4及び制御光出射用導波路 5は、それぞれ、基板 2の主面に垂直な方向である Y軸方向を積層方向とする多層構造体であり、積層方 向に屈折率周期性を有して ヽる。  [0114] The signal light main waveguide 7, the control light incident waveguide 4 and the control light emitting waveguide 5 branched in the middle of the first signal light waveguide 7a and the second signal light waveguide 7b are: Each is a multilayer structure in which the Y-axis direction, which is the direction perpendicular to the main surface of the substrate 2, is the stacking direction, and has a refractive index periodicity in the stacking direction.
[0115] 信号光用主導波路 7は、途中で、第 1信号光用導波路 7a及び第 2信号光用導波路 7bに分岐してお互いに離れる力 ー且接近してから再び離れるように構成されて!ヽ る。  [0115] The signal light main waveguide 7 is configured so that it splits into the first signal light waveguide 7a and the second signal light waveguide 7b on the way and separates them from each other. Be done!
[0116] 第 1信号光用導波路 7a及び第 2信号光用導波路 7bが分岐した後、再び接近する までの間の第 1信号光用導波路 7aの側面に出射側端面 4aが対向するように、制御 光入射用導波路 4が配置されている。また、同様に、第 1信号光用導波路 7a及び第 2信号光用導波路 7bが分岐した後、再び接近するまでの間の第 1信号光用導波路 7 aの側面に入射側端面 5aが対向するように、制御光出射用導波路 5が配置されてい る。すなわち、制御光入射用導波路 4及び制御光出射用導波路 5は、第 1信号光用 導波路 7aを挟んで対向配置されている。ここで、第 1信号光用導波路 7aは、図 8、図 9に示す実施の形態 1の信号光用導波路 3に相当して 、る。  [0116] After the first signal light waveguide 7a and the second signal light waveguide 7b are branched, the emission-side end face 4a faces the side surface of the first signal light waveguide 7a until it approaches again. Thus, the control light incident waveguide 4 is arranged. Similarly, after the first signal light waveguide 7a and the second signal light waveguide 7b are branched, the incident-side end face 5a is placed on the side surface of the first signal light waveguide 7a until it approaches again. Are arranged so as to face each other. That is, the control light incident waveguide 4 and the control light emitting waveguide 5 are disposed to face each other with the first signal light waveguide 7a interposed therebetween. Here, the first signal light waveguide 7a corresponds to the signal light waveguide 3 of the first embodiment shown in FIGS.
[0117] 第 1信号光用導波路 7a及び第 2信号光用導波路 7bに途中で分岐された信号光用 主導波路 7、制御光入射用導波路 4及び制御光出射用導波路 5は、それぞれ、図 7 A及び図 7Bに示したフォトニック結晶導波路 140であり、上記式(3)も満たしている。 このため、屈折率周期方向である Y軸方向に対して垂直な面に沿った方向へのプリ ルアンゾーン境界上の伝播光の漏れ出しは生じない。尚、実施の形態 2においては 、各導波路の周りは空気であるため、屈折率 n は 1である。また、上記したように、ク [0117] For signal light branched into the first signal light waveguide 7a and the second signal light waveguide 7b The main waveguide 7, the control light incidence waveguide 4, and the control light emission waveguide 5 are the photonic crystal waveguides 140 shown in FIGS. 7A and 7B, respectively, and also satisfy the above equation (3). . Therefore, no leakage of propagating light on the Prill-Ann zone boundary in the direction along the plane perpendicular to the Y-axis direction, which is the refractive index periodic direction, occurs. In the second embodiment, since the air around each waveguide is air, the refractive index n is 1. Also, as mentioned above,
S  S
ラッド及びコアの両方を 1次元フォトニック結晶として、積層方向へのブリルアンゾーン 境界上の伝播光の漏れ出しが生じないようにされている。これにより、第 1信号光用 導波路 7a及び第 2信号光用導波路 7bに途中で分岐された信号光用主導波路 7、制 御光入射用導波路 4及び制御光出射用導波路 5において、側面及び上下面力 ブ リルアンゾーン境界上の伝播光が漏れることはない。  Both the lad and the core are made as one-dimensional photonic crystals, so that the propagating light does not leak on the Brillouin zone boundary in the stacking direction. As a result, in the first signal light waveguide 7a and the second signal light waveguide 7b, the signal light main waveguide 7, the control light incident waveguide 4, and the control light emission waveguide 5 branched in the middle. , Side and vertical forces Propagation light on the Brillouin zone boundary will not leak.
[0118] 次に、実施の形態 2の導波路素子 6の動作について説明する。 [0118] Next, the operation of the waveguide element 6 of the second embodiment will be described.
[0119] 信号光用主導波路 7に、波長 λ の信号光 71を伝播させる。この場合、信号光 71 The signal light 71 having the wavelength λ is propagated through the signal light main waveguide 7. In this case, signal light 71
S  S
は、ブリルアンゾーン境界上の伝播モードとなるように伝播させる。信号光用主導波 路 7を伝播している信号光 71は、第 1信号光用導波路 7aと第 2信号光用導波路 7bと に分岐して伝播する。  Is propagated to be a propagation mode on the Brillouin zone boundary. The signal light 71 propagating through the signal light main waveguide 7 is branched and propagated to the first signal light waveguide 7a and the second signal light waveguide 7b.
[0120] ここで、制御光入射用導波路 4に、波長 λ の制御光 72を伝播させる。制御光 72  Here, the control light 72 having the wavelength λ is propagated through the control light incident waveguide 4. Control light 72
C  C
も、ブリルアンゾーン境界上の伝播モードとなるように伝播させる。これにより、第 1信 号光用導波路 7aの側面の内面を共振部分とするフアブリペロー共振器が構成され、 第 1信号光用導波路 7a内において制御光 72が X軸方向に共振する。共振している 後制御光 72は、制御光出射用導波路 5に結合する。  Is also propagated in a propagation mode on the Brillouin zone boundary. As a result, a Fabry-Perot resonator having the inner surface of the side surface of the first signal light waveguide 7a as a resonance portion is configured, and the control light 72 resonates in the X-axis direction in the first signal light waveguide 7a. After resonating, the control light 72 is coupled to the control light emitting waveguide 5.
[0121] 実施の形態 1で説明したように、第 1信号光用導波路 7aにおける制御光 72の共振 部分を、非線型作用が生じやすい構造としておくことにより、この共振部分のみで非 線型作用が生じる。そして、このように第 1信号光用導波路 7aにおいて制御光 72を 共振させることにより、第 1信号光用導波路 7aを伝播している信号光 71に位相のず れを生じさせることができる。  [0121] As explained in the first embodiment, the resonance portion of the control light 72 in the first signal light waveguide 7a is made to have a structure in which a nonlinear action is likely to occur. Occurs. Then, by causing the control light 72 to resonate in the first signal light waveguide 7a in this way, it is possible to cause a phase shift in the signal light 71 propagating through the first signal light waveguide 7a. .
[0122] 一方、第 2信号光用導波路 7bにおいては、信号光 71は、位相がずれることなく伝 播する。  On the other hand, in the second signal light waveguide 7b, the signal light 71 propagates without phase shift.
[0123] 第 1信号光用導波路 7aと第 2信号光用導波路 7bとが接近する接近箇所 9において 、これらの距離は、お互いの伝播光がエバネッセント波によって結合し得る距離とし、 方向性結合器を形成する。このような配置であることから、制御光 72によって共振を 行った場合と共振を行わない場合とで、第 1信号光用導波路 7aと第 2信号光用導波 路 7bのいずれ力 信号光 71を出力させるかを制御することができる。 [0123] At the approaching point 9 where the first signal light waveguide 7a and the second signal light waveguide 7b approach each other. These distances are the distances at which the propagating light can be coupled by the evanescent wave to form a directional coupler. Because of this arrangement, either the first signal light waveguide 7a or the second signal light waveguide 7b is used as the signal light, depending on whether resonance is performed by the control light 72 or not. It is possible to control whether 71 is output.
[0124] このように、導波路素子 6においては、制御光 72によって共振を行うか、行わない 力により信号光 71の分岐方向を制御することができる。  As described above, in the waveguide element 6, resonance can be performed by the control light 72, or the branching direction of the signal light 71 can be controlled by a force that is not performed.
[0125] [実施の形態 3]  [0125] [Embodiment 3]
本発明の実施の形態 3における導波路素子について、図を参照しながら説明する 。実施の形態 3の導波路素子は、信号光が伝播する信号光用導波路の一部におい て、屈折率周期方向に対して垂直で、かつ、信号光の伝播方向に対して垂直な方向 に制御光を共振させ、さらに、信号光もその伝播方向に共振させるように構成された 導波路素子である。このような構成とすることにより、制御光の共振によって、信号光 の透過又は反射を選択することが可能となる。尚、この導波路素子に用いられている 導波路は、すべて 1次元フォトニック結晶導波路である。  A waveguide element according to Embodiment 3 of the present invention will be described with reference to the drawings. The waveguide element of Embodiment 3 is perpendicular to the refractive index periodic direction and perpendicular to the signal light propagation direction in a part of the signal light waveguide through which the signal light propagates. The waveguide element is configured to resonate the control light and further resonate the signal light in its propagation direction. With such a configuration, transmission or reflection of signal light can be selected by resonance of control light. The waveguides used in this waveguide element are all one-dimensional photonic crystal waveguides.
[0126] 図 11は、本発明の実施の形態 3における導波路素子の構成を示す平面図である。  FIG. 11 is a plan view showing the configuration of the waveguide element according to the third embodiment of the present invention.
図 11に示す導波路素子 11は、図 8、図 9に示す実施の形態 1の導波路素子を含ん でいる。そこで、図 11において、図 8、図 9に示す部材と同様の機能を有する部材に は同一の参照符号を付し、その説明は省略する。  A waveguide element 11 shown in FIG. 11 includes the waveguide element of the first embodiment shown in FIGS. Therefore, in FIG. 11, members having the same functions as those shown in FIGS. 8 and 9 are denoted by the same reference numerals, and description thereof is omitted.
[0127] 図 11に示すように、実施の形態 3の導波路素子 11は、基板 2と、基板 2上に設けら れた、入射側信号光用導波路 12、信号共振用導波路 (共振フォトニック結晶導波路 ) 13、出射側信号光用導波路 14、制御光入射用導波路 4及び制御光出射用導波路 5とを備えている。入射側信号光用導波路 12、信号共振用導波路 13、出射側信号 光用導波路 14、制御光入射用導波路 4及び制御光出射用導波路 5は、それぞれ、 上記の 1次元フォトニック結晶導波路である。 1次元フォトニック結晶導波路は、上記 のように、特定の高次モード光を伝播させることができ、さらに、伝播光の閉じ込めを 完全なものとすることができる。  As shown in FIG. 11, the waveguide element 11 of the third embodiment includes a substrate 2, an incident-side signal light waveguide 12, a signal resonance waveguide (resonance) provided on the substrate 2. Photonic crystal waveguide) 13, emission-side signal light waveguide 14, control light incident waveguide 4, and control light emitting waveguide 5. The incident-side signal light waveguide 12, the signal resonance waveguide 13, the output-side signal light waveguide 14, the control light incident waveguide 4, and the control light output waveguide 5 are each of the one-dimensional photonics described above. It is a crystal waveguide. As described above, the one-dimensional photonic crystal waveguide can propagate a specific higher-order mode light, and can further confine the propagation light.
[0128] 入射側信号光用導波路 12、信号共振用導波路 13、出射側信号光用導波路 14、 制御光入射用導波路 4及び制御光出射用導波路 5は、それぞれ、基板 2の主面に垂 直な方向である Y軸方向を積層方向とする多層構造体であり、積層方向に屈折率周 期性を有している。 The incident-side signal light waveguide 12, the signal resonance waveguide 13, the output-side signal light waveguide 14, the control-light incident waveguide 4, and the control-light output waveguide 5 are respectively formed on the substrate 2. Hanging on the main surface It is a multilayer structure with the Y-axis direction being the straight direction as the stacking direction, and has a refractive index periodicity in the stacking direction.
[0129] 入射側信号光用導波路 12、信号共振用導波路 13及び出射側信号光用導波路 1 4の光軸は、ともに Ζ軸方向に沿っている。入射側信号光用導波路 12及び出射側信 号光用導波路 14は、信号共振用導波路 13を挟むように配置されている。また、入射 側信号光用導波路 12の出射側端面 12a及び出射側信号光用導波路 14の入射側 端面 14aは、それぞれ信号共振用導波路 13の入射側端面 13a及び出射側端面 13 bの近傍に位置している。制御光入射用導波路 4及び制御光出射用導波路 5は、信 号共振用導波路 13を挟んで対向配置されている。制御光入射用導波路 4の出射側 端面 4aと制御光出射用導波路 5の入射側端面 5aとは、それぞれ信号共振用導波路 13の側面 13c、 13dの近傍に位置している。  The optical axes of the incident-side signal light waveguide 12, the signal resonance waveguide 13, and the output-side signal light waveguide 14 are all along the axial direction. The incident-side signal light waveguide 12 and the outgoing-side signal light waveguide 14 are arranged so as to sandwich the signal resonance waveguide 13. In addition, the output-side end face 12a of the incident-side signal light waveguide 12 and the incident-side end face 14a of the output-side signal light waveguide 14 correspond to the incident-side end face 13a and the output-side end face 13b of the signal resonance waveguide 13, respectively. Located in the vicinity. The control light incident waveguide 4 and the control light emitting waveguide 5 are disposed to face each other with the signal resonance waveguide 13 interposed therebetween. The exit side end face 4a of the control light incident waveguide 4 and the entrance side end face 5a of the control light exit waveguide 5 are located in the vicinity of the side faces 13c and 13d of the signal resonance waveguide 13, respectively.
[0130] 入射側信号光用導波路 12、信号共振用導波路 13、出射側信号光用導波路 14、 制御光入射用導波路 4及び制御光出射用導波路 5は、それぞれ、図 7A及び図 7B に示したフォトニック結晶導波路 140であり、上記式(3)も満たしている。このため、屈 折率周期方向である Y軸方向に対して垂直な面に沿った方向へのブリルアンゾーン 境界上の伝播光の漏れ出しは生じない。尚、実施の形態 3においては、各導波路の 周りは空気であるため、屈折率 n は 1である。また、上記したように、クラッド及びコア  [0130] The incident-side signal light waveguide 12, the signal resonance waveguide 13, the output-side signal light waveguide 14, the control-light incident waveguide 4 and the control-light output waveguide 5 are shown in FIG. This is the photonic crystal waveguide 140 shown in FIG. 7B, which also satisfies the above equation (3). Therefore, no leakage of propagating light on the Brillouin zone boundary in the direction along the plane perpendicular to the Y-axis direction, which is the refractive index periodic direction, occurs. In the third embodiment, since the air around each waveguide is air, the refractive index n is 1. Also, as mentioned above, cladding and core
S  S
の両方を 1次元フォトニック結晶として、積層方向へのブリルアンゾーン境界上の伝 播光の漏れ出しが生じないようにされている。これにより、入射側信号光用導波路 12 、信号共振用導波路 13、出射側信号光用導波路 14、制御光入射用導波路 4及び 制御光出射用導波路 5において、側面及び上下面力 ブリルアンゾーン境界上の伝 播光が漏れることはない。  Both of these are made to be one-dimensional photonic crystals so that propagation light does not leak on the Brillouin zone boundary in the stacking direction. Thus, in the incident-side signal light waveguide 12, the signal resonance waveguide 13, the output-side signal light waveguide 14, the control light incident waveguide 4, and the control light output waveguide 5, the side surface and the vertical surface force The transmitted light on the Brillouin zone boundary does not leak.
[0131] 信号共振用導波路 13の側面 13c、 13dと、制御光入射用導波路 4の出射側端面 4 a及び制御光出射用導波路 5の入射側端面 5aとの間隔は、制御光 72が信号共振用 導波路 13において X軸方向に共振するような距離とする。これにより、信号共振用導 波路 13の側面 13c、 13dの内面を共振部分とするフアブリペロー共振器が構成され ている。また、入射側信号光用導波路 12の出射側端面 12aと信号共振用導波路 13 の入射側端面 13aとの間隔は、入射側信号光用導波路 12中を伝播している信号光 71のエバネッセント波が、信号共振用導波路 13に部分的に結合し得る距離とする。 また、信号共振用導波路 13の出射側端面 13bと、出射側信号光用導波路 14の入射 側端面 14aとの間隔は、エバネッセント波の部分的結合により、不完全な反射面とし て機能し、信号光 71が信号共振用導波路 13において Z軸方向に共振するような距 離とする。つまり、信号共振用導波路 13の入射側端面 13a及び出射側端面 13bの 内面を共振部分とするフアブリペロー共振器が構成されている。これにより、信号共 振用導波路 13内にぉ 、て Z軸方向に共振する信号光 74が生じる。共振して!/、る信 号光 74は、出射側信号光用導波路 14に結合する。 [0131] The distances between the side surfaces 13c and 13d of the signal resonance waveguide 13 and the exit-side end face 4a of the control-light entrance waveguide 4 and the entrance-side end face 5a of the control-light exit waveguide 5 are as follows. Is a distance that resonates in the X-axis direction in the signal resonance waveguide 13. As a result, a Fabry-Perot resonator is formed in which the inner surfaces of the side surfaces 13c and 13d of the signal resonance waveguide 13 are resonant portions. The distance between the exit-side end face 12a of the incident-side signal light waveguide 12 and the incident-side end face 13a of the signal resonance waveguide 13 is the signal light propagating through the incident-side signal light waveguide 12. It is assumed that the 71 evanescent waves can be partially coupled to the signal resonance waveguide 13. The distance between the output-side end face 13b of the signal resonance waveguide 13 and the incident-side end face 14a of the output-side signal light waveguide 14 functions as an incomplete reflection surface due to partial coupling of the evanescent wave. The distance is such that the signal light 71 resonates in the Z-axis direction in the signal resonance waveguide 13. In other words, a Fabry-Perot resonator is formed in which the inner surfaces of the incident-side end face 13a and the emission-side end face 13b of the signal resonance waveguide 13 are resonant portions. As a result, signal light 74 that resonates in the Z-axis direction is generated in the signal resonance waveguide 13. The signal light 74 that resonates is coupled to the output-side signal light waveguide 14.
[0132] 次に、実施の形態 3の導波路素子 11の動作について説明する。 [0132] Next, the operation of the waveguide element 11 of the third embodiment will be described.
[0133] 入射側信号光用導波路 12に、波長 λ の信号光 71を伝播させる。この場合、信号 光 71は、ブリルアンゾーン境界上の伝播モードとなるように伝播させる。入射側信号 光用導波路 12を伝播している信号光 71は、信号共振用導波路 13に結合されて、当 該信号共振用導波路 13で共振し、出射側信号光用導波路 14に結合する。つまり、 信号共振用導波路 13での共振周波数を有する信号光 71は、入射側信号光用導波 路 12から信号共振用導波路 13を透過して出射側信号光用導波路 14に伝播する。 しかし、入射側信号光用導波路 12に、波長 λ 以外の信号光を伝播させても、当該 信号光は、信号共振用導波路 13で共振せず、信号共振用導波路 13で反射されて 、入射側信号光用導波路 12に戻ってくる。 The signal light 71 having the wavelength λ is propagated through the incident-side signal light waveguide 12. In this case, the signal light 71 is propagated so as to be in a propagation mode on the Brillouin zone boundary. The signal light 71 propagating in the incident-side signal light waveguide 12 is coupled to the signal resonance waveguide 13, resonates in the signal resonance waveguide 13, and enters the output-side signal light waveguide 14. Join. That is, the signal light 71 having the resonance frequency in the signal resonance waveguide 13 is transmitted from the incident-side signal light waveguide 12 through the signal resonance waveguide 13 and propagates to the emission-side signal light waveguide 14. . However, even if signal light other than the wavelength λ is propagated to the incident-side signal light waveguide 12, the signal light does not resonate in the signal resonance waveguide 13, but is reflected by the signal resonance waveguide 13. Return to the incident-side signal light waveguide 12.
[0134] ここで、波長え の制御光 72を信号共振用導波路 13の側面 13c、 13d間で X軸方 向に共振させると、非線型作用により、信号共振用導波路 13の屈折率が変化する。 これにより、波長 λ の信号光 71は、信号共振用導波路 13で共振せず、信号共振 用導波路 13で反射されて、入射側信号光用導波路 12に戻ってくるが、その代わりに 波長 λ とは僅かに異なる他の波長の信号光は、信号共振用導波路 13を透過する s Here, when the control light 72 having a wavelength is resonated in the X-axis direction between the side surfaces 13c and 13d of the signal resonance waveguide 13, the refractive index of the signal resonance waveguide 13 is increased by a non-linear action. Change. As a result, the signal light 71 having the wavelength λ does not resonate in the signal resonance waveguide 13 but is reflected by the signal resonance waveguide 13 and returns to the incident-side signal light waveguide 12. Signal light of other wavelengths slightly different from the wavelength λ is transmitted through the signal resonance waveguide 13 s
ようになる。  It becomes like this.
[0135] このように、制御光 72を伝播させる力否かで、信号共振用導波路 13を透過する信 号光の波長を選択することができる。従って、導波路素子 11は、スイッチング素子と して用いることができる。  As described above, the wavelength of the signal light transmitted through the signal resonance waveguide 13 can be selected depending on whether or not the control light 72 propagates. Therefore, the waveguide element 11 can be used as a switching element.
[0136] 尚、実施の形態 1で説明したように、信号共振用導波路 13における制御光 72の共 振部分を、非線型作用が生じやす 、構造としておくのが望ま 、。 Note that, as described in the first embodiment, the control light 72 in the signal resonance waveguide 13 is shared. Desirably, the vibration part should be structured so that non-linear effects are likely to occur.
[0137] [実施の形態 4]  [Embodiment 4]
本発明の実施の形態 4における導波路素子について、図を参照しながら説明する 。実施の形態 4の導波路素子は、実施の形態 3の導波路素子と同様に、信号光が伝 播する信号光用導波路の一部において、屈折率周期方向に対して垂直で、かつ、 信号光の伝播方向に対して垂直な方向に制御光を共振させ、さらに、信号光もその 伝播方向に共振させるように構成された導波路素子である。実施の形態 3の導波路 素子と異なる点は、信号光及び制御光の伝播方向が同一である点である。このような 構成とすることにより、制御光の共振によって、信号光の透過又は反射を選択するこ とが可能となる。尚、この導波路素子に用いられている導波路は、すべて 1次元フォト ニック結晶導波路である。  A waveguide element according to Embodiment 4 of the present invention will be described with reference to the drawings. Like the waveguide element of the third embodiment, the waveguide element of the fourth embodiment is perpendicular to the refractive index periodic direction in a part of the signal light waveguide through which the signal light propagates. The waveguide element is configured to resonate the control light in a direction perpendicular to the propagation direction of the signal light and further resonate the signal light in the propagation direction. The difference from the waveguide element of the third embodiment is that the propagation directions of signal light and control light are the same. With such a configuration, it is possible to select transmission or reflection of signal light by resonance of control light. The waveguides used in this waveguide element are all one-dimensional photonic crystal waveguides.
[0138] 図 12は、本発明の実施の形態 4における導波路素子の構成を示す平面図である。  FIG. 12 is a plan view showing the configuration of the waveguide element according to the fourth embodiment of the present invention.
図 12に示す導波路素子 16は、図 11に示す実施の形態 3の導波路素子 11から制御 光入射用導波路 4及び制御光出射用導波路 5を取り除いた構成である。そこで、図 1 2において、図 11に示す部材と同様の機能を有する部材には同一の参照符号を付 し、その説明は省略する。  A waveguide element 16 shown in FIG. 12 has a configuration in which the control light incident waveguide 4 and the control light emitting waveguide 5 are removed from the waveguide element 11 of the third embodiment shown in FIG. Therefore, in FIG. 12, members having the same functions as those shown in FIG. 11 are given the same reference numerals, and descriptions thereof are omitted.
[0139] 図 12に示すように、実施の形態 4の導波路素子 16は、基板 2と、基板 2上に設けら れた、入射側信号光用導波路 12、信号共振用導波路 13及び出射側信号光用導波 路 14とを備えている。入射側信号光用導波路 12、信号共振用導波路 13及び出射 側信号光用導波路 14は、それぞれ、上記の 1次元フォトニック結晶導波路である。 1 次元フォトニック結晶導波路は、上記のように、特定の高次モード光を伝播させること ができ、さらに、伝播光の閉じ込めを完全なものとすることができる。  As shown in FIG. 12, the waveguide element 16 of the fourth embodiment includes the substrate 2 and the incident-side signal light waveguide 12, the signal resonance waveguide 13, and the waveguide provided on the substrate 2. And an output-side signal light waveguide 14. The incident-side signal light waveguide 12, the signal resonance waveguide 13, and the emission-side signal light waveguide 14 are the above-described one-dimensional photonic crystal waveguides, respectively. As described above, the one-dimensional photonic crystal waveguide can propagate a specific higher-order mode light, and can further confine the propagation light.
[0140] 入射側信号光用導波路 12、信号共振用導波路 13及び出射側信号光用導波路 1 4は、それぞれ、図 7A及び図 7Bに示したフォトニック結晶導波路 140であり、上記式 (3)も満たしている。このため、屈折率周期方向である Y軸方向に対して垂直な面に 沿った方向へのブリルアンゾーン境界上の伝播光の漏れ出しは生じない。尚、実施 の形態 3においては、各導波路の周りは空気であるため、屈折率 n は 1である。また  The incident-side signal light waveguide 12, the signal resonance waveguide 13, and the output-side signal light waveguide 14 are the photonic crystal waveguides 140 shown in FIGS. 7A and 7B, respectively. Equation (3) is also satisfied. For this reason, leakage of propagating light on the Brillouin zone boundary in the direction along the plane perpendicular to the Y-axis direction which is the refractive index periodic direction does not occur. In the third embodiment, since the air around each waveguide is air, the refractive index n is 1. Also
S  S
、上記したように、クラッド及びコアの両方を 1次元フォトニック結晶として、積層方向 へのブリルアンゾーン境界上の伝播光の漏れ出しが生じな!/、ようにされて!、る。これ により、入射側信号光用導波路 12、信号共振用導波路 13、出射側信号光用導波路 14にお 、て、側面及び上下面力 ブリルアンゾーン境界上の伝播光が漏れることは ない。 As mentioned above, both the cladding and the core are one-dimensional photonic crystals, and the stacking direction There is no leakage of propagating light on the Brillouin Zone boundary! As a result, the propagation light on the side and upper / lower surface Brillouin zone boundaries does not leak through the incident-side signal light waveguide 12, the signal resonance waveguide 13, and the output-side signal light waveguide 14.
[0141] 次に、実施の形態 4の導波路素子 16の動作について説明する。  Next, the operation of the waveguide element 16 according to the fourth embodiment will be described.
[0142] 入射側信号光用導波路 12に、波長 λ の信号光 71を伝播させる。この場合、信号  [0142] The signal light 71 having the wavelength λ is propagated through the incident-side signal light waveguide 12. In this case, the signal
S  S
光 71は、ブリルアンゾーン境界上の伝播モードとなるように伝播させる。入射側信号 光用導波路 12を伝播している信号光 71は、信号共振用導波路 13に結合されて、当 該信号共振用導波路 13で共振し、出射側信号光用導波路 14に結合する。つまり、 信号共振用導波路 13での共振周波数を有する信号光 71は、入射側信号光用導波 路 12から信号共振用導波路 13を透過して出射側信号光用導波路 14に伝播する。  Light 71 propagates in a propagation mode on the Brillouin zone boundary. The signal light 71 propagating in the incident-side signal light waveguide 12 is coupled to the signal resonance waveguide 13, resonates in the signal resonance waveguide 13, and enters the output-side signal light waveguide 14. Join. That is, the signal light 71 having the resonance frequency in the signal resonance waveguide 13 is transmitted from the incident-side signal light waveguide 12 through the signal resonance waveguide 13 and propagates to the emission-side signal light waveguide 14. .
[0143] ここで、波長 λ の制御光 72を入射側信号光用導波路 12に伝播させ、信号共振 Here, the control light 72 having the wavelength λ is propagated to the incident-side signal light waveguide 12 to cause signal resonance.
C  C
用導波路 13に結合させて、信号共振用導波路 13の側面 13c、 13d間で X軸方向に 共振させると、非線型作用により、信号共振用導波路 13の屈折率が変化する。これ により、波長 λ の信号光 71は、信号共振用導波路 13で共振せず、信号共振用導  When coupled to the signal waveguide 13 and resonated in the X-axis direction between the side surfaces 13c and 13d of the signal resonance waveguide 13, the refractive index of the signal resonance waveguide 13 changes due to the nonlinear effect. As a result, the signal light 71 having the wavelength λ does not resonate in the signal resonance waveguide 13, and the signal resonance guide is not generated.
S  S
波路 13で反射されて、入射側信号光用導波路 12に戻ってくる。尚、実施の形態 4に おいては、入射側信号光用導波路 12及び出射側信号光用導波路 14を、共振用導 波路 13に共振を生じさせるための共振機構として用いている。  The light is reflected by the waveguide 13 and returns to the incident-side signal light waveguide 12. In the fourth embodiment, the incident-side signal light waveguide 12 and the emission-side signal light waveguide 14 are used as a resonance mechanism for causing resonance in the resonance waveguide 13.
[0144] このように、制御光 72を伝播させるカゝ否かで、信号共振用導波路 13を透過する信 号光の波長を選択することができる。従って、導波路素子 16は、スイッチング素子と して用いることができる。  As described above, the wavelength of the signal light transmitted through the signal resonance waveguide 13 can be selected depending on whether the control light 72 is propagated. Therefore, the waveguide element 16 can be used as a switching element.
[0145] 尚、実施の形態 1で説明したように、信号共振用導波路 13における制御光 72の共 振部分を、非線型作用が生じやす 、構造としておくのが望ま 、。  It should be noted that, as described in the first embodiment, it is desirable that the resonance portion of the control light 72 in the signal resonance waveguide 13 has a structure in which a nonlinear action is likely to occur.
[0146] また、図 12においては、信号共振用導波路 13の形状を直方体としているが、信号 共振用導波路 13の形状は直方体に限定されるものではない。実際には、信号共振 用導波路 13は、所望の共振特性が得られるように最適化された形状であるのが望ま しい。  In FIG. 12, the shape of the signal resonance waveguide 13 is a rectangular parallelepiped, but the shape of the signal resonance waveguide 13 is not limited to a rectangular parallelepiped. Actually, it is desirable that the signal resonance waveguide 13 has a shape optimized so as to obtain desired resonance characteristics.
[0147] [実施の形態 5] 本発明の実施の形態 5における導波路素子について、図を参照しながら説明する 。実施の形態 5の導波路素子は、信号光が伝播する信号光用導波路の一部におい て、屈折率周期方向に制御光を共振させることにより、共振部分の屈折率を変化さ せて、信号光の位相にずれを生じさせるように構成された導波路素子である。尚、こ の導波路素子に用いて 、る導波路は、すべて 1次元フォトニック結晶導波路である。 [Embodiment 5] A waveguide element according to the fifth embodiment of the present invention will be described with reference to the drawings. The waveguide element of the fifth embodiment changes the refractive index of the resonance portion by resonating the control light in the direction of the refractive index period in a part of the signal light waveguide through which the signal light propagates. It is a waveguide element configured to cause a shift in the phase of signal light. The waveguides used in this waveguide element are all one-dimensional photonic crystal waveguides.
[0148] 図 13は、本発明の実施の形態 5における導波路素子の構成を示す斜視図である。  FIG. 13 is a perspective view showing the configuration of the waveguide element according to the fifth embodiment of the present invention.
尚、図 13において、実施の形態 1の図 8、図 9に示す部材と同様の機能を有する部 材には同一の参照符号を付し、その説明は省略する。  In FIG. 13, members having the same functions as those shown in FIGS. 8 and 9 of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
[0149] 図 13に示すように、実施の形態 5の導波路素子 17は、基板 2と、基板 2上に設けら れた信号光用導波路 3と、制御光入射用光ファイバ (共振機構) 18と、制御光入射用 レンズ 19 (共振機構)とを備えている。光入射部である制御光入射用光ファイバ 18及 び制御光入射用レンズ 19は、信号光用導波路 3の上面に向力つて制御光 72を照射 できるように、信号光用導波路 3の上方に配置されている。信号光用導波路 3は、上 記の 1次元フォトニック結晶導波路である。 1次元フォトニック結晶導波路は、上記の ように、特定の高次モード光を伝播させることができ、さらに、伝播光の閉じ込めを完 全なものとすることができる。  As shown in FIG. 13, the waveguide element 17 according to the fifth embodiment includes a substrate 2, a signal light waveguide 3 provided on the substrate 2, and a control light incident optical fiber (resonance mechanism). ) 18 and a control light incident lens 19 (resonance mechanism). The control light incident optical fiber 18 and the control light incident lens 19, which are the light incident portions, of the signal light waveguide 3 are configured so that the control light 72 can be radiated to the upper surface of the signal light waveguide 3 by force. It is arranged above. The signal light waveguide 3 is the above-described one-dimensional photonic crystal waveguide. As described above, the one-dimensional photonic crystal waveguide can propagate specific higher-order mode light, and can further confine the propagation light.
[0150] 信号光用導波路 3は、基板 2の主面に垂直な方向である Y軸方向を積層方向とす る多層構造体であり、積層方向に屈折率周期性を有している。  [0150] The signal light waveguide 3 is a multilayer structure in which the Y-axis direction, which is the direction perpendicular to the main surface of the substrate 2, is the stacking direction, and has a refractive index periodicity in the stacking direction.
[0151] 信号光用導波路 3の光軸は、 Z軸方向に沿っている。制御光入射用光ファイバ 18 及び制御光入射用レンズ 19の光軸は、ともに信号光用導波路 3の積層方向(Y軸方 向)に沿っている。  [0151] The optical axis of the signal light waveguide 3 is along the Z-axis direction. The optical axes of the control light incident optical fiber 18 and the control light incident lens 19 are both along the stacking direction (Y-axis direction) of the signal light waveguide 3.
[0152] 信号光用導波路 3は、図 7A及び図 7Bに示したフォトニック結晶導波路 140であり、 上記式(3)も満たしている。このため、屈折率周期方向である Y軸方向に対して垂直 な面に沿った方向へのブリルアンゾーン境界上の伝播光の漏れ出しは生じな 、。尚 、実施の形態 5においては、信号光用導波路 3の周りは空気であるため、屈折率 n  The signal light waveguide 3 is the photonic crystal waveguide 140 shown in FIGS. 7A and 7B, and also satisfies the above equation (3). For this reason, the leakage of propagating light on the Brillouin zone boundary in the direction along the plane perpendicular to the Y-axis direction which is the refractive index periodic direction does not occur. In the fifth embodiment, since the periphery of the signal light waveguide 3 is air, the refractive index n
S  S
は 1である。また、上記したように、クラッド及びコアの両方を 1次元フォトニック結晶と して、積層方向へのブリルアンゾーン境界上の伝播光の漏れ出しが生じないようにさ れている。これにより、信号光用導波路 3において、側面及び上下面からブリルアン ゾーン境界上の伝播光が漏れることはな 、。 Is 1. In addition, as described above, both the cladding and the core are made of a one-dimensional photonic crystal so that propagating light does not leak on the Brillouin zone boundary in the stacking direction. Thus, in the signal light waveguide 3, the Brillouin from the side surface and the top and bottom surfaces The propagating light on the zone boundary will not leak.
[0153] 信号光用導波路 3の上面と制御光入射用レンズ 19との間隔は、制御光入射用光フ アイバ 18中を伝播し、制御光入射用レンズ 19によって集光されて信号光用導波路 3 の上面に照射される制御光 72が、信号光用導波路 3に集光スポットを形成する距離 とする。これにより、信号光用導波路 3の上下面のクラッドが反射体として機能し、制 御光 72が Y軸方向に共振するフアブリペロー共振器が構成されて 、る。  The distance between the upper surface of the signal light waveguide 3 and the control light incident lens 19 propagates through the control light incident optical fiber 18 and is collected by the control light incident lens 19 to be used for signal light. The distance at which the control light 72 irradiated on the upper surface of the waveguide 3 forms a condensing spot in the signal light waveguide 3 is defined as a distance. As a result, the clad on the upper and lower surfaces of the signal light waveguide 3 functions as a reflector, and a Fabry-Perot resonator in which the control light 72 resonates in the Y-axis direction is configured.
[0154] 次に、実施の形態 5の導波路素子 17の動作について説明する。 [0154] Next, the operation of the waveguide element 17 of the fifth embodiment will be described.
[0155] 信号光用導波路 3に、波長 λ の信号光 71を伝播させる。この場合、信号光 71は The signal light 71 having the wavelength λ is propagated through the signal light waveguide 3. In this case, the signal light 71 is
S  S
、ブリルアンゾーン境界上の伝播モードとなるように伝播させる。  Propagate to become a propagation mode on the Brillouin zone boundary.
[0156] ここで、制御光入射用光ファイバ 18に、波長 λ の制御光 72を伝播させる。制御光  Here, the control light 72 having the wavelength λ is propagated through the control light incident optical fiber 18. Control light
C  C
入射用光ファイバ 18からの制御光 72は、制御光入射用レンズ 19によって集光され て、信号光用導波路 3と結合する。信号光用導波路 3の上下面は、上記のように光の 閉じ込めがなされていることから、信号光用導波路 3の上下面の内側は反射体のよう な働きをする。従って、信号光用導波路 3の上下面の内側により、フアブリペロー共振 器が構成され、信号光用導波路 3内において Υ軸方向に共振する制御光 73が生じ る。  The control light 72 from the incident optical fiber 18 is collected by the control light incident lens 19 and coupled to the signal light waveguide 3. Since the upper and lower surfaces of the signal light waveguide 3 are confined as described above, the inner sides of the upper and lower surfaces of the signal light waveguide 3 function like a reflector. Therefore, a Fabry-Perot resonator is formed by the inside of the upper and lower surfaces of the signal light waveguide 3, and the control light 73 that resonates in the axial direction is generated in the signal light waveguide 3.
[0157] 制御光 72を信号光用導波路 3内において共振させることにより、共振部分の電場 は非常に強いものとなる。実施の形態 1で説明したように、信号光用導波路 3におけ る制御光 72の共振部分を、非線型作用が生じやすい構造としておくことにより、この 共振部分のみで非線型作用が生じる。非線型作用を生じさせることにより、屈折率等 が変化するので、信号光 71の光路長が変化し、従って、例えば、位相等の信号光 7 1の特性も変化する。  [0157] By causing the control light 72 to resonate in the signal light waveguide 3, the electric field in the resonance portion becomes very strong. As described in the first embodiment, by setting the resonance portion of the control light 72 in the signal light waveguide 3 to have a structure in which a nonlinear action is likely to occur, a nonlinear action occurs only in this resonance portion. By causing a non-linear effect, the refractive index and the like change, so that the optical path length of the signal light 71 changes, and for example, the characteristics of the signal light 71 such as the phase also change.
[0158] 例えば、制御光 72を共振させた状態と共振させていない状態とでは、上記のように 信号光 71の光路長が異なるために、位相のずれが生じる。従って、導波路素子 17 は、例えば、スイッチング素子として用いることができる。  For example, a phase shift occurs between the state in which the control light 72 is resonated and the state in which the control light 72 is not resonated because the optical path length of the signal light 71 is different as described above. Therefore, the waveguide element 17 can be used as a switching element, for example.
[0159] また、反射体として用いるため、コアの上下面に 1次元フォトニック結晶であるクラッ ドが形成されて 、るのが望まし 、。  [0159] In addition, it is desirable that a cladding, which is a one-dimensional photonic crystal, be formed on the upper and lower surfaces of the core for use as a reflector.
[0160] [実施の形態 6] 本発明の実施の形態 6における導波路素子について、図を参照しながら説明する 。実施の形態 6の導波路素子は、実施の形態 5の導波路素子を含む構成の導波路 素子であり、いわゆるマッハツェンダー式の光路切り換え素子である。 [Embodiment 6] A waveguide element according to the sixth embodiment of the present invention will be described with reference to the drawings. The waveguide element of the sixth embodiment is a waveguide element having a configuration including the waveguide element of the fifth embodiment, and is a so-called Mach-Zehnder type optical path switching element.
[0161] 図 14は、本発明の実施の形態 6における導波路素子の構成を示す斜視図である。  FIG. 14 is a perspective view showing the configuration of the waveguide element according to the sixth embodiment of the present invention.
図 14に示す導波路素子 21は、図 13に示す実施の形態 5の導波路素子を含んで 、 る。そこで、図 14において、図 13に示す部材と同様の機能を有する部材には同一の 参照符号を付し、その説明は省略する。また、実施の形態 6の導波路素子 21におけ る信号光 71が伝播する導波路である信号光用主導波路 7は、図 10に示す実施の形 態 2の導波路素子 6において信号光 71が伝播する信号光用主導波路 7と同様の構 成である。そこで、図 14において、図 10に示す部材と同様の機能を有する部材には 同一の参照符号を付し、その説明は省略する。  A waveguide element 21 shown in FIG. 14 includes the waveguide element of the fifth embodiment shown in FIG. Therefore, in FIG. 14, members having the same functions as those shown in FIG. 13 are denoted by the same reference numerals, and description thereof is omitted. Further, the signal light main waveguide 7 which is a waveguide through which the signal light 71 propagates in the waveguide element 21 of the sixth embodiment is the same as the signal light 71 in the waveguide element 6 of the second embodiment shown in FIG. The configuration is the same as the main waveguide 7 for signal light propagating. Therefore, in FIG. 14, members having the same functions as those shown in FIG. 10 are denoted by the same reference numerals, and description thereof is omitted.
[0162] 図 14に示すように、実施の形態 6の導波路素子 21は、基板 2と、基板 2上に設けら れた、第 1信号光用導波路 7a及び第 2信号光用導波路 7bに途中で分岐された信号 光用主導波路 7と、制御光入射用光ファイバ 18及び制御光入射用レンズ 19とを備え て ヽる。光入射部である制御光入射用光ファイバ 18及び制御光入射用レンズ 19は 、第 1信号光用導波路 7aの上面に向かって制御光 72を照射できるように、第 1信号 光用導波路 7aの上方に配置されて ヽる。  As shown in FIG. 14, the waveguide element 21 of the sixth embodiment includes a substrate 2, a first signal light waveguide 7 a and a second signal light waveguide provided on the substrate 2. A signal light main waveguide 7 branched to 7b, a control light incident optical fiber 18, and a control light incident lens 19 are provided. The control light incident optical fiber 18 and the control light incident lens 19, which are the light incident portions, are arranged so that the control light 72 can be irradiated toward the upper surface of the first signal light waveguide 7 a. It is placed above 7a.
[0163] 次に、実施の形態 6の導波路素子 21の動作について説明する。  Next, the operation of the waveguide element 21 according to the sixth embodiment will be described.
[0164] 信号光用主導波路 7に、波長 λ の信号光 71を伝播させる。この場合、信号光 71  [0164] The signal light 71 having the wavelength λ is propagated through the main waveguide 7 for signal light. In this case, signal light 71
S  S
は、ブリルアンゾーン境界上の伝播モードとなるように伝播させる。信号光用主導波 路 7を伝播している信号光 71は、第 1信号光用導波路 7aと第 2信号光用導波路 7bと に分岐して伝播する。  Is propagated to be a propagation mode on the Brillouin zone boundary. The signal light 71 propagating through the signal light main waveguide 7 is branched and propagated to the first signal light waveguide 7a and the second signal light waveguide 7b.
[0165] ここで、制御光入射用光ファイバ 18に、波長 λ の制御光 72を伝播させる。制御光  Here, the control light 72 having the wavelength λ is propagated through the control light incident optical fiber 18. Control light
C  C
入射用光ファイバ 18からの制御光 72は、制御光入射用レンズ 19によって集光され て、第 1信号光用導波路 7aと結合する。これにより、第 1信号光用導波路 7aの上下 面の内面を共振部分とするフアブリペロー共振器が構成され、第 1信号光用導波路 7 a内にぉ 、て制御光 72が Y軸方向に共振する。  The control light 72 from the incident optical fiber 18 is collected by the control light incident lens 19 and coupled to the first signal light waveguide 7a. As a result, a Fabry-Perot resonator is formed in which the inner surfaces of the upper and lower surfaces of the first signal light waveguide 7a are resonant portions, and the control light 72 is placed in the Y-axis direction in the first signal light waveguide 7a. Resonates.
[0166] 実施の形態 1で説明したように、第 1信号光用導波路 7aにおける制御光 72の共振 部分を、非線型作用が生じやすい構造としておくことにより、この共振部分のみで非 線型作用が生じる。そして、このように第 1信号用導波路 7aにおいて制御光 72を共 振させることにより、第 1信号光用導波路 7aを伝播している信号光 71に位相のずれ を生じさせることができる。 As described in the first embodiment, the resonance of the control light 72 in the first signal light waveguide 7a By setting the portion to have a structure in which a non-linear action is likely to occur, a non-linear action occurs only in this resonance portion. Thus, by causing the control light 72 to resonate in the first signal waveguide 7a, a phase shift can be caused in the signal light 71 propagating through the first signal light waveguide 7a.
[0167] 一方、第 2信号光用導波路 7bにおいては、信号光 71は、位相がずれることなく伝 播する。 On the other hand, in the second signal light waveguide 7b, the signal light 71 propagates without being out of phase.
[0168] 第 1信号光用導波路 7aと第 2信号光用導波路 7bとが接近する接近箇所 9において 、これらの距離は、お互いの伝播光がエバネッセント波によって結合し得る距離とし、 方向性結合器を形成する。このような配置であることから、制御光 72によって共振を 行った場合と共振を行わない場合とで、第 1信号光用導波路 7aと第 2信号光用導波 路 7bのいずれ力 信号光 71を出力させるかを制御することができる。  [0168] At the approaching point 9 where the first signal light waveguide 7a and the second signal light waveguide 7b approach each other, these distances are the distances at which the propagating light can be coupled by the evanescent wave. Form a coupler. Because of this arrangement, either the first signal light waveguide 7a or the second signal light waveguide 7b is used as the signal light, depending on whether resonance is performed by the control light 72 or not. It is possible to control whether 71 is output.
[0169] このように、導波路素子 21においては、制御光 72によって共振を行うか、行わない 力により信号光 71の分岐方向を制御することができる。  As described above, in the waveguide element 21, resonance can be performed by the control light 72, or the branching direction of the signal light 71 can be controlled by a force that is not performed.
[0170] [実施の形態 7]  [Embodiment 7]
本発明の実施の形態 7における導波路素子について、図を参照しながら説明する 。実施の形態 7の導波路素子は、実施の形態 6の導波路素子と同様に、光路切り換 え素子である。尚、この導波路素子に用いている導波路は、すべて 1次元フォトニック 結晶導波路である。  A waveguide element according to the seventh embodiment of the present invention will be described with reference to the drawings. The waveguide element according to the seventh embodiment is an optical path switching element similarly to the waveguide element according to the sixth embodiment. The waveguides used in this waveguide element are all one-dimensional photonic crystal waveguides.
[0171] 図 15は、本発明の実施の形態 7における導波路素子の構成を示す斜視図である。  FIG. 15 is a perspective view showing the configuration of the waveguide element according to the seventh embodiment of the present invention.
図 15に示す導波路素子 22は、図 14に示す実施の形態 6の導波路素子 21に、さら に、信号光用主導波路 7cが追加され、制御光入射用光ファイバ 18及び制御光入射 用レンズ 19の代わりに、レーザ素子(共振機構) 24が複数配列された VCSEL (Verti cal cavity surface emitting lasers (面発光型半導体レーザ)) 23が追加された構成で ある。そこで、図 15において、図 14に示す部材と同様の機能を有する部材には同一 の参照符号を付し、その説明は省略する。  The waveguide element 22 shown in FIG. 15 further includes a signal light main waveguide 7c in addition to the waveguide element 21 of the sixth embodiment shown in FIG. Instead of the lens 19, a VCSEL (Vertical Cavity Surface Emitting Lasers) 23 in which a plurality of laser elements (resonance mechanisms) 24 are arranged is added. Therefore, in FIG. 15, members having the same functions as those shown in FIG. 14 are denoted by the same reference numerals, and description thereof is omitted.
[0172] 図 15に示すように、実施の形態 7の導波路素子 22は、基板 2と、基板 2上に設けら れた信号光用主導波路 7、 7cと、 VCSEL23とを備えている。信号光用主導波路(共 振フォトニック結晶導波路) 7cは、信号光用主導波路 7と略同様の構成であり、第 1信 号光用導波路 7d及び第 2信号光用導波路 7eに途中で分岐されて 、る。 VCSEL23 は、信号光用主導波路 7、 7cの上方に配置されている。 VCSEL23は、板状部 25を 備えており、当該板状部 25の基板 2側の面には複数のレーザ素子 24が配列されて いる。これらのレーザ素子 24から出射される光が制御光である。レーザ素子 24から の制御光は、板状部 25に対して垂直方向に出射される。尚、 VCSEL23は、任意の レーザ素子 24から選択的に制御光を出射することができる。 As shown in FIG. 15, the waveguide element 22 of the seventh embodiment includes a substrate 2, signal light main waveguides 7 and 7 c provided on the substrate 2, and a VCSEL 23. The signal light main waveguide (resonant photonic crystal waveguide) 7c has substantially the same configuration as the signal light main waveguide 7, and the first signal The light is branched to the signal waveguide 7d and the second signal light waveguide 7e. The VCSEL 23 is disposed above the signal light main waveguides 7 and 7c. The VCSEL 23 includes a plate-like portion 25, and a plurality of laser elements 24 are arranged on the surface of the plate-like portion 25 on the substrate 2 side. Light emitted from these laser elements 24 is control light. Control light from the laser element 24 is emitted in a direction perpendicular to the plate-like portion 25. Note that the VCSEL 23 can selectively emit control light from an arbitrary laser element 24.
[0173] また、信号光用主導波路 7cにおいても、信号光用主導波路 7の接近箇所 9と同様 の、第 1信号用導波路 7dと第 2信号用導波路 7eとが、お互いを伝播する伝播光のェ バネッセント波の影響を受けるような間隔である接近箇所 (方向性結合器) 9cが設け られている。 [0173] Also in the signal light main waveguide 7c, the first signal waveguide 7d and the second signal waveguide 7e, which are the same as the approaching portion 9 of the signal light main waveguide 7, propagate through each other. An approaching point (directional coupler) 9c having an interval that is affected by the evanescent wave of propagating light is provided.
[0174] このような構成とすることにより、信号光用主導波路 7及び信号光用主導波路 7cの 上面の任意の箇所に制御光を照射することができる。つまり、信号光用主導波路 7及 び信号光用主導波路 7cの任意の箇所において、制御光を共振させることができる。 このため、信号光用主導波路 7及び信号光用主導波路 7cにそれぞれ入射された信 号光 71及び信号光 71cの位相を所望の位置でずらすことができる。従って、導波路 素子 22を用いれば、任意のレーザ素子 24から制御光を出射することにより、信号光 用主導波路 7及び信号光用主導波路 7cにそれぞれ伝播させている信号光 71及び 信号光 71cの光路を切り換えることができる。  [0174] With such a configuration, it is possible to irradiate control light to any location on the upper surfaces of the signal light main waveguide 7 and the signal light main waveguide 7c. In other words, the control light can resonate at an arbitrary position of the signal light main waveguide 7 and the signal light main waveguide 7c. Therefore, the phases of the signal light 71 and the signal light 71c incident on the signal light main waveguide 7 and the signal light main waveguide 7c can be shifted at desired positions. Therefore, if the waveguide element 22 is used, the control light is emitted from an arbitrary laser element 24, and thereby the signal light 71 and the signal light 71c propagated in the signal light main waveguide 7 and the signal light main waveguide 7c, respectively. The optical path can be switched.
[0175] 上記のように、導波路素子 22においては、信号光 71及び信号光 71cの導波路回 路が集積化され、制御光の光源がアレイ状となっている。従って、照射パターンを選 ぶことにより、さらに複雑な、信号光 71、 71cの光路変換処理を行うことができる。尚、 VCSEL23の代わりに、光ファイバをアレイ状に並べたものを用いてもよ!ヽ。  [0175] As described above, in the waveguide element 22, the waveguide circuits of the signal light 71 and the signal light 71c are integrated, and the light source of the control light is arranged in an array. Therefore, by selecting the irradiation pattern, it is possible to perform a more complicated optical path conversion process of the signal lights 71 and 71c. Instead of VCSEL23, optical fibers arranged in an array can be used!ヽ.
[0176] 尚、信号光用主導波路 7及び信号光用主導波路 7cだけでなぐさらに複雑な導波 路を用いて構成してもよい。そして、その場合でも、上記の 1次元フォトニック結晶導 波路を用いればよい。  Note that the signal light main waveguide 7 and the signal light main waveguide 7c may be used instead of a more complex waveguide. Even in this case, the one-dimensional photonic crystal waveguide may be used.
[0177] [実施の形態 8]  [Embodiment 8]
本発明の実施の形態 8における導波路素子について、図を参照しながら説明する 。図 16A及び図 16Bは、本発明の実施の形態 8における導波路素子の構成、及び 光路を示す平面図である。図 16Aは信号光が真中の出射用導波路力 出射されて いる状態を示しており、図 16Bは信号光が端の出射用導波路力 出射されている状 態を示している。 A waveguide element according to the eighth embodiment of the present invention will be described with reference to the drawings. 16A and 16B show the configuration of the waveguide element according to the eighth embodiment of the present invention, and It is a top view which shows an optical path. FIG. 16A shows a state in which signal light is emitted in the middle of the output waveguide force, and FIG. 16B shows a state in which signal light is emitted at the end of the output waveguide force.
[0178] 図 16A及び図 16Bに示すように、実施の形態 8の導波路素子 26は、基板 2と、基 板 2上に設けられた S字型導波路 (共振フォトニック結晶導波路) 27と、 VCSEL23と を備えている。 VCSEL23は、 S字型導波路 27のスラブ形状の個所の一部の上方に 配置されており、基板 2側の面には複数のレーザ素子 24 (図 15参照)が配列されて いる。尚、 S字型導波路 27は、上記の 1次元フォトニック結晶導波路である。 1次元フ オトニック結晶導波路は、上記のように、特定の高次モード光を伝播させることができ 、さらに、伝播光の閉じ込めを完全なものとすることができる。  As shown in FIGS. 16A and 16B, the waveguide element 26 according to the eighth embodiment includes a substrate 2 and an S-shaped waveguide (resonant photonic crystal waveguide) 27 provided on the substrate 2. And VCSEL23. The VCSEL 23 is disposed above a part of the slab-shaped portion of the S-shaped waveguide 27, and a plurality of laser elements 24 (see FIG. 15) are arranged on the surface on the substrate 2 side. The S-shaped waveguide 27 is the one-dimensional photonic crystal waveguide described above. As described above, the one-dimensional photonic crystal waveguide can propagate a specific higher-order mode light, and can further confine the propagation light.
[0179] S字型導波路 27は、基板 2の主面に垂直な方向である Y軸方向を積層方向とする 多層構造体であり、積層方向に屈折率周期性を有している。  The S-shaped waveguide 27 is a multilayer structure in which the Y-axis direction that is perpendicular to the main surface of the substrate 2 is the stacking direction, and has a refractive index periodicity in the stacking direction.
[0180] また、 S字型導波路 27は、入射用導波路 28と、それよりも幅の広い、すなわち、積 層方向(Y軸方向)に対して垂直な面に平行な方向に広がっているスラブ導波路 (ス ラブ状部分) 30と、 3本の出射用導波路 29とを備えている。入射用導波路 28は、スラ ブ導波路 30に接続されている。スラブ導波路 30は、図 16A及び図 16Bに示すように 、 S字状に成形されている。また、 3本の出射用導波路 29も、スラブ導波路 30に接続 されている。そして、 3本の出射用導波路 29は、平行に並べて配置されている。  [0180] The S-shaped waveguide 27 is wider than the incident waveguide 28, ie, spreads in a direction parallel to a plane perpendicular to the stacking direction (Y-axis direction). Slab waveguide (slab-like portion) 30 and three output waveguides 29 are provided. The incident waveguide 28 is connected to the slab waveguide 30. The slab waveguide 30 is formed in an S shape as shown in FIGS. 16A and 16B. Further, the three output waveguides 29 are also connected to the slab waveguide 30. The three output waveguides 29 are arranged in parallel.
[0181] 入射用導波路 28、スラブ導波路 30及び出射用導波路 29を備えた S字型導波路 2 7は、それぞれ、図 7A及び図 7Bに示したフォトニック結晶導波路 140であり、上記式 (3)も満たしている。このため、屈折率周期方向である Y軸方向に対して垂直な面に 沿った方向へのブリルアンゾーン境界上の伝播光の漏れ出しは生じない。尚、実施 の形態 8においては、 S字型導波路 27の周りは空気であるため、屈折率 n は 1であ  [0181] The S-shaped waveguide 27 including the incident waveguide 28, the slab waveguide 30, and the emission waveguide 29 is the photonic crystal waveguide 140 shown in FIGS. 7A and 7B, respectively. The above equation (3) is also satisfied. For this reason, leakage of propagating light on the Brillouin zone boundary in the direction along the plane perpendicular to the Y-axis direction which is the refractive index periodic direction does not occur. In the eighth embodiment, since the air around the S-shaped waveguide 27 is air, the refractive index n is 1.
S  S
る。また、上記したように、クラッド及びコアの両方を 1次元フォトニック結晶として、積 層方向へのブリルアンゾーン境界上の伝播光の漏れ出しが生じな 、ようにされて 、る 。これにより、 S字型導波路 27において、側面及び上下面力もブリルアンゾーン境界 上の伝播光が漏れることはな 、。  The In addition, as described above, both the cladding and the core are made to be one-dimensional photonic crystals so that the propagation light does not leak on the Brillouin zone boundary in the stacking direction. As a result, in the S-shaped waveguide 27, the propagation light on the Brillouin zone boundary does not leak in the side surface and the vertical surface force.
[0182] 次に、実施の形態 8の導波路素子 26の動作について説明する。 [0183] 入射用導波路 28に入射光 76を伝播させる。この場合、入射光 76は、ブリルアンゾ ーン境界上の伝播モードとなるように伝播させる。入射光 76は、入射用導波路 28か らスラブ導波路 30に入射される。スラブ導波路 30は、上記のように、側面での光の閉 じ込めが完全なものとなっている。従って、伝播光 71aは、スラブ導波路 30の内側の 側面 30aで凹面反射して幅の広い光束となる。さらに、伝播光 71aは、スラブ導波路 30の内側の側面 30bでの凹面反射によって集光されて、 3本の出射用導波路 29の いずれかに入射され、当該出射用導波路 29から出射光 78として出射される。 Next, the operation of the waveguide element 26 according to the eighth embodiment will be described. Incident light 76 is propagated through the incident waveguide 28. In this case, the incident light 76 is propagated in a propagation mode on the Brillouin zone boundary. Incident light 76 enters the slab waveguide 30 from the incident waveguide 28. As described above, the slab waveguide 30 has complete confinement of light on the side surface. Accordingly, the propagating light 71a is concavely reflected by the inner side surface 30a of the slab waveguide 30 and becomes a wide luminous flux. Further, the propagating light 71a is collected by concave reflection at the inner side surface 30b of the slab waveguide 30 and is incident on one of the three output waveguides 29, and is output from the output waveguide 29. It is emitted as 78.
[0184] ここで、 VCSEL23の任意のレーザ素子 24から制御光を出射することにより、スラブ 導波路 30の一部で制御光の Y軸方向の共振が生じる。そして、非線型作用により、 スラブ導波路 30の共振部分の屈折率が変化し、伝播光 71aの進路が変化する。尚、 実施の形態 1で説明したように、スラブ導波路 30における制御光の共振部分を、非 線型作用が生じやすい構造としておくことにより、この共振部分のみで非線型作用が 生じる。  Here, by emitting control light from an arbitrary laser element 24 of the VCSEL 23, resonance in the Y-axis direction of the control light occurs in a part of the slab waveguide 30. Then, due to the nonlinear action, the refractive index of the resonant portion of the slab waveguide 30 changes, and the path of the propagating light 71a changes. As described in the first embodiment, the resonance part of the control light in the slab waveguide 30 has a structure in which a nonlinear action is likely to occur, so that the nonlinear action occurs only in this resonance part.
[0185] まず、制御光を出射していない状態で、伝播光 71aの進路力 図 16Aに示すような 状態にあつたとする。つまり、真中に配置された出射用導波路 29から伝播光 71aが 出射されているとする。次に、 VCSEL23の任意のレーザ素子 24から制御光を出射 することにより、スラブ導波路 30の広がり方向における屈折率分布を発生させ、波面 の進行方向を曲げて、例えば、図 16Bに示すような状態とすることができる。つまり、 端に配置された出射用導波路 29から伝播光 71aが出射されるように、伝播光 71aの 進路を変換することができる。このように、制御光を出射するレーザ素子 24を選択す ることにより、伝播光 71aが出射される出射用導波路 29を選択することができる。また 、いずれの出射用導波路 29からも伝播光 71aが出射されないようにすることも可能で ある。尚、出射用導波路 29の数や制御光を出射するレーザ素子 24の数は、何ら制 限されるものではない。  First, it is assumed that the path force of propagating light 71a is in a state as shown in FIG. 16A without emitting control light. That is, it is assumed that the propagating light 71a is emitted from the emission waveguide 29 arranged in the middle. Next, by emitting control light from an arbitrary laser element 24 of the VCSEL 23, a refractive index distribution in the spreading direction of the slab waveguide 30 is generated, and the traveling direction of the wave front is bent, for example, as shown in FIG. 16B. State. That is, the path of the propagation light 71a can be converted so that the propagation light 71a is emitted from the emission waveguide 29 arranged at the end. Thus, by selecting the laser element 24 that emits the control light, the emission waveguide 29 from which the propagating light 71a is emitted can be selected. It is also possible to prevent the propagating light 71a from being emitted from any of the emission waveguides 29. Note that the number of emission waveguides 29 and the number of laser elements 24 that emit control light are not limited at all.
[0186] また、導波路素子 26の S字型導波路 27における制御光の共振方向は Y軸方向で あるため、 S字型導波路 27のコアにおいては、屈折率周期方向である Y軸方向に対 して垂直な面に沿った方向への光の閉じ込めがなされていなければならない。従つ て、コアの上下方向(Y軸方向)に 1次元フォトニック結晶であるクラッドが形成されて いるのが望ましい。 [0186] In addition, since the resonance direction of the control light in the S-shaped waveguide 27 of the waveguide element 26 is the Y-axis direction, in the core of the S-shaped waveguide 27, the Y-axis direction that is the refractive index periodic direction The light must be confined in a direction along a plane perpendicular to the surface. Therefore, a cladding that is a one-dimensional photonic crystal is formed in the vertical direction of the core (Y-axis direction). It is desirable.
[0187] [実施の形態 9]  [Embodiment 9]
本発明の実施の形態 9における導波路素子について、図を参照しながら説明する 。実施の形態 9の導波路素子は、光増幅素子である。実施の形態 9に係る導波路素 子は、図 8及び図 9に示す実施の形態 1、図 11に示す実施の形態 3、図 12に示す実 施の形態 4、図 13に示す実施の形態 5、並びに図 16A及び図 16Bに示す実施の形 態 8における導波路素子と略同一の構成であるため、図 8、図 9、図 11、図 12、図 13 並びに図 16A及び図 16Bを参照しながら説明する。  A waveguide element according to the ninth embodiment of the present invention will be described with reference to the drawings. The waveguide element according to the ninth embodiment is an optical amplification element. The waveguide element according to the ninth embodiment includes the first embodiment shown in FIGS. 8 and 9, the third embodiment shown in FIG. 11, the fourth embodiment shown in FIG. 12, and the embodiment shown in FIG. 5 and because the configuration is almost the same as the waveguide element in the embodiment 8 shown in FIGS. 16A and 16B, refer to FIGS. 8, 9, 11, 12, 13 and 16A and 16B. While explaining.
[0188] 実施の形態 1、 3、 4、 5及び 8においては、共振部分の非線型作用を大きくするた めに、例えば、コアを構成する材料の少なくとも一部に非線型材料を用いる等してい る。しかし、実施の形態 9においては、共振部分に非線型作用ではなく増幅作用を生 じさせるために、コアを構成する材料に増幅作用を有する物質がドープされる。ここで 、増幅作用を有する物質としては、例えば、エルビウム、ツリウム等がある。また、制御 光としては、強力なポンプ光が用いられる。これにより、導波路素子 1、 11、 16、 17及 び 26は、増幅素子として機能する。尚、導波路素子 26は、出射用導波路 29が 3本 である構成として 、るが、実施の形態 9にお ヽては 1本でょ 、。  In the first, third, fourth, fifth and eighth embodiments, in order to increase the nonlinear action of the resonance part, for example, a nonlinear material is used for at least a part of the material constituting the core. ing. However, in the ninth embodiment, the material constituting the core is doped with a substance having an amplifying action in order to cause the resonance part to have an amplifying action rather than a non-linear action. Here, examples of the substance having an amplifying action include erbium and thulium. Further, powerful pump light is used as the control light. As a result, the waveguide elements 1, 11, 16, 17 and 26 function as amplification elements. Note that the waveguide element 26 has three output waveguides 29, but in the ninth embodiment, only one is required.
[0189] 導波路素子 1、 17及び導波路素子 11、 16において、信号光 71を伝播させている 状態で、強力なポンプ光である制御光 72を共振させると、共振部分の電場は非常に 強いものとなる。共振部分に増幅作用を有する物質がドープされていることから、信 号光 71は増幅され、信号光用導波路 3及び出射側信号光用導波路 14に伝播される  [0189] In the waveguide elements 1 and 17 and the waveguide elements 11 and 16, when the signal light 71 is propagated and the control light 72, which is a powerful pump light, is resonated, the electric field in the resonance part is very high. It will be strong. Since the resonance part is doped with a substance having an amplifying action, the signal light 71 is amplified and propagated to the signal light waveguide 3 and the output-side signal light waveguide 14.
[0190] また、導波路素子 26において、伝播光 71aを伝播させている状態で、強力なボン プ光である制御光を共振させると、共振部分の電場は非常に強いものとなる。共振部 分に増幅作用を有する物質がドープされていることから、伝播光 71aは増幅され、出 射用導波路 29に伝播される。導波路素子 26においては、 VCSEL23を用いてボン プ光である制御光が出射されるので、広い範囲にポンプ光を照射できる。そのため、 ポンプ光の総エネルギー量を大きくすることができるので、増幅率も大きくすることが できる。そして、この場合には、実施の形態 8のように屈折率分布を発生させて波面 の進行方向を曲げる必要はない。 [0190] In addition, in the waveguide element 26, when the control light, which is a strong pump light, is resonated while propagating the propagating light 71a, the electric field in the resonance portion becomes very strong. Since the resonance part is doped with a substance having an amplifying action, the propagating light 71 a is amplified and propagated to the emission waveguide 29. In the waveguide element 26, the VCSEL 23 is used to emit control light, which is pump light, so that pump light can be irradiated over a wide range. As a result, the total energy of the pump light can be increased, and the amplification factor can be increased. In this case, the refractive index distribution is generated as in the eighth embodiment, and the wavefront is There is no need to bend the direction of travel.
[0191] 以上のように、実施の形態 9の導波路素子は、増幅素子として機能し、構成が簡単 であるために容易に作製することができる。  [0191] As described above, the waveguide element according to the ninth embodiment functions as an amplifying element and can be easily manufactured because of its simple configuration.
[0192] [実施の形態 10]  [Embodiment 10]
本発明の実施の形態 10におけるレーザ発生器について、図を参照しながら説明 する。図 17は、本発明の実施の形態 10におけるレーザ発生器の構成を示す斜視図 である。図 17に示すレーザ発生器 32は、図 11に示す実施の形態 3の導波路素子 1 1において、入射側信号光用導波路 12が取り除かれ、出射側信号光用導波路 14に 、Z軸方向に対して垂直となるような切込みを周期的に形成することによって構成され た DFB部 33が設けられた構成である。そこで、図 17において、図 11に示す部材と 同様の機能を有する部材には同一の参照符号を付し、その説明は省略する。  A laser generator according to the tenth embodiment of the present invention will be described with reference to the drawings. FIG. 17 is a perspective view showing the configuration of the laser generator in the tenth embodiment of the present invention. A laser generator 32 shown in FIG. 17 is configured such that the incident-side signal light waveguide 12 is removed from the waveguide element 11 of the third embodiment shown in FIG. In this configuration, a DFB portion 33 is provided that is formed by periodically forming cuts that are perpendicular to the direction. Therefore, in FIG. 17, members having the same functions as those shown in FIG. 11 are denoted by the same reference numerals, and the description thereof is omitted.
[0193] DFB部 33は、具体的には、 DFB (Distributed Feedback (分布帰還型) )共振器に おいて特定波長を選択的に反射する反射層であり、出射側信号光用導波路 14の光 軸方向(Z軸方向)にも屈折率周期性を有する構成である。つまり、複数の 1次元フォ トニック結晶導波路がそれぞれ周期的に配置された構成である。尚、 DFB部 33の切 込みの数が多すぎると、光が伝播しないので、切込みの数は、最適な数となるように 調整される。  [0193] Specifically, the DFB section 33 is a reflective layer that selectively reflects a specific wavelength in a DFB (Distributed Feedback) resonator. This structure also has a refractive index periodicity in the optical axis direction (Z-axis direction). In other words, a plurality of one-dimensional photonic crystal waveguides are periodically arranged. Note that if the number of cuts in the DFB section 33 is too large, light does not propagate, so the number of cuts is adjusted to an optimum number.
[0194] 実施の形態 3の導波路素子 11においては、信号共振用導波路 13に非線型作用 が生じるように、例えば、信号共振用導波路 13のコアを構成する材料として非線型 材料を用いていた。しかし、実施の形態 10のレーザ発生器 32において、信号共振 用導波路 13は励起フォトニック結晶導波路として用い、制御光入射用導波路 4及び 制御光出射用導波路 5は励起機構として用いられる。信号共振用導波路 13のコア は、レーザ媒質を用いて構成すればよい。レーザ媒質としては、例えば、 Ndをドープ した YAG (イットリウム ·アルミニウム 'ガーネット結晶)、ガラス、ルビー、 GaAs、 InP、 GaAlAs— P、 InAs等を用いればよい。また、コアに量子ドットや色素を含ませてレー ザ媒質としてもよい。  In the waveguide element 11 of the third embodiment, for example, a nonlinear material is used as a material constituting the core of the signal resonance waveguide 13 so that a nonlinear action occurs in the signal resonance waveguide 13. It was. However, in the laser generator 32 of the tenth embodiment, the signal resonance waveguide 13 is used as an excitation photonic crystal waveguide, and the control light incident waveguide 4 and the control light emission waveguide 5 are used as an excitation mechanism. . The core of the signal resonance waveguide 13 may be configured using a laser medium. As the laser medium, for example, Nd-doped YAG (yttrium aluminum garnet crystal), glass, ruby, GaAs, InP, GaAlAs-P, InAs, etc. may be used. Alternatively, quantum media or pigments may be included in the core to form a laser medium.
[0195] 励起光である制御光 72のエバネッセント波を、制御光入射用導波路 4よって信号 共振用導波路 13に結合させ、信号共振用導波路 13において制御光 72を X軸方向 に共振させる。これにより、信号共振用導波路 13が励起され、入射側端面 13a及び 出射側端面 13b間でレーザ光が Z軸方向に共振 (発振)する。信号共振用導波路 13 の入射側端面 13a及び出射側端面 13bのうち、反射率の低い、 DFB部 33側の出射 側端面 13bからレーザ光が出射され、出射側信号光用導波路 14からレーザ光 75が 外部に出射される。尚、レーザ発生器 32は、 DFB部 33が設けられているために波 長選択性を有する。 [0195] The evanescent wave of the control light 72, which is the excitation light, is coupled to the signal resonance waveguide 13 by the control light incident waveguide 4, and the control light 72 is transmitted to the signal resonance waveguide 13 in the X-axis direction. To resonate. As a result, the signal resonance waveguide 13 is excited, and the laser light resonates (oscillates) in the Z-axis direction between the incident side end face 13a and the emission side end face 13b. Of the incident-side end face 13a and the outgoing-side end face 13b of the signal resonance waveguide 13, laser light is emitted from the outgoing-side end face 13b on the DFB portion 33 side, which has a low reflectance, and the laser is emitted from the outgoing-side signal light waveguide 14 Light 75 is emitted to the outside. The laser generator 32 has wavelength selectivity because the DFB section 33 is provided.
[0196] [実施の形態 11] [Embodiment 11]
本発明の実施の形態 11におけるレーザ発生器について、図を参照しながら説明 する。図 18は、本発明の実施の形態 11におけるレーザ発生器の構成を示す斜視図 である。図 18に示すレーザ発生器 36は、図 17に示す実施の形態 10のレーザ発生 器 32において、制御光入射用導波路 4及び制御光出射用導波路 5が取り除かれ、 その代わりに、光入射部であり励起機構である制御光入射用光ファイバ 18及び制御 光入射用レンズ 19が設けられた構成である。制御光入射用光ファイバ 18及び制御 光入射用レンズ 19は、図 13に示す制御光入射用光ファイバ 18及び制御光入射用 レンズ 19と同様の機能を有するので、同一の参照符号を付している。それ以外の構 成は、図 17に示す実施の形態 10のレーザ発生器 32と略同一の構成であるので、図 17に示す部材と同様の機能を有する部材には同一の参照符号を付し、その説明は 省略する。  A laser generator according to the eleventh embodiment of the present invention will be described with reference to the drawings. FIG. 18 is a perspective view showing the configuration of the laser generator in Embodiment 11 of the present invention. The laser generator 36 shown in FIG. 18 is different from the laser generator 32 of the tenth embodiment shown in FIG. 17 in that the control light incident waveguide 4 and the control light emitting waveguide 5 are removed. This is a configuration in which a control light incident optical fiber 18 and a control light incident lens 19 are provided as an excitation mechanism. The control light incident optical fiber 18 and the control light incident lens 19 have the same functions as the control light incident optical fiber 18 and the control light incident lens 19 shown in FIG. Yes. Since the other configuration is substantially the same as that of the laser generator 32 of the tenth embodiment shown in FIG. 17, members having the same functions as those shown in FIG. 17 are denoted by the same reference numerals. The explanation is omitted.
[0197] 制御光入射用光ファイバ 18からの励起光である制御光 72は、制御光入射用レン ズ 19によって集光されて、信号共振用導波路 13の上面に結合する。そして、信号共 振用導波路 13において制御光 72が Y軸方向に共振する。これにより、信号共振用 導波路 13が励起され、入射側端面 13a及び出射側端面 13b間でレーザ光が Z軸方 向に共振 (発振)する。信号共振用導波路 13の入射側端面 13a及び出射側端面 13 bのうち、反射率の低い、 DFB部 33側の出射側端面 13bからレーザ光が出射され、 出射側信号光用導波路 14からレーザ光 75が外部に出射される。尚、レーザ発生器 36は、 DFB部 33が設けられて 、るために波長選択性を有する。  The control light 72 that is the excitation light from the control light incident optical fiber 18 is collected by the control light incident lens 19 and coupled to the upper surface of the signal resonance waveguide 13. Then, the control light 72 resonates in the Y-axis direction in the signal resonance waveguide 13. As a result, the signal resonance waveguide 13 is excited, and the laser beam resonates (oscillates) in the Z-axis direction between the incident side end face 13a and the emission side end face 13b. Of the incident-side end face 13a and the outgoing-side end face 13b of the signal resonance waveguide 13, laser light is emitted from the outgoing-side end face 13b on the DFB portion 33 side, which has low reflectivity, and from the outgoing-side signal light waveguide 14 Laser light 75 is emitted to the outside. Since the laser generator 36 is provided with the DFB section 33, it has wavelength selectivity.
[0198] [実施の形態 12]  [0198] [Embodiment 12]
本発明の実施の形態 12におけるレーザ発生器について、図を参照しながら説明 する。図 19は、本発明の実施の形態 12におけるレーザ発生器の構成を示す斜視図 である。図 19に示すレーザ発生器 37は、図 17に示す実施の形態 10のレーザ発生 器 32において、制御光入射用導波路 4及び制御光出射用導波路 5が取り除かれ、 その代わりに、基板 2上及び信号共振用導波路 13上にそれぞれ電極 38及び電極 3 9が設けられ、電極 38及び電極 39間に電圧を印加する電圧源 40が追加された構成 である。そこで、図 19において、図 17に示す部材と同様の機能を有する部材には同 一の参照符号を付し、その説明は省略する。実施の形態 12においては、電極 38、 電極 39及び電圧源 40が励起機構として機能する。 A laser generator according to Embodiment 12 of the present invention will be described with reference to the drawings. To do. FIG. 19 is a perspective view showing the configuration of the laser generator in Embodiment 12 of the present invention. In the laser generator 37 shown in FIG. 19, the control light incident waveguide 4 and the control light emitting waveguide 5 are removed from the laser generator 32 of the tenth embodiment shown in FIG. An electrode 38 and an electrode 39 are provided on the upper and signal resonance waveguides 13, respectively, and a voltage source 40 for applying a voltage between the electrode 38 and the electrode 39 is added. Therefore, in FIG. 19, members having the same functions as those shown in FIG. 17 are denoted by the same reference numerals, and description thereof is omitted. In the twelfth embodiment, the electrode 38, the electrode 39, and the voltage source 40 function as an excitation mechanism.
[0199] レーザ発生器 37においては、基板 2上に電極 38が設けられている。具体的には、 基板 2と、信号共振用導波路 13、 DFB部 33及び出射側信号光用導波路 14との間 に電極 38が形成されている。また、信号共振用導波路 13上には電極 39が形成され ている。これら電極 38及び電極 39間には、電圧源 40が接続されており、電極 39及 び電極 38間に電圧を印加することが可能となっている。  [0199] In the laser generator 37, an electrode 38 is provided on the substrate 2. Specifically, an electrode 38 is formed between the substrate 2, the signal resonance waveguide 13, the DFB portion 33, and the emission-side signal light waveguide 14. An electrode 39 is formed on the signal resonance waveguide 13. A voltage source 40 is connected between the electrodes 38 and 39, and a voltage can be applied between the electrodes 39 and 38.
[0200] 電圧源 40を用いて、電極 38及び電極 39間に電圧を印加することにより、信号共振 用導波路 13が励起され、入射側端面 13a及び出射側端面 13b間でレーザ光が Z軸 方向に共振 (発振)する。信号共振用導波路 13の入射側端面 13a及び出射側端面 13bのうち、反射率の低い、 DFB部 33側の出射側端面 13bからレーザ光が出射され 、出射側信号光用導波路 14からレーザ光 75が外部に出射される。尚、レーザ発生 器 37は、 DFB部 33が設けられて 、るために波長選択性を有する。  [0200] By applying a voltage between the electrode 38 and the electrode 39 using the voltage source 40, the signal resonance waveguide 13 is excited, and the laser light is Z-axis between the incident side end face 13a and the output side end face 13b. Resonates (oscillates) in the direction. Of the incident side end face 13a and the emission side end face 13b of the signal resonance waveguide 13, laser light is emitted from the emission side end face 13b on the DFB portion 33 side having a low reflectance, and the laser is emitted from the emission side signal light waveguide 14 Light 75 is emitted to the outside. Since the laser generator 37 is provided with the DFB section 33, it has wavelength selectivity.
[0201] [実施の形態 13]  [0201] [Embodiment 13]
本発明の実施の形態 13におけるレーザ発生器について、図を参照しながら説明 する。図 20は、本発明の実施の形態 13におけるレーザ発生器の構成を示す斜視図 である。図 20に示すレーザ発生器 41は、図 12に示す実施の形態 4の導波路素子 1 6と略同様の構成である。そこで、図 20において、図 12に示す部材と同様の機能を 有する部材には同一の参照符号を付し、その説明は省略する。  A laser generator according to the thirteenth embodiment of the present invention will be described with reference to the drawings. FIG. 20 is a perspective view showing the configuration of the laser generator in the thirteenth embodiment of the present invention. The laser generator 41 shown in FIG. 20 has substantially the same configuration as the waveguide element 16 of the fourth embodiment shown in FIG. Therefore, in FIG. 20, members having the same functions as those shown in FIG. 12 are given the same reference numerals, and descriptions thereof are omitted.
[0202] 実施の形態 4の導波路素子 16においては、信号共振用導波路 13に非線型作用 が生じるように、例えば、信号共振用導波路 13のコアを構成する材料として非線型 材料を用いていた。しかし、実施の形態 13のレーザ発生器 41において、信号共振 用導波路 13は励起フォトニック結晶導波路として用いられる。従って、例えば、実施 の形態 10で説明したように、信号共振用導波路 13のコアは、レーザ媒質を用いて構 成すればよい。実施の形態 13においては、入射側信号光用導波路 12及び出射側 信号光用導波路 14が励起機構として機能する。 [0202] In the waveguide element 16 of the fourth embodiment, for example, a non-linear material is used as a material constituting the core of the signal resonance waveguide 13 so that a non-linear action occurs in the signal resonance waveguide 13. It was. However, in the laser generator 41 of the thirteenth embodiment, the signal resonance The waveguide 13 is used as an excitation photonic crystal waveguide. Therefore, for example, as described in the tenth embodiment, the core of the signal resonance waveguide 13 may be configured using a laser medium. In the thirteenth embodiment, the input-side signal light waveguide 12 and the output-side signal light waveguide 14 function as an excitation mechanism.
[0203] 励起光である制御光 72のエバネッセント波を、入射側信号光用導波路 12よって信 号共振用導波路 13に結合させ、信号共振用導波路 13にお 、て制御光 72を Z軸方 向に共振させる。これにより、信号共振用導波路 13が励起され、信号共振用導波路 13の上面及び下面間でレーザ光が Y軸方向に共振 (発振)する。ここで、信号共振 用導波路 13の上面のクラッドによる光の閉じ込めを、信号共振用導波路 13の下面の クラッドによる光の閉じ込めよりも弱くしておくことにより、レーザ光が信号共振用導波 路 13の上面から出射される。  [0203] The evanescent wave of the control light 72, which is the excitation light, is coupled to the signal resonance waveguide 13 by the incident-side signal light waveguide 12, and the control light 72 is transmitted to the signal resonance waveguide 13 as Z Resonate in the axial direction. As a result, the signal resonance waveguide 13 is excited, and the laser light resonates (oscillates) in the Y-axis direction between the upper and lower surfaces of the signal resonance waveguide 13. Here, the light confinement by the clad on the upper surface of the signal resonance waveguide 13 is made weaker than the light confinement by the clad on the lower surface of the signal resonance waveguide 13, so that the laser light can be guided by the signal resonance waveguide. The light is emitted from the upper surface of the path 13.
[0204] [実施の形態 14]  [0204] [Embodiment 14]
本発明の実施の形態 14における導波路素子について、図を参照しながら説明す る。実施の形態 14の導波路素子は、共振素子である。図 21は、本発明の実施の形 態 14における導波路素子の構成を示す斜視図である。  A waveguide element according to the fourteenth embodiment of the present invention will be described with reference to the drawings. The waveguide element according to the fourteenth embodiment is a resonant element. FIG. 21 is a perspective view showing the configuration of the waveguide element according to the fourteenth embodiment of the present invention.
[0205] 図 21に示すように、実施の形態 14の導波路素子 42は、基板 2と、基板 2上に設け られた、入射側導波路 (入射側フォトニック結晶導波路) 43、共振部 (共振フォトニッ ク結晶導波路) 45及び出射側導波路(出射側フォトニック結晶導波路) 44とを備えて いる。入射側導波路 43、共振部 45及び出射側導波路 44は、それぞれ、上記の 1次 元フォトニック結晶導波路である。 1次元フォトニック結晶導波路は、上記のように、特 定の高次モード光を伝播させることができ、さらに、伝播光の閉じ込めを完全なものと することができる。  As shown in FIG. 21, the waveguide element 42 according to the fourteenth embodiment includes a substrate 2, an incident-side waveguide (incident-side photonic crystal waveguide) 43 provided on the substrate 2, and a resonance unit. (Resonant photonic crystal waveguide) 45 and output side waveguide (output side photonic crystal waveguide) 44. The incident-side waveguide 43, the resonance part 45, and the emission-side waveguide 44 are the above-described one-dimensional photonic crystal waveguides, respectively. As described above, the one-dimensional photonic crystal waveguide can propagate specific high-order mode light, and can further confine the propagation light.
[0206] 入射側導波路 43、共振部 45及び出射側導波路 44は、それぞれ、基板 2の主面に 垂直な方向である Y軸方向を積層方向とする多層構造体であり、積層方向に屈折率 周期性を有している。  [0206] The incident-side waveguide 43, the resonance unit 45, and the emission-side waveguide 44 are each a multilayer structure in which the Y-axis direction that is perpendicular to the main surface of the substrate 2 is the stacking direction. Refractive index Has periodicity.
[0207] 入射側導波路 43及び出射側導波路 44は、線状である。入射側導波路 43及び出 射側導波路 44は、それぞれ、図 7A及び図 7Bに示したフォトニック結晶導波路 140 であり、上記式(3)も満たしている。このため、屈折率周期方向である Y軸方向に対し て垂直な面に沿った方向へのブリルアンゾーン境界上の伝播光の漏れ出しは生じな い。尚、実施の形態 14においては、各導波路の周りは空気であるため、屈折率 n は The incident side waveguide 43 and the emission side waveguide 44 are linear. The incident-side waveguide 43 and the emission-side waveguide 44 are the photonic crystal waveguides 140 shown in FIGS. 7A and 7B, respectively, and also satisfy the above equation (3). Therefore, with respect to the Y-axis direction, which is the periodic direction of the refractive index The leakage of propagating light on the Brillouin zone boundary in the direction along the vertical plane does not occur. In Embodiment 14, since the circumference of each waveguide is air, the refractive index n is
S  S
1である。また、上記したように、クラッド及びコアの両方を 1次元フォトニック結晶とし て、積層方向へのブリルアンゾーン境界上の伝播光の漏れ出しが生じないようにされ ている。これにより、入射側導波路 43及び出射側導波路 44において、側面及び上 下面力もブリルアンゾーン境界上の伝播光が漏れることはない。  1. In addition, as described above, both the cladding and the core are made of a one-dimensional photonic crystal so that propagating light does not leak on the Brillouin zone boundary in the stacking direction. Thereby, in the incident side waveguide 43 and the emission side waveguide 44, the propagation light on the Brillouin zone boundary does not leak even in the side surface and the upper and lower surface forces.
[0208] 共振部 45は、円柱状である。共振部 45は、複数の円板状の層が Y軸方向に積層 された構造を有しており、その円の中心軸方向が屈折率周期方向である。また、円柱 の外周面である側面、及び円形である上下面においては、完全な光の閉じ込めがな されている。 [0208] The resonating part 45 has a cylindrical shape. The resonating unit 45 has a structure in which a plurality of disk-like layers are stacked in the Y-axis direction, and the center axis direction of the circle is the refractive index periodic direction. In addition, light is completely confined on the side surface, which is the outer peripheral surface of the cylinder, and the upper and lower surfaces, which are circular.
[0209] このような構成の円柱状の 1次元フォトニック結晶である共振部 45は、その側面から エバネッセント波が結合することにより、共振器として機能する。つまり、所定の周波 数の光のみが共振部 45と結合し、共振部 45の内部で共振する。従って、導波路素 子 42において、入射側導波路 43と共振部 45との間隔と、共振部 45と出射側導波路 44との間隔とを適正な距離に設定することにより、導波路素子 42を共振素子として 機會させることができる。  [0209] The resonating unit 45, which is a cylindrical one-dimensional photonic crystal having such a configuration, functions as a resonator by coupling an evanescent wave from the side surface thereof. That is, only light of a predetermined frequency is coupled to the resonance unit 45 and resonates inside the resonance unit 45. Therefore, in the waveguide element 42, the distance between the incident-side waveguide 43 and the resonance part 45 and the distance between the resonance part 45 and the emission-side waveguide 44 are set to appropriate distances. Can be used as a resonant element.
[0210] 次に、実施の形態 14の導波路素子 42の動作について説明する。 [0210] Next, the operation of the waveguide element 42 according to the fourteenth embodiment will be described.
[0211] まず、共振部 45を、例えば、波長 λ の光のみが共振するように設計しておく。例え [0211] First, the resonating unit 45 is designed so that, for example, only light of wavelength λ resonates. Illustration
1  1
ば、その寸法や形状等を変化させることにより、所望の共振周波数を有する共振部 4 5を作製する。  For example, the resonance part 45 having a desired resonance frequency is produced by changing the dimensions and shape thereof.
[0212] そして、入射側導波路 43に、波長 λ の光を含む、異なる周波数の複数の入射光  [0212] Then, the incident-side waveguide 43 includes a plurality of incident lights with different frequencies, including light of wavelength λ.
1  1
76を伝播させる。この場合、入射光 76は、ブリルアンゾーン境界上の伝播モードとな るように伝播させる。これにより、波長え の光のみが共振部 45内で共振して、出射  Propagate 76. In this case, the incident light 76 is propagated so as to be in a propagation mode on the Brillouin zone boundary. As a result, only the light of the wavelength resonates in the resonating part 45 and is emitted.
1  1
側導波路 44に結合され、選択光 77として出射側導波路 44から出射される。選択光 77以外の出射光 78は、入射側導波路 43の出射側端面から出射される。つまり、導 波路素子 42においては、波長え の光のみが入射側導波路 43から出射側導波路 4  The light is coupled to the side waveguide 44 and emitted from the emission side waveguide 44 as selection light 77. The outgoing light 78 other than the selection light 77 is emitted from the outgoing side end face of the incident side waveguide 43. In other words, in the waveguide element 42, only light of a wavelength is transmitted from the incident side waveguide 43 to the output side waveguide 4.
1  1
4に透過され、それ以外の光は、共振部 45で結合せずに、入射側導波路 43から出 射される。 [0213] 1次元フォトニック結晶構造の円柱状の共振部の数は増やしてもよい。具体的には 、図 22に示す構造の導波路素子としてもよい。図 22は、本発明の実施の形態 14〖こ おける共振部を二段にした導波路素子の構成を示す斜視図である。図 22に示すよう に、導波路素子 42aは、共振部 45及び共振部(共振フォトニック結晶導波路) 45aの 2つの共振部を備えている。それ以外の構成は、図 21に示す導波路素子 42と同様 の構成であるので、図 21に示す部材と同様の機能を有する部材には同一の参照符 号を付し、その説明は省略する。 Light other than that transmitted through 4 is emitted from the incident-side waveguide 43 without being coupled by the resonator 45. [0213] The number of columnar resonators having a one-dimensional photonic crystal structure may be increased. Specifically, a waveguide element having a structure shown in FIG. 22 may be used. FIG. 22 is a perspective view showing a configuration of a waveguide element having two stages of resonant portions according to the fourteenth embodiment of the present invention. As shown in FIG. 22, the waveguide element 42a includes two resonance parts, a resonance part 45 and a resonance part (resonant photonic crystal waveguide) 45a. Since the other configuration is the same as that of the waveguide element 42 shown in FIG. 21, members having the same functions as those shown in FIG. 21 are denoted by the same reference numerals, and description thereof is omitted. .
[0214] 共振部 45aは、共振部 45と略同一の構成である。このように、共振部を二段とする ことにより、透過させる周波数域の光の強度を均一にすることができるので、いわゆる 「フラットトップ特性」を実現することができる。  [0214] The resonance unit 45a has substantially the same configuration as the resonance unit 45. In this way, by providing two stages of the resonating part, the intensity of light in the frequency range to be transmitted can be made uniform, so that a so-called “flat top characteristic” can be realized.
[0215] また、それぞれ異なる共振周波数を有する複数の共振部を用いて、波長分離素子 を構成することもできる。具体的には、図 23に示す構成とすればよい。図 23は、本発 明の実施の形態 14における、分波素子である導波路素子の構成を示す斜視図であ る。尚、図 23において、図 21に示す部材と同様の機能を有する部材には同一の参 照符号を付し、その説明は省略する。  [0215] In addition, the wavelength separation element can be configured by using a plurality of resonance units each having a different resonance frequency. Specifically, the configuration shown in FIG. FIG. 23 is a perspective view showing a configuration of a waveguide element that is a demultiplexing element in Embodiment 14 of the present invention. In FIG. 23, members having the same functions as those shown in FIG. 21 are given the same reference numerals, and descriptions thereof are omitted.
[0216] 図 23に示すように、導波路素子 42bは、それぞれ異なる共振周波数を有する 3つ の共振部(共振フォトニック結晶導波路) 45b、 45c, 45dを備えている。また、導波路 素子 42bは、それぞれの共振部 45b、 45c, 45dに対応する出射側導波路(出射側 フォトニック結晶導波路) 44b、 44c、 44dを備えている。導波路素子 42bは、基板 2 上に入射側導波路 43、共振部 45b、 45c, 45d及び出射側導波路 44b、 44c、 44d が配置された構成である。  [0216] As shown in Fig. 23, the waveguide element 42b includes three resonance portions (resonant photonic crystal waveguides) 45b, 45c, and 45d each having a different resonance frequency. Further, the waveguide element 42b includes emission-side waveguides (emission-side photonic crystal waveguides) 44b, 44c, and 44d corresponding to the respective resonating portions 45b, 45c, and 45d. The waveguide element 42b has a configuration in which an incident-side waveguide 43, resonating portions 45b, 45c, and 45d and emission-side waveguides 44b, 44c, and 44d are disposed on the substrate 2.
[0217] 共振部 45b、 45c、 45dは、上記の共振部 45と同様に、 1次元フォトニック結晶導波 路である。また、共振部 45b、 45c, 45dは、それぞれ異なる波長の光を共振し、例え ば、共振部 45bは波長え の光で、共振部 45cは波長え の光で、共振部 45dは波  [0217] The resonating parts 45b, 45c, and 45d are one-dimensional photonic crystal waveguides similarly to the resonating part 45 described above. In addition, the resonating parts 45b, 45c, and 45d resonate light of different wavelengths.
2 3  twenty three
長 λ の光でそれぞれ共振するように設計されて 、る。  It is designed to resonate with light of long λ.
4  Four
[0218] 共振部 45b、 45c, 45dは、それぞれ入射側導波路 43と結合し得るように配置され 、出射側導波路 44b、 44c、 44dは、それぞれが共振部 45b、 45c、 45dと結合し得る ように配置される。 [0219] 入射側導波路 43に、波長え の光、波長え の光、波長え の光を含む、異なる周 [0218] The resonating parts 45b, 45c, and 45d are arranged so as to be coupled to the incident-side waveguide 43, and the output-side waveguides 44b, 44c, and 44d are coupled to the resonating parts 45b, 45c, and 45d, respectively. Arranged to get. [0219] The incident-side waveguide 43 includes different wavelengths including light of a wavelength, light of a wavelength, and light of a wavelength.
2 3 4  2 3 4
波数の複数の複数の入射光 76を伝播させる。この場合、入射光 76は、ブリルアンゾ ーン境界上の伝播モードとなるように伝播させる。これにより、波長え の光は共振部  A plurality of incident lights 76 having a plurality of wave numbers are propagated. In this case, the incident light 76 is propagated in a propagation mode on the Brillouin zone boundary. As a result, the light of the wavelength is
2  2
45b内で、波長え の光は共振部 45c内で、波長え の光は共振部 45d内でそれぞ  Within 45b, the light of the wavelength is in the resonator 45c, and the light of the wavelength is in the resonator 45d.
3 4  3 4
れ共振し、それぞれ出射側導波路 44b、 44c、 44dに結合され、選択光 77として出 射側導波路 44b、 44c、 44dから出射される。また、選択光 77以外の出射光 78は、 入射側導波路 43の出射側端面から出射される。このように、導波路素子 42bを用い れば、複数の光力 所望の波長の光を選択的に取り出すことができる。  Resonate and are coupled to the output side waveguides 44b, 44c, and 44d, respectively, and are emitted from the output side waveguides 44b, 44c, and 44d as selection light 77. Further, the outgoing light 78 other than the selection light 77 is emitted from the outgoing side end face of the incident side waveguide 43. Thus, by using the waveguide element 42b, it is possible to selectively extract a plurality of light beams having desired wavelengths.
[0220] [実施の形態 15]  [0220] [Embodiment 15]
本発明の実施の形態 15における導波路素子について、図を参照しながら説明す る。実施の形態 15の導波路素子は、共振素子である。図 24は、本発明の実施の形 態 15における導波路素子の構成を示す斜視図である。実施の形態 15の導波路素 子 47は、共振部の形状が異なる以外は、図 21に示す実施の形態 13の導波路素子 42と略同様の構成である。そこで、図 24において、図 21に示す部材と同様の機能を 有する部材には同一の参照符号を付し、その説明は省略する。  A waveguide element according to the fifteenth embodiment of the present invention will be described with reference to the drawings. The waveguide element in the fifteenth embodiment is a resonant element. FIG. 24 is a perspective view showing the configuration of the waveguide element according to the fifteenth embodiment of the present invention. The waveguide element 47 of the fifteenth embodiment has substantially the same configuration as the waveguide element 42 of the thirteenth embodiment shown in FIG. 21 except that the shape of the resonance part is different. Therefore, in FIG. 24, members having the same functions as those shown in FIG. 21 are given the same reference numerals, and descriptions thereof are omitted.
[0221] 図 24に示すように、導波路素子 47の共振部(共振フォトニック結晶導波路) 48は、 リング状である。共振部 48は、基板 2の主面に垂直な方向である Y軸方向を積層方 向とする多層構造、具体的には、複数のリング状の層が Y軸方向に積層された構造 を有しており、そのリングの中心軸方向が屈折率周期方向である。また、共振部 48は 、上記式(3)を満たしている。このため、屈折率周期方向である Y軸方向に対して垂 直な面に沿った方向へのブリルアンゾーン境界上の伝播光の漏れ出しは生じない。 尚、実施の形態 15においては、各導波路の周りは空気であるため、屈折率 n は 1で  [0221] As shown in FIG. 24, the resonance part (resonant photonic crystal waveguide) 48 of the waveguide element 47 has a ring shape. The resonating part 48 has a multilayer structure in which the Y-axis direction, which is a direction perpendicular to the main surface of the substrate 2, is stacked, specifically, a structure in which a plurality of ring-shaped layers are stacked in the Y-axis direction. The center axis direction of the ring is the refractive index periodic direction. Further, the resonance part 48 satisfies the above formula (3). For this reason, leakage of propagating light on the Brillouin zone boundary in a direction along a plane perpendicular to the Y-axis direction that is the refractive index periodic direction does not occur. In Embodiment 15, since the air around each waveguide is air, the refractive index n is 1.
S  S
ある。共振部 48は、コアの上下面にクラッドが配置された構成であり、クラッド及びコ ァの両方を 1次元フォトニック結晶として、積層方向へのブリルアンゾーン境界上の伝 播光の漏れ出しが生じないようにされている。これにより、共振部 48において、側面 及び上下面力 ブリルアンゾーン境界上の伝播光が漏れることはない。  is there. The resonator 48 has a configuration in which clads are arranged on the upper and lower surfaces of the core. Both the clad and the core are used as a one-dimensional photonic crystal, and propagation light leaks on the Brillouin zone boundary in the stacking direction. Not to be. Thereby, in the resonance part 48, the propagation light on the side surface and upper / lower surface force Brillouin zone boundary does not leak.
[0222] このような構成のリング状の 1次元フォトニック結晶である共振部 48は、その側面か らエバネッセント波が結合することにより、共振器として機能する。つまり、所定の周波 数の光のみが共振部 48と結合し、共振部 48の内部で共振する。従って、導波路素 子 47において、入射側導波路 43と共振部 48との間隔と、共振部 48と出射側導波路 44との間隔とを適正な距離に設定することにより、導波路素子 47を共振素子として 機會させることができる。 [0222] The resonating part 48, which is a ring-shaped one-dimensional photonic crystal having such a configuration, functions as a resonator by coupling an evanescent wave from its side surface. In other words, the predetermined frequency Only a certain number of lights are coupled to the resonance part 48 and resonate inside the resonance part 48. Therefore, in the waveguide element 47, the distance between the incident-side waveguide 43 and the resonance part 48 and the distance between the resonance part 48 and the emission-side waveguide 44 are set to appropriate distances. Can be used as a resonant element.
[0223] 次に、実施の形態 15の導波路素子 47の動作について説明する。 [0223] Next, the operation of the waveguide element 47 of the fifteenth embodiment will be described.
[0224] まず、共振部 48を、例えば、波長 λ の光のみが共振するように設計しておく。例え [0224] First, the resonating unit 48 is designed so that, for example, only light of wavelength λ resonates. Illustration
1  1
ば、その寸法や形状等を変化させることにより、所望の共振周波数を有する共振部 4 8を作製する。  For example, the resonance part 48 having a desired resonance frequency is manufactured by changing the size, shape, and the like.
[0225] そして、入射側導波路 43に、波長 λ の光を含む、異なる周波数の複数の入射光  [0225] Then, the incident-side waveguide 43 includes a plurality of incident light beams having wavelengths λ.
1  1
76を伝播させる。この場合、入射光 76は、ブリルアンゾーン境界上の伝播モードとな るように伝播させる。これにより、波長え の光のみが共振部 48内で共振して、出射  Propagate 76. In this case, the incident light 76 is propagated so as to be in a propagation mode on the Brillouin zone boundary. As a result, only light of a wavelength resonates within the resonating section 48 and is emitted.
1  1
側導波路 44に結合され、選択光 77として出射側導波路 44から出射される。選択光 77以外の出射光 78は、入射側導波路 43の出射側端面から出射される。つまり、導 波路素子 47においては、波長え の光のみが入射側導波路 43から出射側導波路 4  The light is coupled to the side waveguide 44 and emitted from the emission side waveguide 44 as selection light 77. The outgoing light 78 other than the selection light 77 is emitted from the outgoing side end face of the incident side waveguide 43. In other words, in the waveguide element 47, only light of a wavelength is transmitted from the incident side waveguide 43 to the output side waveguide 4.
1  1
4に透過され、それ以外の光は、共振部 48で結合せずに、入射側導波路 43から出 射される。  Light other than that transmitted through 4 is emitted from the incident-side waveguide 43 without being coupled by the resonator 48.
[0226] このようにリング状の共振部 48を用いた場合には、共振長を長くすることができる。  [0226] When the ring-shaped resonating portion 48 is used as described above, the resonance length can be increased.
そして、これにより、自由スペクトル領域 (FSR)が狭くなるので、一定間隔の複数の 周波数を共振させることができる。また、伝播に要する時間の遅延を用いることにより 、導波路素子 47を光バッファメモリや多連パルス発生素子として機能させることもでき る。  As a result, the free spectral region (FSR) is narrowed, so that a plurality of frequencies at regular intervals can be resonated. Further, by using a time delay required for propagation, the waveguide element 47 can also function as an optical buffer memory or a multiple pulse generation element.
[0227] 以上、共振素子について説明したが、共振素子の共振部 (共振器)の形状は、円柱 状やリング状に限定されるものではなぐ例えば、直方体状であってもよい。共振素子 の共振部 (共振器)の形状は、共振周波数に応じて自由に設計することができる。  [0227] Although the resonance element has been described above, the shape of the resonance portion (resonator) of the resonance element is not limited to a cylindrical shape or a ring shape, but may be a rectangular parallelepiped shape, for example. The shape of the resonance part (resonator) of the resonance element can be freely designed according to the resonance frequency.
[0228] [実施の形態 16]  [Embodiment 16]
本発明の実施の形態 16における導波路素子について、図を参照しながら説明す る。実施の形態 16の導波路素子は、マルチモード力ブラである。図 25は、本発明の 実施の形態 16における導波路素子の構成を示す斜視図である。 [0229] 図 25に示すように、実施の形態 16の導波路素子 51は、基板 2と、基板 2上に設け られた分岐用導波路 (共振フォトニック結晶導波路) 52とを備えている。分岐用導波 路 52は、上記の 1次元フォトニック結晶導波路である。 1次元フォトニック結晶導波路 は、上記のように、特定の高次モード光を伝播させることができ、さらに、伝播光の閉 じ込めを完全なものとすることができる。 A waveguide element according to the sixteenth embodiment of the present invention will be described with reference to the drawings. The waveguide device of the sixteenth embodiment is a multimode force bra. FIG. 25 is a perspective view showing the configuration of the waveguide element according to the sixteenth embodiment of the present invention. As shown in FIG. 25, the waveguide element 51 of the sixteenth embodiment includes a substrate 2 and a branching waveguide (resonant photonic crystal waveguide) 52 provided on the substrate 2. . The branching waveguide 52 is the one-dimensional photonic crystal waveguide described above. As described above, the one-dimensional photonic crystal waveguide can propagate a specific higher-order mode light, and can further confine the propagation light.
[0230] 分岐用導波路 52は、基板 2の主面に垂直な方向である Y軸方向を積層方向とする 多層構造体であり、積層方向に屈折率周期性を有している。  [0230] The branching waveguide 52 is a multilayer structure in which the Y-axis direction that is perpendicular to the main surface of the substrate 2 is the stacking direction, and has a refractive index periodicity in the stacking direction.
[0231] 分岐用導波路 52は、入射側導波路 (入射側フォトニック結晶導波路) 53と、入射側 導波路 53に比べて幅 (X軸方向の長さ)が広いスラブ導波路 (スラブ状フォトニック結 晶導波路) 54と、複数の出射側導波路(出射側フォトニック結晶導波路) 55とにより 構成されている。スラブ導波路 54は、入射側導波路 53及び出射側導波路 55とそれ ぞれ接続されており、スラブ導波路 54において、入射側導波路 53が接続された面と 対向する面に出射側導波路 55が接続されている。  [0231] The branching waveguide 52 is composed of an incident-side waveguide (incident-side photonic crystal waveguide) 53 and a slab waveguide (slab slab width) wider than the incident-side waveguide 53 (length in the X-axis direction). And a plurality of output side waveguides (output side photonic crystal waveguides) 55. The slab waveguide 54 is connected to the entrance-side waveguide 53 and the exit-side waveguide 55, respectively. In the slab waveguide 54, the exit-side guide is formed on the surface opposite to the surface to which the entrance-side waveguide 53 is connected. Waveguide 55 is connected.
[0232] 分岐用導波路 52は、図 7A及び図 7Bに示したフォトニック結晶導波路 140であり、 上記式(3)も満たしている。このため、屈折率周期方向である Y軸方向に対して垂直 な面に沿った方向へのブリルアンゾーン境界上の伝播光の漏れ出しは生じな 、。尚 、実施の形態 16においては、各導波路の周りは空気であるため、屈折率 n は 1であ  The branching waveguide 52 is the photonic crystal waveguide 140 shown in FIGS. 7A and 7B, and also satisfies the above equation (3). For this reason, the leakage of propagating light on the Brillouin zone boundary in the direction along the plane perpendicular to the Y-axis direction which is the refractive index periodic direction does not occur. In Embodiment 16, since the air around each waveguide is air, the refractive index n is 1.
S  S
る。また、上記したように、クラッド及びコアの両方を 1次元フォトニック結晶として、積 層方向へのブリルアンゾーン境界上の伝播光の漏れ出しが生じな 、ようにされて 、る 。これにより、分岐用導波路 52において、側面及び上下面からブリルアンゾーン境界 上の伝播光が漏れることはな 、。  The In addition, as described above, both the cladding and the core are made to be one-dimensional photonic crystals so that the propagation light does not leak on the Brillouin zone boundary in the stacking direction. As a result, in the branching waveguide 52, the propagation light on the Brillouin zone boundary does not leak from the side surface and the upper and lower surfaces.
[0233] 次に、実施の形態 16の導波路素子 51の動作について説明する。 [0233] Next, the operation of the waveguide element 51 of the sixteenth embodiment will be described.
[0234] 入射側導波路 53に、入射光 75を伝播させる。この場合、入射光 75は、ブリルアン ゾーン境界上の伝播モードとなるように伝播させる。入射側導波路 53からスラブ導波 路 54に入射された入射光 75は、スラブ導波路 54を伝播することにより、マルチモー ドカブラの作用によって 4つに分岐され、それぞれ 4つの出射側導波路 55から出射 光 78として出射される。 The incident light 75 is propagated through the incident side waveguide 53. In this case, the incident light 75 is propagated so as to be in a propagation mode on the Brillouin zone boundary. Incident light 75 that has entered the slab waveguide 54 from the incident-side waveguide 53 propagates through the slab waveguide 54 and is branched into four by the action of the multimode cover, and each of the four incident-side waveguides 55 The light is emitted as outgoing light 78.
[0235] [実施の形態 17] 本発明の実施の形態 17における導波路素子について、図を参照しながら説明す る。実施の形態 17の導波路素子は、波長分離素子である。図 26は、本発明の実施 の形態 17における導波路素子の構成を示す斜視図である。 [Embodiment 17] A waveguide element according to the seventeenth embodiment of the present invention will be described with reference to the drawings. The waveguide element according to the seventeenth embodiment is a wavelength separation element. FIG. 26 is a perspective view showing the configuration of the waveguide element according to the seventeenth embodiment of the present invention.
[0236] 図 26に示すように、実施の形態 17の導波路素子 56は、基板 2と、基板 2上に設け られた波長分離導波路 (共振フォトニック結晶導波路) 57とを備えて 、る。波長分離 導波路 57は、上記の 1次元フォトニック結晶導波路である。 1次元フォトニック結晶導 波路は、上記のように、特定の高次モード光を伝播させることができ、さらに、伝播光 の閉じ込めを完全なものとすることができる。  As shown in FIG. 26, a waveguide element 56 according to the seventeenth embodiment includes a substrate 2 and a wavelength separation waveguide (resonant photonic crystal waveguide) 57 provided on the substrate 2. The The wavelength separation waveguide 57 is the one-dimensional photonic crystal waveguide described above. As described above, the one-dimensional photonic crystal waveguide can propagate a specific higher-order mode light, and can further confine the propagation light.
[0237] 波長分離導波路 57は、基板 2の主面に垂直な方向である Y軸方向を積層方向とす る多層構造体であり、積層方向に屈折率周期性を有している。  [0237] The wavelength separation waveguide 57 is a multilayer structure in which the Y-axis direction, which is the direction perpendicular to the main surface of the substrate 2, is the lamination direction, and has a refractive index periodicity in the lamination direction.
[0238] 波長分離導波路 57は、入射側導波路 (入射側フォトニック結晶導波路) 58と、入射 側導波路 58に比べて幅 (X軸方向の長さ)が広いスラブ導波路 (スラブ状フォトニック 結晶導波路) 59と、複数の出射側導波路(出射側フォトニック結晶導波路) 60とによ り構成されている。スラブ導波路 59は、入射側導波路 58及び出射側導波路 60とそ れぞれ接続されており、スラブ導波路 59において、入射側導波路 58が接続された面 と対向する面に出射側導波路 60が接続されている。  [0238] The wavelength separation waveguide 57 includes an incident-side waveguide (incident-side photonic crystal waveguide) 58 and a slab waveguide (slab length) that is wider than the incident-side waveguide 58 (length in the X-axis direction). And a plurality of output-side waveguides (output-side photonic crystal waveguides) 60. The slab waveguide 59 is connected to the entrance-side waveguide 58 and the exit-side waveguide 60, respectively. In the slab waveguide 59, the exit-side surface faces the surface where the entrance-side waveguide 58 is connected. Waveguide 60 is connected.
[0239] 波長分離導波路 57は、図 7A及び図 7Bに示したフォトニック結晶導波路 140であり 、上記式(3)も満たしている。このため、屈折率周期方向である Y軸方向に対して垂 直な面に沿った方向へのブリルアンゾーン境界上の伝播光の漏れ出しは生じない。 尚、実施の形態 17においては、各導波路の周りは空気であるため、屈折率 n は 1で  The wavelength separation waveguide 57 is the photonic crystal waveguide 140 shown in FIGS. 7A and 7B, and also satisfies the above equation (3). For this reason, leakage of propagating light on the Brillouin zone boundary in a direction along a plane perpendicular to the Y-axis direction that is the refractive index periodic direction does not occur. In Embodiment 17, since the air around each waveguide is air, the refractive index n is 1.
S  S
ある。また、上記したように、クラッド及びコアの両方を 1次元フォトニック結晶として、 積層方向へのブリルアンゾーン境界上の伝播光の漏れ出しが生じないようにされて いる。これにより、波長分離導波路 57において、側面及び上下面からブリルアンゾー ン境界上の伝播光が漏れることはな!/、。  is there. In addition, as described above, both the cladding and the core are made of a one-dimensional photonic crystal so that propagating light does not leak on the Brillouin zone boundary in the stacking direction. As a result, in the wavelength separation waveguide 57, the propagating light on the Brillouin zone boundary does not leak from the side surface and the upper and lower surfaces.
[0240] 出射側導波路 60を 2つ設け、スラブ導波路 59の寸法を適宜設計することにより、入 射側導波路 58から入射された、異なる波長を有する複数の光のうち、所望とする波 長の光のみを出射側導波路 60のそれぞれから選択光 77として取り出すことができる 。すなわち、導波路素子 56を波長分離素子として機能させることができる。 [0241] 次に、実施の形態 17の導波路素子 56の動作について説明する。 [0240] By providing two exit-side waveguides 60 and appropriately designing the dimensions of the slab waveguide 59, it is desired to select a plurality of lights incident from the entrance-side waveguide 58 and having different wavelengths. Only light having a wavelength can be extracted from each of the exit-side waveguides 60 as selection light 77. That is, the waveguide element 56 can function as a wavelength separation element. [0241] Next, the operation of the waveguide element 56 of the seventeenth embodiment will be described.
[0242] 入射側導波路 58に、入射光 75を伝播させる。この場合、入射光 75は、ブリルアン ゾーン境界上の伝播モードとなるように伝播させる。入射側導波路 58からスラブ導波 路 59に入射された入射光 75は、スラブ導波路 59を伝播することにより、波長ごとに 分離され、それぞれ 2つの出射側導波路 60から選択光 77として出射される。  [0242] The incident light 75 is propagated in the incident-side waveguide 58. In this case, the incident light 75 is propagated so as to be in a propagation mode on the Brillouin zone boundary. The incident light 75 incident on the slab waveguide 59 from the incident-side waveguide 58 is separated for each wavelength by propagating through the slab waveguide 59, and is output as the selection light 77 from the two output-side waveguides 60, respectively. Is done.
[0243] 上記のように、本発明の実施の形態における導波路素子及びレーザ発生器は、完 全な光の閉じ込めを行うことのできる 1次元フォトニック結晶導波路を用いて構成され ている。そのため、設計の自由度が高ぐ形状や大きさに制約はない。また、共振器 として用いる場合であっても、共振周波数、モード数、共振方向等を、制約なく所望 の値及び方向とすることができる。これにより、集積化が可能で、より高機能な導波路 素子及びレーザ発生器を実現することができる。また、 1次元フォトニック結晶導波路 は、一方向にのみ屈折率周期性を有する多層構造体であるため、容易に作製するこ とができる。また、光を共振させるための 1次元フォトニック結晶導波路、及びレーザ 光を励起させるための 1次元フォトニック結晶導波路は、屈折率周期性を有しない方 向には、形状に関する制約がないため、設計の自由度が高い。  [0243] As described above, the waveguide element and the laser generator in the embodiment of the present invention are configured using a one-dimensional photonic crystal waveguide capable of performing complete light confinement. For this reason, there is no restriction on the shape and size with which the degree of freedom of design is high. Even when used as a resonator, the resonance frequency, the number of modes, the resonance direction, and the like can be set to desired values and directions without restrictions. As a result, it is possible to realize a waveguide element and a laser generator that can be integrated and have higher performance. In addition, the one-dimensional photonic crystal waveguide is a multilayer structure having a refractive index periodicity only in one direction, and thus can be easily manufactured. In addition, the one-dimensional photonic crystal waveguide for resonating light and the one-dimensional photonic crystal waveguide for exciting laser light have no restrictions on the shape in the direction that does not have refractive index periodicity. Therefore, the degree of freedom in design is high.
[0244] 尚、実施の形態 1〜17のいずれかの導波路素子あるいはレーザ発生器において、 基板 2上に設けられる 1次元フォトニック結晶導波路は、すべて同じ構成とするのが 望ましい。すなわち、屈折率周期、伝播光の真空中における波長、屈折率周期方向 に平行な側面に接する均質媒体の屈折率等は同一とするのが望ましい。これにより、 基板上に多層構造体を形成し、エッチング処理等を施すことにより、各 1次元フォト- ック結晶導波路を容易に作製することができる。  [0244] In any of the waveguide elements or laser generators of Embodiments 1 to 17, it is desirable that the one-dimensional photonic crystal waveguides provided on the substrate 2 have the same configuration. That is, it is desirable that the refractive index period, the wavelength of the propagating light in vacuum, the refractive index of the homogeneous medium in contact with the side surface parallel to the refractive index periodic direction, and the like be the same. Thus, each one-dimensional photonic crystal waveguide can be easily manufactured by forming a multilayer structure on the substrate and performing an etching process or the like.
[0245] また、実施の形態 1〜17においては、基板 2上に設けられた 1次元フォトニック結晶 導波路の側面及び上面が空気に接している場合を例に挙げて説明したが、空気の 代わりに、石英ゃ榭脂材料等を用いてもよい。  In Embodiments 1 to 17, the case where the side surface and the top surface of the one-dimensional photonic crystal waveguide provided on the substrate 2 are in contact with air has been described as an example. Instead, quartz resin material or the like may be used.
[0246] また、それぞれの 1次元フォトニック結晶導波路において、屈折率周期、伝播光の 真空中における波長、屈折率周期方向に平行な側面に接する均質媒体の屈折率等 を同一としなくとも、上記実施の形態の導波路素子及びレーザ発生器を実現すること はできる。 産業上の利用可能性 [0246] Further, in each one-dimensional photonic crystal waveguide, the refractive index period, the wavelength of propagating light in a vacuum, the refractive index of a homogeneous medium in contact with the side surface parallel to the refractive index periodic direction, etc. are not necessarily the same. The waveguide element and laser generator of the above embodiment can be realized. Industrial applicability
本発明の導波路素子及びレーザ発生器は、スイッチング素子、光増幅素子、共振 素子、波長分離素子、分波素子等の様々な光学素子として用いることができる。  The waveguide element and laser generator of the present invention can be used as various optical elements such as a switching element, an optical amplification element, a resonance element, a wavelength separation element, and a demultiplexing element.

Claims

請求の範囲 The scope of the claims
[1] 一方向に屈折率周期性を有するフォトニック結晶により構成され、前記屈折率周期 性を有しな 、方向にブリルアンゾーン境界上に存在する電磁波を伝播させるコアを 有する共振フォトニック結晶導波路を備えた導波路素子であって、  [1] A resonant photonic crystal waveguide comprising a photonic crystal having a refractive index periodicity in one direction and having a core that propagates an electromagnetic wave existing on the Brillouin zone boundary in the direction without the refractive index periodicity. A waveguide element comprising a waveguide,
前記共振フォトニック結晶導波路は、  The resonant photonic crystal waveguide is
前記コアの前記屈折率周期性を有する方向に平行な前記コアの側面に接している 均質媒体の屈折率を n 、前記コアの屈折率周期を a、前記コア内を伝播する電磁波  The refractive index of the homogeneous medium that is in contact with the side of the core parallel to the direction having the refractive index periodicity of the core is n, the refractive index period of the core is a, and the electromagnetic wave propagating in the core
S  S
の真空中における波長をえ とした場合に、  When the wavelength in a vacuum is estimated,
0  0
a/ λ < l/ (2n )  a / λ <l / (2n)
0 S  0 S
の条件を満たすことを特徴とする導波路素子。  A waveguide element characterized by satisfying the following condition.
[2] 前記共振フォトニック結晶導波路に共振を生じさせる共振機構をさらに備えた請求 項 1に記載の導波路素子。  2. The waveguide element according to claim 1, further comprising a resonance mechanism that causes resonance in the resonant photonic crystal waveguide.
[3] 前記共振機構は、 [3] The resonance mechanism is:
前記共振フォトニック結晶導波路の光軸に対して略垂直で、かつ、前記共振フォト ニック結晶導波路の前記コアの前記屈折率周期性を有する方向に対して略垂直な 方向から前記共振フォトニック結晶導波路の前記コアにエバネッセント波を結合させ 、前記共振フォトニック結晶導波路内において、前記共振フォトニック結晶導波路の 光軸に対して略垂直で、かつ、前記共振フォトニック結晶導波路の前記コアの前記 屈折率周期性を有する方向に対して略垂直な方向に共振を生じさせる請求項 2に記 載の導波路素子。  The resonant photonic from a direction substantially perpendicular to the optical axis of the resonant photonic crystal waveguide and substantially perpendicular to the direction of the refractive index periodicity of the core of the resonant photonic crystal waveguide. An evanescent wave is coupled to the core of the crystal waveguide, and in the resonant photonic crystal waveguide, substantially perpendicular to the optical axis of the resonant photonic crystal waveguide and of the resonant photonic crystal waveguide The waveguide element according to claim 2, wherein resonance is generated in a direction substantially perpendicular to the direction of the refractive index periodicity of the core.
[4] 前記共振機構は、前記共振フォトニック結晶導波路の光軸に対して略垂直で、か つ、前記共振フォトニック結晶導波路の前記コアの前記屈折率周期性を有する方向 に対して略垂直な光軸を有し、前記共振フォトニック結晶導波路とは離間して、前記 共振フォトニック結晶導波路を挟んで配置された 2つの導波路を備え、  [4] The resonance mechanism is substantially perpendicular to the optical axis of the resonant photonic crystal waveguide, and with respect to a direction having the refractive index periodicity of the core of the resonant photonic crystal waveguide. Two waveguides having a substantially vertical optical axis, spaced apart from the resonant photonic crystal waveguide, and disposed with the resonant photonic crystal waveguide sandwiched therebetween,
前記 2つの導波路は、それぞれ、一方向に屈折率周期性を有するフォトニック結晶 により構成され、前記屈折率周期性を有しない方向にブリルアンゾーン境界上に存 在する電磁波を伝播させるコアを有するフォトニック結晶導波路であり、  Each of the two waveguides is composed of a photonic crystal having a refractive index periodicity in one direction, and has a core for propagating an electromagnetic wave existing on the Brillouin zone boundary in a direction not having the refractive index periodicity. A photonic crystal waveguide,
前記フォトニック結晶導波路は、 前記フォトニック結晶導波路の前記コアの前記屈折率周期性を有する方向に平行 な前記フォトニック結晶導波路の前記コアの側面に接している均質媒体の屈折率を n 、前記フォトニック結晶導波路の前記コアの屈折率周期を a 、前記フォトニック結晶The photonic crystal waveguide is The refractive index of the homogeneous medium in contact with the side of the core of the photonic crystal waveguide parallel to the direction of the refractive index periodicity of the core of the photonic crystal waveguide is n, and the photonic crystal waveguide The refractive index period of the core of a, the photonic crystal
S1 1 S1 1
導波路の前記コア内を伝播する電磁波の真空中における波長をえ 01とした場合に、 a / λ < 1/ (2η )  When the wavelength in the vacuum of the electromagnetic wave propagating in the core of the waveguide is 01, a / λ <1 / (2η)
1 01 SI  1 01 SI
の条件を満たす請求項 3に記載の導波路素子。  The waveguide device according to claim 3, wherein the condition is satisfied.
[5] 前記共振機構は、前記共振フォトニック結晶導波路の光軸と同一の方向力 前記 共振フォトニック結晶導波路の前記コアにエバネッセント波を結合させる請求項 2に 記載の導波路素子。 5. The waveguide element according to claim 2, wherein the resonance mechanism couples an evanescent wave to the core of the resonance photonic crystal waveguide, which has the same directional force as the optical axis of the resonance photonic crystal waveguide.
[6] 前記共振機構は、前記共振フォトニック結晶導波路の光軸と同一の光軸を有し、前 記共振フォトニック結晶導波路とは離間して、前記共振フォトニック結晶導波路を挟 んで配置された 2つの導波路を備え、  [6] The resonance mechanism has the same optical axis as the optical axis of the resonant photonic crystal waveguide, and is spaced apart from the resonant photonic crystal waveguide to sandwich the resonant photonic crystal waveguide. With two waveguides arranged in
前記 2つの導波路は、それぞれ、一方向に屈折率周期性を有するフォトニック結晶 により構成され、前記屈折率周期性を有しない方向にブリルアンゾーン境界上に存 在する電磁波を伝播させるコアを有するフォトニック結晶導波路であり、  Each of the two waveguides is composed of a photonic crystal having a refractive index periodicity in one direction, and has a core for propagating an electromagnetic wave existing on the Brillouin zone boundary in a direction not having the refractive index periodicity. A photonic crystal waveguide,
前記フォトニック結晶導波路は、  The photonic crystal waveguide is
前記フォトニック結晶導波路の前記コアの前記屈折率周期性を有する方向に平行 な前記フォトニック結晶導波路の前記コアの側面に接している均質媒体の屈折率を n ト  The refractive index of the homogeneous medium in contact with the side of the core of the photonic crystal waveguide parallel to the direction of the refractive index periodicity of the core of the photonic crystal waveguide is
S1、前記フォ ニック結晶導波路の前記コアの屈折率周期を a  S1, the refractive index period of the core of the phonic crystal waveguide is a
1、前記フォトニック結晶 導波路の前記コア内を伝播する電磁波の真空中における波長をえ 01とした場合に、 a / λ < 1/ (2η )  1. When the wavelength in the vacuum of the electromagnetic wave propagating in the core of the photonic crystal waveguide is set to 01, a / λ <1 / (2η)
1 01 SI  1 01 SI
の条件を満たす請求項 5に記載の導波路素子。  The waveguide device according to claim 5, wherein the following condition is satisfied.
[7] 前記共振フォトニック結晶導波路は、前記コアの前記屈折率周期性を有する方向 から前記コアを挟み、前記コアの前記屈折率周期性を有する方向と同一の方向に屈 折率周期性を有するクラッドをさらに備え、 [7] The resonant photonic crystal waveguide sandwiches the core from the direction having the refractive index periodicity of the core, and has a refractive index periodicity in the same direction as the direction of the core having the refractive index periodicity. Further comprising a clad having
前記共振機構は、  The resonance mechanism is
前記共振フォトニック結晶導波路の前記コアの前記屈折率周期性を有する方向か ら前記共振フォトニック結晶導波路の前記コアに光波を結合させ、前記共振フォト二 ック結晶導波路内において、前記共振フォトニック結晶導波路の前記コアの前記屈 折率周期性を有する方向に共振を生じさせる請求項 2に記載の導波路素子。 A light wave is coupled to the core of the resonant photonic crystal waveguide from the direction having the refractive index periodicity of the core of the resonant photonic crystal waveguide, and the resonant photonic 3. The waveguide element according to claim 2, wherein resonance is generated in a direction having the refractive index periodicity of the core of the resonant photonic crystal waveguide in a crystal crystal waveguide.
[8] 前記共振機構は、前記共振フォトニック結晶導波路の前記コアの前記屈折率周期 性を有する方向に沿った光軸を有し、前記共振フォトニック結晶導波路とは離間して 配置された光入射部を備えている請求項 7に記載の導波路素子。 [8] The resonance mechanism has an optical axis along a direction having the refractive index periodicity of the core of the resonant photonic crystal waveguide, and is disposed apart from the resonant photonic crystal waveguide. 8. The waveguide element according to claim 7, further comprising a light incident portion.
[9] 前記光入射部は、光導波路と、前記光導波路からの光を集光するレンズとを備えて いる請求項 8に記載の導波路素子。 9. The waveguide element according to claim 8, wherein the light incident portion includes an optical waveguide and a lens that collects light from the optical waveguide.
[10] 前記光入射部は、前記共振フォトニック結晶導波路の前記コアの前記屈折率周期 性を有する方向に対して垂直な面に沿って並んで配置された複数の光源を備え、前 記複数の光源は、それぞれ独立して光を出射する請求項 8に記載の導波路素子。 [10] The light incident section includes a plurality of light sources arranged side by side along a plane perpendicular to the direction of the refractive index periodicity of the core of the resonant photonic crystal waveguide. 9. The waveguide element according to claim 8, wherein the plurality of light sources emit light independently of each other.
[11] 前記共振フォトニック結晶導波路は、前記共振フォトニック結晶導波路の前記コア の前記屈折率周期性を有する方向に対して垂直な面に沿って広がるスラブ状部分を 有している請求項 10に記載の導波路素子。 [11] The resonant photonic crystal waveguide has a slab-like portion extending along a plane perpendicular to the direction of the refractive index periodicity of the core of the resonant photonic crystal waveguide. Item 11. The waveguide device according to Item 10.
[12] 前記共振フォトニック結晶導波路の前記コアは、非線型作用を有している請求項 212. The core of the resonant photonic crystal waveguide has a non-linear action.
〜 11の 、ずれかに記載の導波路素子。 The waveguide element according to any one of 11 to 11.
[13] 前記共振フォトニック結晶導波路の前記コアは、増幅作用を有している請求項 2〜13. The core of the resonant photonic crystal waveguide has an amplifying function.
11の 、ずれかに記載の導波路素子。 11. A waveguide element according to any one of the above.
[14] 前記共振フォトニック結晶導波路は、リング状である請求項 1に記載の導波路素子 14. The waveguide element according to claim 1, wherein the resonant photonic crystal waveguide has a ring shape.
[15] 入射側フォトニック結晶導波路及び出射側フォトニック結晶導波路をさらに備え、 前記入射側フォトニック結晶導波路中を伝播している波長の異なる複数の電磁波 のうち、前記共振フォトニック結晶導波路の共振周波数を有する電磁波が、前記共 振フォトニック結晶導波路で共振して、前記出射側フォトニック結晶導波路に伝播す るように、前記入射側フォトニック結晶導波路と、前記共振フォトニック結晶導波路と、 前記出射側フォトニック結晶導波路とが配置され、 [15] An incident-side photonic crystal waveguide and an exit-side photonic crystal waveguide, and the resonant photonic crystal out of a plurality of electromagnetic waves having different wavelengths propagating in the incident-side photonic crystal waveguide The electromagnetic wave having the resonance frequency of the waveguide resonates in the resonant photonic crystal waveguide and propagates to the outgoing photonic crystal waveguide, and the resonant photonic crystal waveguide and the resonant A photonic crystal waveguide and the exit side photonic crystal waveguide are disposed;
前記入射側フォトニック結晶導波路及び前記出射側フォトニック結晶導波路は、そ れぞれ、一方向に屈折率周期性を有するフォトニック結晶により構成され、前記屈折 率周期性を有しな ヽ方向にブリルアンゾーン境界上に存在する電磁波を伝播させる コアを有するフォトニック結晶導波路であり、 The entrance-side photonic crystal waveguide and the exit-side photonic crystal waveguide are each composed of a photonic crystal having a refractive index periodicity in one direction, and do not have the refractive index periodicity. Propagating electromagnetic waves present on the Brillouin zone boundary in the direction A photonic crystal waveguide having a core;
前記フォトニック結晶導波路は、  The photonic crystal waveguide is
前記フォトニック結晶導波路の前記コアの前記屈折率周期性を有する方向に平行 な前記フォトニック結晶導波路の前記コアの側面に接している均質媒体の屈折率を n 、前記フォトニック結晶導波路の前記コアの屈折率周期を a 、前記フォトニック結晶 The refractive index of the homogeneous medium in contact with the side of the core of the photonic crystal waveguide parallel to the direction of the refractive index periodicity of the core of the photonic crystal waveguide is n, and the photonic crystal waveguide The refractive index period of the core of a, the photonic crystal
S1 1 S1 1
導波路の前記コア内を伝播する電磁波の真空中における波長をえ 01とした場合に、 a / λ < 1/ (2η )  When the wavelength in the vacuum of the electromagnetic wave propagating in the core of the waveguide is 01, a / λ <1 / (2η)
1 01 SI  1 01 SI
の条件を満たす請求項 1又は 14に記載の導波路素子。  The waveguide element according to claim 1 or 14, wherein the condition of the above condition is satisfied.
[16] 入射側フォトニック結晶導波路及び出射側フォトニック結晶導波路をさらに備え、 前記共振フォトニック結晶導波路を複数有し、 [16] It further comprises an incident side photonic crystal waveguide and an exit side photonic crystal waveguide, and has a plurality of the resonant photonic crystal waveguides,
前記入射側フォトニック結晶導波路中を伝播している波長の異なる複数の電磁波 のうち、前記共振フォトニック結晶導波路の共振周波数を有する電磁波が、前記複 数の共振フォトニック結晶導波路で順次共振して、前記出射側フォトニック結晶導波 路に伝播するように、前記入射側フォトニック結晶導波路と、前記複数の共振フォト二 ック結晶導波路と、前記出射側フォトニック結晶導波路とが配置され、  Among a plurality of electromagnetic waves having different wavelengths propagating in the incident-side photonic crystal waveguide, electromagnetic waves having a resonance frequency of the resonant photonic crystal waveguide are sequentially transmitted through the plurality of resonant photonic crystal waveguides. The incident-side photonic crystal waveguide, the plurality of resonant photonic crystal waveguides, and the output-side photonic crystal waveguide so as to resonate and propagate to the output-side photonic crystal waveguide. And are arranged,
前記入射側フォトニック結晶導波路及び前記出射側フォトニック結晶導波路は、そ れぞれ、一方向に屈折率周期性を有するフォトニック結晶により構成され、前記屈折 率周期性を有しな ヽ方向にブリルアンゾーン境界上に存在する電磁波を伝播させる コアを有するフォトニック結晶導波路であり、  The entrance-side photonic crystal waveguide and the exit-side photonic crystal waveguide are each composed of a photonic crystal having a refractive index periodicity in one direction, and do not have the refractive index periodicity. A photonic crystal waveguide with a core that propagates electromagnetic waves that exist on the Brillouin zone boundary in the direction,
前記フォトニック結晶導波路は、  The photonic crystal waveguide is
前記フォトニック結晶導波路の前記コアの前記屈折率周期性を有する方向に平行 な前記フォトニック結晶導波路の前記コアの側面に接している均質媒体の屈折率を n 、前記フォトニック結晶導波路の前記コアの屈折率周期を a 、前記フォトニック結晶 The refractive index of the homogeneous medium in contact with the side of the core of the photonic crystal waveguide parallel to the direction of the refractive index periodicity of the core of the photonic crystal waveguide is n, and the photonic crystal waveguide The refractive index period of the core of a, the photonic crystal
S1 1 S1 1
導波路の前記コア内を伝播する電磁波の真空中における波長をえ 01とした場合に、 a / λ < 1/ (2η )  When the wavelength in the vacuum of the electromagnetic wave propagating in the core of the waveguide is 01, a / λ <1 / (2η)
1 01 SI  1 01 SI
の条件を満たす請求項 1又は 14に記載の導波路素子。  The waveguide element according to claim 1 or 14, wherein the condition of the above condition is satisfied.
[17] 入射側フォトニック結晶導波路及び複数の出射側フォトニック結晶導波路をさらに 備え、 前記複数の出射側フォトニック結晶導波路と同数の前記共振フォトニック結晶導波 路を有し、 [17] An incident side photonic crystal waveguide and a plurality of output side photonic crystal waveguides are further provided, Having the same number of the resonant photonic crystal waveguides as the plurality of exit side photonic crystal waveguides;
前記複数の共振フォトニック結晶導波路の共振周波数は互いに異なっており、 前記入射側フォトニック結晶導波路中を伝播している波長の異なる複数の電磁波 のうち、前記共振フォトニック結晶導波路ごとの共振周波数を有する各電磁波が、そ れぞれ、対応する前記共振フォトニック結晶導波路で共振して、対応する前記出射 側フォトニック結晶導波路に伝播するように、前記入射側フォトニック結晶導波路と、 前記複数の共振フォトニック結晶導波路と、前記複数の出射側フォトニック結晶導波 路とが配置され、  Resonant frequencies of the plurality of resonant photonic crystal waveguides are different from each other, and a plurality of electromagnetic waves having different wavelengths propagating in the incident side photonic crystal waveguide Each of the electromagnetic waves having a resonance frequency resonates in the corresponding resonant photonic crystal waveguide and propagates to the corresponding outgoing photonic crystal waveguide. A waveguide, the plurality of resonant photonic crystal waveguides, and the plurality of emission-side photonic crystal waveguides,
前記入射側フォトニック結晶導波路及び前記複数の出射側フォトニック結晶導波路 は、それぞれ、一方向に屈折率周期性を有するフォトニック結晶により構成され、前 記屈折率周期性を有しな!/、方向にブリルアンゾーン境界上に存在する電磁波を伝 播させるコアを有するフォトニック結晶導波路であり、  Each of the incident side photonic crystal waveguide and the plurality of output side photonic crystal waveguides is composed of a photonic crystal having a refractive index periodicity in one direction, and has no refractive index periodicity! /, A photonic crystal waveguide with a core that propagates electromagnetic waves present on the Brillouin zone boundary in the direction,
前記フォトニック結晶導波路は、  The photonic crystal waveguide is
前記フォトニック結晶導波路の前記コアの前記屈折率周期性を有する方向に平行 な前記フォトニック結晶導波路の前記コアの側面に接している均質媒体の屈折率を n  The refractive index of the homogeneous medium in contact with the side surface of the core of the photonic crystal waveguide parallel to the direction of the refractive index periodicity of the core of the photonic crystal waveguide is n.
S1、前記フォトニック結晶導波路の前記コアの屈折率周期を a S1, the refractive index period of the core of the photonic crystal waveguide is a
1、前記フォトニック結晶 導波路の前記コア内を伝播する電磁波の真空中における波長をえ 01とした場合に、 a / λ < 1/ (2η )  1. When the wavelength in the vacuum of the electromagnetic wave propagating in the core of the photonic crystal waveguide is set to 01, a / λ <1 / (2η)
1 01 SI  1 01 SI
の条件を満たす請求項 1又は 14に記載の導波路素子。 The waveguide element according to claim 1 or 14, wherein the condition of the above condition is satisfied.
スラブ状フォトニック結晶導波路、入射側フォトニック結晶導波路及び複数の出射 側フォトニック結晶導波路を備えた導波路素子であって、  A waveguide device comprising a slab-like photonic crystal waveguide, an incident side photonic crystal waveguide, and a plurality of output side photonic crystal waveguides,
前記スラブ状フォトニック結晶導波路は、屈折率周期性を有する方向に対して垂直 な面に平行な方向に広がり、  The slab-like photonic crystal waveguide extends in a direction parallel to a plane perpendicular to a direction having a refractive index periodicity,
前記入射側フォトニック結晶導波路は、前記スラブ状フォトニック結晶導波路に接 続され、  The incident-side photonic crystal waveguide is connected to the slab photonic crystal waveguide,
前記複数の出射側フォトニック結晶導波路は、前記スラブ状フォトニック結晶導波 路において、前記入射側フォトニック結晶導波路が接続された面と対向する面に接 続され、 The plurality of output-side photonic crystal waveguides are in contact with a surface of the slab-like photonic crystal waveguide that faces the surface to which the incident-side photonic crystal waveguide is connected. Continued,
前記スラブ状フォトニック結晶導波路、前記入射側フォトニック結晶導波路及び前 記複数の出射側フォトニック結晶導波路は、それぞれ、一方向に屈折率周期性を有 するフォトニック結晶により構成され、前記屈折率周期性を有しない方向にブリルアン ゾーン境界上に存在する電磁波を伝播させるコアを有し、前記屈折率周期性を有す る方向に平行な前記コアの側面に接している均質媒体の屈折率を n 、前記コアの屈  The slab-like photonic crystal waveguide, the incident-side photonic crystal waveguide, and the plurality of exit-side photonic crystal waveguides are each composed of a photonic crystal having a refractive index periodicity in one direction, A homogeneous medium having a core for propagating electromagnetic waves existing on a Brillouin zone boundary in a direction not having the refractive index periodicity and in contact with a side surface of the core parallel to the direction having the refractive index periodicity Refractive index n, bending of the core
S  S
折率周期を a、前記コア内を伝播する電磁波の真空中における波長をえ とした場合  When the refractive index period is a and the wavelength of the electromagnetic wave propagating in the core is in vacuum
0 に、  0 to
a/ λ < l/ (2n )  a / λ <l / (2n)
0 S  0 S
の条件を満たすことを特徴とする導波路素子。  A waveguide element characterized by satisfying the following condition.
[19] 前記スラブ状フォトニック結晶導波路は、前記入射側フォトニック結晶導波路から入 射される光を分岐して、前記複数の出射側フォトニック結晶導波路のそれぞれに入 射させる請求項 18に記載の導波路素子。  [19] The slab-like photonic crystal waveguide branches light incident from the incident-side photonic crystal waveguide and makes it incident on each of the plurality of outgoing-side photonic crystal waveguides. 18. A waveguide element according to 18.
[20] 前記スラブ状フォトニック結晶導波路は、前記入射側フォトニック結晶導波路から入 射される波長の異なる複数の光を波長ごとに分離して、前記複数の出射側フォトニッ ク結晶導波路のそれぞれに入射させる請求項 18に記載の導波路素子。 [20] The slab-like photonic crystal waveguide separates a plurality of lights incident from the incident-side photonic crystal waveguide for each wavelength, and the plurality of the emission-side photonic crystal waveguides 19. The waveguide element according to claim 18, which is incident on each of the waveguide elements.
[21] 一方向に屈折率周期性を有するフォトニック結晶により構成され、前記屈折率周期 性を有しな 、方向にブリルアンゾーン境界上に存在する電磁波を伝播させるコアを 有する励起フォトニック結晶導波路と、 [21] A pumped photonic crystal waveguide composed of a photonic crystal having a refractive index periodicity in one direction and having a core that propagates electromagnetic waves existing on the Brillouin zone boundary in the direction without the refractive index periodicity. A waveguide,
前記励起フォトニック結晶導波路を励起させてレーザ光を発振させる励起機構とを 備えたレーザ発生器であって、  A laser generator including an excitation mechanism for exciting the excitation photonic crystal waveguide to oscillate laser light,
前記励起フォトニック結晶導波路は、  The excitation photonic crystal waveguide is
前記コアの前記屈折率周期性を有する方向に平行な前記コアの側面に接している 均質媒体の屈折率を n 、前記コアの屈折率周期を a、前記コア内を伝播する電磁波  The refractive index of the homogeneous medium that is in contact with the side of the core parallel to the direction having the refractive index periodicity of the core is n, the refractive index period of the core is a, and the electromagnetic wave propagating in the core
S  S
の真空中における波長をえ とした場合に、  When the wavelength in a vacuum is estimated,
0  0
a/ λ < l/ (2n )  a / λ <l / (2n)
0 S  0 S
の条件を満たし、  Meet the requirements of
前記コアは、発光作用を有していることを特徴とするレーザ発生器。 [22] 前記励起フォトニック結晶導波路の前記コアの前記屈折率周期性を有する方向に 対して略垂直な光軸を有する出射側フォトニック結晶導波路をさらに備え、 The laser generator characterized in that the core has a light emitting action. [22] The emission photonic crystal waveguide further comprising an optical axis substantially perpendicular to the direction of the refractive index periodicity of the core of the excitation photonic crystal waveguide,
前記出射側フォトニック結晶導波路は、一方向に屈折率周期性を有するフォトニッ ク結晶により構成され、前記屈折率周期性を有しない方向にブリルアンゾーン境界 上に存在する電磁波を伝播させるコアを有するフォトニック結晶導波路であり、 前記フォトニック結晶導波路は、  The exit-side photonic crystal waveguide is composed of a photonic crystal having a refractive index periodicity in one direction, and has a core for propagating an electromagnetic wave existing on a Brillouin zone boundary in a direction not having the refractive index periodicity. A photonic crystal waveguide, the photonic crystal waveguide is
前記フォトニック結晶導波路の前記コアの前記屈折率周期性を有する方向に平行 な前記フォトニック結晶導波路の前記コアの側面に接している均質媒体の屈折率を n 、前記フォトニック結晶導波路の前記コアの屈折率周期を a 、前記フォトニック結晶 The refractive index of the homogeneous medium in contact with the side of the core of the photonic crystal waveguide parallel to the direction of the refractive index periodicity of the core of the photonic crystal waveguide is n, and the photonic crystal waveguide The refractive index period of the core of a, the photonic crystal
S1 1 S1 1
導波路の前記コア内を伝播する電磁波の真空中における波長をえ 01とした場合に、 a / λ < 1/ (2η )  When the wavelength in the vacuum of the electromagnetic wave propagating in the core of the waveguide is 01, a / λ <1 / (2η)
1 01 SI  1 01 SI
の条件を満たし、  Meet the requirements of
前記励起機構は、前記励起フォトニック結晶導波路の前記コアの前記屈折率周期 性を有する方向から前記励起フォトニック結晶導波路を挟んで配置された 2つの電極 と、前記 2つの電極間に電圧を印加する電圧源とを備え、前記 2つの電極間に電圧 を印加することにより、前記励起フォトニック結晶導波路を励起させて前記レーザ光を 発振させ、  The excitation mechanism includes two electrodes disposed across the excitation photonic crystal waveguide from a direction having the refractive index periodicity of the core of the excitation photonic crystal waveguide, and a voltage between the two electrodes. And applying a voltage between the two electrodes to excite the excitation photonic crystal waveguide to oscillate the laser beam,
発振された前記レーザ光は、前記出射側フォトニック結晶導波路に入射される請求 項 21に記載のレーザ発生器。  The laser generator according to claim 21, wherein the oscillated laser beam is incident on the emission-side photonic crystal waveguide.
[23] 前記励起機構は、前記励起フォトニック結晶導波路に励起光を照射することにより[23] The excitation mechanism is configured by irradiating the excitation photonic crystal waveguide with excitation light.
、前記励起フォトニック結晶導波路を励起させて前記レーザ光を発振させる請求項 2The laser beam is oscillated by exciting the excitation photonic crystal waveguide.
1に記載のレーザ発生器。 The laser generator according to 1.
[24] 前記励起光を照射する方向に対して略垂直で、かつ、前記励起フォトニック結晶導 波路の前記コアの前記屈折率周期性を有する方向に対して略垂直な光軸を有する 出射側フォトニック結晶導波路をさらに備え、 [24] The output side having an optical axis that is substantially perpendicular to the direction of irradiating the excitation light and substantially perpendicular to the direction of the refractive index periodicity of the core of the excitation photonic crystal waveguide Further comprising a photonic crystal waveguide,
前記出射側フォトニック結晶導波路は、一方向に屈折率周期性を有するフォトニッ ク結晶により構成され、前記屈折率周期性を有しない方向にブリルアンゾーン境界 上に存在する電磁波を伝播させるコアを有するフォトニック結晶導波路であり、 前記フォトニック結晶導波路は、 The exit-side photonic crystal waveguide is composed of a photonic crystal having a refractive index periodicity in one direction, and has a core for propagating an electromagnetic wave existing on a Brillouin zone boundary in a direction not having the refractive index periodicity. A photonic crystal waveguide, The photonic crystal waveguide is
前記フォトニック結晶導波路の前記コアの前記屈折率周期性を有する方向に平行 な前記フォトニック結晶導波路の前記コアの側面に接している均質媒体の屈折率を n 、前記フォトニック結晶導波路の前記コアの屈折率周期を a 、前記フォトニック結晶 The refractive index of the homogeneous medium in contact with the side of the core of the photonic crystal waveguide parallel to the direction of the refractive index periodicity of the core of the photonic crystal waveguide is n, and the photonic crystal waveguide The refractive index period of the core of a, the photonic crystal
51 1 51 1
導波路の前記コア内を伝播する電磁波の真空中における波長をえ 01とした場合に、 a / λ < 1/ (2η )  When the wavelength in the vacuum of the electromagnetic wave propagating in the core of the waveguide is 01, a / λ <1 / (2η)
1 01 SI  1 01 SI
の条件を満たし、  Meet the requirements of
前記励起機構は、前記励起フォトニック結晶導波路の前記コアの前記屈折率周期 性を有する方向に対して略垂直な方向から前記励起フォトニック結晶導波路に前記 励起光を照射することにより、前記励起フォトニック結晶導波路を励起させて前記レ 一ザ光を発振させ、  The excitation mechanism irradiates the excitation photonic crystal waveguide with the excitation light from a direction substantially perpendicular to a direction having the refractive index periodicity of the core of the excitation photonic crystal waveguide. Exciting the excitation photonic crystal waveguide to oscillate the laser light,
発振された前記レーザ光は、前記出射側フォトニック結晶導波路に入射される請求 項 23に記載のレーザ発生器。  24. The laser generator according to claim 23, wherein the oscillated laser beam is incident on the emission-side photonic crystal waveguide.
[25] 前記励起機構は、前記出射側フォトニック結晶導波路の光軸に対して略垂直で、 かつ、前記励起フォトニック結晶導波路の前記コアの前記屈折率周期性を有する方 向に対して略垂直な光軸を有し、前記励起フォトニック結晶導波路とは離間して、前 記励起フォトニック結晶導波路を挟んで配置された 2つの導波路を備え、 [25] The excitation mechanism is substantially perpendicular to the optical axis of the emission-side photonic crystal waveguide and has a direction of the refractive index periodicity of the core of the excitation photonic crystal waveguide. Having two optical waveguides that are spaced apart from the excitation photonic crystal waveguide and sandwiched between the excitation photonic crystal waveguide,
前記 2つの導波路は、それぞれ、一方向に屈折率周期性を有するフォトニック結晶 により構成され、前記屈折率周期性を有しない方向にブリルアンゾーン境界上に存 在する電磁波を伝播させるコアを有するフォトニック結晶導波路であり、  Each of the two waveguides is composed of a photonic crystal having a refractive index periodicity in one direction, and has a core for propagating an electromagnetic wave existing on the Brillouin zone boundary in a direction not having the refractive index periodicity. A photonic crystal waveguide,
前記フォトニック結晶導波路は、  The photonic crystal waveguide is
前記フォトニック結晶導波路の前記コアの前記屈折率周期性を有する方向に平行 な前記フォトニック結晶導波路の前記コアの側面に接している均質媒体の屈折率を n 、前記フォトニック結晶導波路の前記コアの屈折率周期を a 、前記フォトニック結晶 The refractive index of the homogeneous medium in contact with the side of the core of the photonic crystal waveguide parallel to the direction of the refractive index periodicity of the core of the photonic crystal waveguide is n, and the photonic crystal waveguide The refractive index period of the core of a, the photonic crystal
52 2 52 2
導波路の前記コア内を伝播する電磁波の真空中における波長をえ 02とした場合に、 a / λ < 1/ (2η )  When the wavelength in the vacuum of the electromagnetic wave propagating in the core of the waveguide is 02, a / λ <1 / (2η)
2 02 S2  2 02 S2
の条件を満たす請求項 24に記載のレーザ発生器。  25. The laser generator according to claim 24, which satisfies the following condition.
[26] 前記励起フォトニック結晶導波路の前記コアの前記屈折率周期性を有する方向に 対して略垂直な光軸を有する出射側フォトニック結晶導波路をさらに備え、 前記出射側フォトニック結晶導波路は、一方向に屈折率周期性を有するフォトニッ ク結晶により構成され、前記屈折率周期性を有しない方向にブリルアンゾーン境界 上に存在する電磁波を伝播させるコアを有するフォトニック結晶導波路であり、 前記フォトニック結晶導波路は、 [26] In the direction having the refractive index periodicity of the core of the excitation photonic crystal waveguide An exit-side photonic crystal waveguide having an optical axis substantially perpendicular to the optical axis; and the exit-side photonic crystal waveguide is composed of a photonic crystal having a refractive index periodicity in one direction, and the refractive index period A photonic crystal waveguide having a core for propagating an electromagnetic wave existing on a Brillouin zone boundary in a direction not having the property, the photonic crystal waveguide is
前記フォトニック結晶導波路の前記コアの前記屈折率周期性を有する方向に平行 な前記フォトニック結晶導波路の前記コアの側面に接している均質媒体の屈折率を n 、前記フォトニック結晶導波路の前記コアの屈折率周期を a 、前記フォトニック結晶 The refractive index of the homogeneous medium in contact with the side of the core of the photonic crystal waveguide parallel to the direction of the refractive index periodicity of the core of the photonic crystal waveguide is n, and the photonic crystal waveguide The refractive index period of the core of a, the photonic crystal
S1 1 S1 1
導波路の前記コア内を伝播する電磁波の真空中における波長をえ 01とした場合に、 a / λ < 1/ (2η )  When the wavelength in the vacuum of the electromagnetic wave propagating in the core of the waveguide is 01, a / λ <1 / (2η)
1 01 SI  1 01 SI
の条件を満たし、  Meet the requirements of
前記励起フォトニック結晶導波路は、前記励起フォトニック結晶導波路の前記コア の前記屈折率周期性を有する方向から前記励起フォトニック結晶導波路の前記コア を挟み、前記励起フォトニック結晶導波路の前記コアの前記屈折率周期性を有する 方向と同一の方向に屈折率周期性を有するクラッドをさらに備え、  The excitation photonic crystal waveguide sandwiches the core of the excitation photonic crystal waveguide from the direction having the refractive index periodicity of the core of the excitation photonic crystal waveguide, and the excitation photonic crystal waveguide A clad having a refractive index periodicity in the same direction as the direction having the refractive index periodicity of the core;
前記励起機構は、前記励起フォトニック結晶導波路の前記コアの前記屈折率周期 性を有する方向から前記励起フォトニック結晶導波路に前記励起光を照射すること により、前記励起フォトニック結晶導波路を励起させて前記レーザ光を発振させ、 発振された前記レーザ光は、前記出射側フォトニック結晶導波路に入射される請求 項 23に記載のレーザ発生器。  The excitation mechanism irradiates the excitation photonic crystal waveguide by irradiating the excitation photonic crystal waveguide with the excitation light from a direction having the refractive index periodicity of the core of the excitation photonic crystal waveguide. 24. The laser generator according to claim 23, wherein the laser beam is excited to oscillate, and the oscillated laser beam is incident on the emission-side photonic crystal waveguide.
[27] 前記励起機構は、前記励起フォトニック結晶導波路の前記コアの前記屈折率周期 性を有する方向に沿った光軸を有し、前記励起フォトニック結晶導波路とは離間して 配置された光入射部を備えている請求項 26に記載のレーザ発生器。  [27] The excitation mechanism has an optical axis along a direction having the refractive index periodicity of the core of the excitation photonic crystal waveguide, and is disposed apart from the excitation photonic crystal waveguide. 27. The laser generator according to claim 26, further comprising a light incident portion.
[28] 前記光入射部は、光導波路と、前記光導波路からの光を集光するレンズとを備えて いる請求項 27に記載のレーザ発生器。  28. The laser generator according to claim 27, wherein the light incident part includes an optical waveguide and a lens that collects light from the optical waveguide.
[29] 前記励起機構は、前記励起フォトニック結晶導波路の前記コアの前記屈折率周期 性を有する方向に対して略垂直な方向から前記励起フォトニック結晶導波路に前記 励起光を照射することにより、前記励起フォトニック結晶導波路を励起させて前記レ 一ザ光を発振させ、 [29] The excitation mechanism irradiates the excitation photonic crystal waveguide with the excitation light from a direction substantially perpendicular to a direction having the refractive index periodicity of the core of the excitation photonic crystal waveguide. The excitation photonic crystal waveguide is excited by Oscillate the light,
前記励起フォトニック結晶導波路から、前記励起フォトニック結晶導波路の前記コア の前記屈折率周期性を有する方向に、発振された前記レーザ光が出射される請求 項 23に記載のレーザ発生器。  24. The laser generator according to claim 23, wherein the oscillated laser beam is emitted from the excitation photonic crystal waveguide in a direction having the refractive index periodicity of the core of the excitation photonic crystal waveguide.
[30] 前記励起機構は、前記励起フォトニック結晶導波路の前記コアの前記屈折率周期 性を有する方向に対して略垂直な光軸を有し、前記励起フォトニック結晶導波路とは 離間して、前記励起フォトニック結晶導波路を挟んで配置された 2つの導波路を備え 前記 2つの導波路は、それぞれ、一方向に屈折率周期性を有するフォトニック結晶 により構成され、前記屈折率周期性を有しない方向にブリルアンゾーン境界上に存 在する電磁波を伝播させるコアを有するフォトニック結晶導波路であり、 [30] The excitation mechanism has an optical axis substantially perpendicular to the direction of the refractive index periodicity of the core of the excitation photonic crystal waveguide, and is separated from the excitation photonic crystal waveguide. Each of the two waveguides is composed of a photonic crystal having a refractive index periodicity in one direction, and the refractive index period A photonic crystal waveguide having a core that propagates electromagnetic waves that exist on the Brillouin zone boundary in a direction that does not have the property,
前記フォトニック結晶導波路は、  The photonic crystal waveguide is
前記フォトニック結晶導波路の前記コアの前記屈折率周期性を有する方向に平行 な前記フォトニック結晶導波路の前記コアの側面に接している均質媒体の屈折率を n ト  The refractive index of the homogeneous medium in contact with the side of the core of the photonic crystal waveguide parallel to the direction of the refractive index periodicity of the core of the photonic crystal waveguide is
S1、前記フォ ニック結晶導波路の前記コアの屈折率周期を a  S1, the refractive index period of the core of the phonic crystal waveguide is a
1、前記フォトニック結晶 導波路の前記コア内を伝播する電磁波の真空中における波長をえ 01とした場合に、 a / λ < 1/ (2η )  1. When the wavelength in the vacuum of the electromagnetic wave propagating in the core of the photonic crystal waveguide is set to 01, a / λ <1 / (2η)
1 01 SI  1 01 SI
の条件を満たす請求項 29に記載のレーザ発生器。  30. The laser generator according to claim 29, which satisfies the following condition.
[31] 前記励起フォトニック結晶導波路と前記出射側フォトニック結晶導波路との間に、分 布帰還型共振器の反射層が配置された請求項 24〜28のいずれかに記載のレーザ 発生器。 [31] The laser generation according to any one of claims 24 to 28, wherein a reflection layer of a distribution feedback resonator is disposed between the excitation photonic crystal waveguide and the emission side photonic crystal waveguide. vessel.
PCT/JP2006/303240 2005-03-25 2006-02-23 Waveguide element and laser generator WO2006103850A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007510336A JPWO2006103850A1 (en) 2005-03-25 2006-02-23 Waveguide element and laser generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005089580 2005-03-25
JP2005-089580 2005-03-25

Publications (1)

Publication Number Publication Date
WO2006103850A1 true WO2006103850A1 (en) 2006-10-05

Family

ID=37053118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303240 WO2006103850A1 (en) 2005-03-25 2006-02-23 Waveguide element and laser generator

Country Status (2)

Country Link
JP (1) JPWO2006103850A1 (en)
WO (1) WO2006103850A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243915A (en) * 2007-03-26 2008-10-09 Japan Science & Technology Agency Light-emitting element
US10205299B2 (en) 2014-10-20 2019-02-12 University Court Of The University Of St Andrews External cavity laser comprising a photonic crystal resonator
JP2023042512A (en) * 2021-09-14 2023-03-27 株式会社日立製作所 Photonic crystal-based sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62269125A (en) * 1986-05-16 1987-11-21 Nec Corp Optical logical operation element
JPH01201627A (en) * 1988-02-08 1989-08-14 Nippon Telegr & Teleph Corp <Ntt> Waveguide type optical switch
JPH04191825A (en) * 1990-11-27 1992-07-10 Fujitsu Ltd Light beam deflector
JP2004334190A (en) * 2003-04-18 2004-11-25 Ricoh Co Ltd Element and device for optical control
WO2005008305A1 (en) * 2003-07-18 2005-01-27 Nippon Sheet Glass Company, Limited Photonic crystal waveguide, homogeneous medium waveguide, and optical device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62269125A (en) * 1986-05-16 1987-11-21 Nec Corp Optical logical operation element
JPH01201627A (en) * 1988-02-08 1989-08-14 Nippon Telegr & Teleph Corp <Ntt> Waveguide type optical switch
JPH04191825A (en) * 1990-11-27 1992-07-10 Fujitsu Ltd Light beam deflector
JP2004334190A (en) * 2003-04-18 2004-11-25 Ricoh Co Ltd Element and device for optical control
WO2005008305A1 (en) * 2003-07-18 2005-01-27 Nippon Sheet Glass Company, Limited Photonic crystal waveguide, homogeneous medium waveguide, and optical device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243915A (en) * 2007-03-26 2008-10-09 Japan Science & Technology Agency Light-emitting element
US10205299B2 (en) 2014-10-20 2019-02-12 University Court Of The University Of St Andrews External cavity laser comprising a photonic crystal resonator
JP2023042512A (en) * 2021-09-14 2023-03-27 株式会社日立製作所 Photonic crystal-based sensor
JP7377301B2 (en) 2021-09-14 2023-11-09 株式会社日立製作所 Photonic crystal-based sensors, test equipment, methods of forming sensors, and methods of using sensors

Also Published As

Publication number Publication date
JPWO2006103850A1 (en) 2008-09-04

Similar Documents

Publication Publication Date Title
US6975664B1 (en) Article comprising a two-dimensional photonic crystal coupler and method of making the same
Zhou et al. Progress in 2D photonic crystal Fano resonance photonics
US7310468B2 (en) Photonic crystal waveguide, homogeneous medium waveguide, and optical device
US20110286489A1 (en) All-silicon raman amplifiers and laser based on micro ring resonators
US20110158584A1 (en) Low-loss bloch wave guiding in open structures and highly compact efficient waveguide-crossing arrays
JPH0460618A (en) Optical waveguide added with rare earth element and production thereof
JP2007072433A (en) Optical integrated device and optical control device
JP2009288718A (en) Resonance grating coupler
JP5867509B2 (en) Optical semiconductor device
US20090034909A1 (en) Optical Isolator
US5448586A (en) Pumping arrangements for arrays of planar optical devices
EP1793248B1 (en) Waveguide and device including the same
JP6618664B2 (en) Laser equipment
JP4653393B2 (en) Light control element
WO2006103850A1 (en) Waveguide element and laser generator
GB2386966A (en) Optical element using one-dimensional photonic crystal and phase modulation unit
US7515804B2 (en) Optical waveguide device
JP2008209522A (en) Wavelength conversion element and wavelength conversion module
EP1892545A1 (en) Waveguide and light emitting device having the same
US7224868B2 (en) Radiation-free optical cavity
EP1336892A1 (en) A controllable optical device
JP2004045709A (en) Coupled optical waveguide
JP2005284240A (en) Photonic crystal waveguide, homogeneous medium waveguide, and optical element
JP7056104B2 (en) Light reflecting element and narrow line width light source using it
JPH04125602A (en) Optical waveguide type polarizer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007510336

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06714380

Country of ref document: EP

Kind code of ref document: A1