JPS58106835A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS58106835A
JPS58106835A JP20481481A JP20481481A JPS58106835A JP S58106835 A JPS58106835 A JP S58106835A JP 20481481 A JP20481481 A JP 20481481A JP 20481481 A JP20481481 A JP 20481481A JP S58106835 A JPS58106835 A JP S58106835A
Authority
JP
Japan
Prior art keywords
crystal defect
heat treatment
region
type
strain layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20481481A
Other languages
Japanese (ja)
Inventor
Junichi Hattori
純一 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP20481481A priority Critical patent/JPS58106835A/en
Publication of JPS58106835A publication Critical patent/JPS58106835A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To effectively apply gettering to the crystal defect generated on an element forming region in a semiconductor manufacturing process from the periphery, by selectively introducing a processed strain layer having the gettering effect, by the uniform external stress, with a stress absorption film as a mask, into an inactive region wherein an element formation is not performed. CONSTITUTION:A P type Si substrate 2 wherein a back surface processed strain layer 1 is introduced is applied to the first heat treatment in atmosphere oxidized at a high temperature, and a stacking fault 3 is grown on the back surface. But, when an N<+> burial diffusion heat treatment is performed at a high temperature for a long time, it is annealed, then the strain layer on the back surface is greatly reduced, and accordingly the crystal defect becomes easy to generate. Then, after P<+> type burial diffusion, with an oxide film 5 as a mask, a strain layer is formed on a P<+> type diffused region 7 by the uniform external stress 6 e.g. O2 plasma, ion-implanted laser, and sand blast, next a P<+> type press-in heat treatment is performed, and thereby the crystal defect layer 8' is generated. Since this crystal defect makes the crystal defect, introduced into later semiconductor manufacturing processes and the acive region 10, to be effectively absorbed from the periphery, the element characteristic is improved.

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法Kかか9、とくにエピタ
キシャル成長層中の素子形成を行なわない不活性領域に
ゲッタリング効果を有する結晶欠陥を選択的に形成する
半導体装置の製造方法に関するものである。− 従来よシ半導体基板に発生する結晶欠陥を低減させる方
法として基板裏面の機械加工による歪層の形成、基板の
熱処理(アニール)及び不純物拡散によるゲッタリング
等が知られているが、これ  −らの方法は半導体製造
工程において必要な種々の熱処理条件との関連から効果
が不明瞭であル、又導入する工@lliによっては、逆
に結晶欠陥を誘発させる要因となる場合もあシ末だ一般
的な方法が確立されていなかった。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device manufacturing method K or 9, particularly a method for manufacturing a semiconductor device in which crystal defects having a gettering effect are selectively formed in an inactive region in an epitaxial growth layer where no elements are formed. This relates to a manufacturing method. - Conventionally known methods for reducing crystal defects that occur in semiconductor substrates include forming a strained layer by machining the backside of the substrate, heat treatment (annealing) of the substrate, and gettering by impurity diffusion. The effectiveness of this method is unclear due to the relationship with the various heat treatment conditions required in the semiconductor manufacturing process, and depending on the process used, it may even be a factor that induces crystal defects. A general method had not been established.

本発明はかかる従来技術の欠点を除去すると七を目的と
し、その特徴は半導体基板表面上の不活性領域に選択的
に外的応力による加工歪層を導入し、製造工程中活性領
域に発生する結晶欠陥を活性領域のまわ)から効果的に
ゲッタリングさせ素子の特性を大幅に改善させる半導体
装置の製造方法にある〇 一般にバイポーラIcはエピタキシャル成長層を絶縁分
離して島状0領域内に素子を形成するが、上記絶縁分離
をする為の熱処理時間を短かくし、横方向への拡散を少
なくする必要から、その直下の中導体基板内Kl’  
ml埋込拡散領域が、又絶縁分離された島状の素子形成
領域直下の46導体基板内にエピタキシャル成長層不純
物濃度よシ高い不純物のn 型埋込拡散領域が形成され
ている。
The present invention aims to eliminate the drawbacks of the prior art, and its features include selectively introducing a process-strained layer due to external stress into the inactive region on the surface of the semiconductor substrate, which is generated in the active region during the manufacturing process. A semiconductor device manufacturing method that effectively getters crystal defects from around the active region to significantly improve the characteristics of the device. In general, bipolar ICs are made by insulating and separating the epitaxial growth layer and placing the device in an island-like zero region. However, because it is necessary to shorten the heat treatment time for the above-mentioned insulation separation and to reduce lateral diffusion, Kl' in the medium conductor substrate immediately below
An n-type buried diffusion region containing an impurity higher in impurity concentration than the epitaxially grown layer is formed in the 46 conductor substrate immediately below the isolated island-shaped element formation region.

@1図(alから第1図(e)に一般的に行なわれてい
る裏面加工歪層によるゲッタリング効果を有するIc製
造過程を示す断面図である。まず第1図(alに示すよ
うに裏面に加工歪層1を形成したP型シリコン基板2を
高温酸化性雰囲気で第1熱処理をすると第1図(1))
に示すように裏面に積層欠陥3が成長する。しかし第1
図(C)のように高温熱処理によるh+埋込拡散層40
形成及びP+型埋込拡散7を行なうことによシ裏面の積
層欠陥ぎは減少する0さらに第1図(d)に示すように
高温でP+型拡散領域7を押し込みP+型埋込拡散層8
を形成すると裏面の積層欠陥3“はさらに減少し、その
後の熱処理等で裏面の積層欠陥はさらに減少消滅するた
め、半導体製造工程で導入される結晶欠陥を吸収しきれ
ず第1図(6)のようにエピタキシャル成長層11中に
形成される活性領域lO及び不活性領域9に結晶欠陥1
2が多発するし、素子特性を劣化させる原因となってい
る。
@ Figure 1 (al to Figure 1(e) is a cross-sectional view showing the IC manufacturing process that has a gettering effect by a back side processing strained layer that is generally performed. First, as shown in Figure 1 (al) When a P-type silicon substrate 2 with a strained layer 1 formed on its back side is subjected to first heat treatment in a high-temperature oxidizing atmosphere, the result is a P-type silicon substrate 2 (Fig. 1 (1)).
Stacking faults 3 grow on the back surface as shown in FIG. But the first
As shown in Figure (C), the h+ buried diffusion layer 40 is formed by high-temperature heat treatment.
By performing the formation and P+ type buried diffusion 7, the number of stacking defects on the back side is reduced.Furthermore, as shown in FIG.
When 3'' is formed, the stacking faults 3" on the back side are further reduced, and the stacking faults on the back side are further reduced and eliminated by subsequent heat treatment, etc., so that the crystal defects introduced in the semiconductor manufacturing process cannot be fully absorbed, resulting in the problem shown in Figure 1 (6). As shown in FIG.
2 occurs frequently and causes deterioration of device characteristics.

一方第2図(−から第2図(erFi本発明の実施例を
示す奄ので、不活性領域に選択的に加工歪層を導入した
場合を示す。
On the other hand, FIGS. 2(-) to 2(erFi) show an embodiment of the present invention, and show a case where a strained layer is selectively introduced into an inactive region.

第2図(−は第1図(栃と同等の裏面加工歪層1を導入
したPgシリコン基板2を高温酸化性雰囲気で第1熱処
理を行ない第2図(b)に示すように裏面に積層欠陥3
を成長させる。しかし第2図(C)のように高温長時間
のN+埋込拡散熱処理を行なうと7ニールされ裏面の歪
層は大幅に減少し結晶欠陥が発生しやすくなる。そζで
P+梨型埋込拡散後化膜5をマスクにしてP 型拡散領
域7に均一な外的応力6、例えば0.プラズマ、イオン
注入レザー及びサンドゲラスト等によフ歪層を形成し、
次に第2図(d)に示すようにP 型押し込み熱処mt
−行なうことにより結晶欠陥層ぎを発生させる。この結
晶欠陥が以稜の半導体製造工程と活性領域10に導入さ
れる結晶欠陥を周囲から効果的に吸収される為、素子特
性社大幅に改善される。
Figure 2 (- indicates Figure 1) A Pg silicon substrate 2 with a strained layer 1 introduced thereon similar to that of a horse chestnut is subjected to a first heat treatment in a high-temperature oxidizing atmosphere, and then laminated on the back side as shown in Figure 2 (b). Defect 3
grow. However, if N+ buried diffusion heat treatment is performed at high temperature and for a long time as shown in FIG. 2(C), the strained layer on the back surface will be significantly reduced due to seven anneals, and crystal defects will be more likely to occur. Then, using the P+ pear-shaped buried post-diffusion film 5 as a mask, a uniform external stress 6 is applied to the P type diffusion region 7, for example 0. A strained layer is formed using plasma, ion implantation laser, sand gel last, etc.
Next, as shown in Fig. 2(d), P mold indentation heat treatment mt
- By doing so, a crystal defect layer is generated. Since these crystal defects introduced into the semiconductor manufacturing process and the active region 10 are effectively absorbed from the surrounding area, the device characteristics are greatly improved.

以上説明し良ように本発明は、素子形成の行なわない不
活性領域に応力吸収膜をマスクにして均一な外的応力に
よシゲッタリング効果を肩する加工歪層を選択的に導入
し半導体製造工程中素子形成佃域に発生する結晶欠陥を
周囲から効果的にゲッタリングさせる製造方法となる。
As explained above, the present invention utilizes a stress-absorbing film as a mask in an inactive region where no elements are formed, and selectively introduces a strained layer that absorbs the shgettering effect by applying uniform external stress to the semiconductor manufacturing process. This is a manufacturing method in which crystal defects generated in the middle element formation area are effectively gettered from the surrounding area.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(IJ乃至第1図(e)は従来のゲッタリング方
法を使用してバイボー″)lCのトランジスタを製造す
る過程を示す断面図である。第2図(a)至第2図(e
)ti本発明の実施例のゲッタリング方法を使用してバ
イポーラIcのトランジスタを製造する過程を示す断面
図である〇 内因において、l・・・・・・加工歪層、2・・・・・
・P型シリコン基板、3.3’、3“・・・・・・積層
欠陥、4・・・・・4−埋込拡散層、5・・・・・・酸
化膜、6・・・・・・外的応力(例えば鴨グッズマ、イ
オン注入、レーザ及びサンドプラス)4り、 7・・・
・・・P 型埋込拡散領域、8・・・・・・P+型埋込
拡散層、8′・・・・・・P+型埋込拡散層に発生した
結晶欠陥、9・・・・・・不活性領域、lO・・・・・
・活性領域、11・・・・・・エビタキエヤル成長層、
である。
FIG. 1 (IJ to FIG. 1(e) are cross-sectional views illustrating the process of manufacturing an IC transistor using a conventional gettering method. FIG. 2(a) to FIG. e
) Ti is a cross-sectional view showing the process of manufacturing a bipolar IC transistor using the gettering method of the embodiment of the present invention.
・P-type silicon substrate, 3.3', 3"... stacking fault, 4...4-buried diffusion layer, 5... oxide film, 6...・・External stress (e.g. duck bear, ion implantation, laser and sand plus) 4, 7...
...P type buried diffusion region, 8...P+ type buried diffusion layer, 8'...Crystal defect generated in P+ type buried diffusion layer, 9...・Inactive region, lO...
・Active region, 11... Ebitaki Eyal growth layer,
It is.

Claims (1)

【特許請求の範囲】[Claims] 半導体結晶基板表面の活性領域上に応力吸収マスクパタ
ーンを形成した彼、表面全面に外部応力を加え、不活性
領域にゲッタリング効果を有する加工歪層を選択的に形
成することを特徴とする半導体装置の製造方法。
A semiconductor characterized by forming a stress-absorbing mask pattern on an active region on the surface of a semiconductor crystal substrate, applying external stress to the entire surface, and selectively forming a processed strained layer having a gettering effect in an inactive region. Method of manufacturing the device.
JP20481481A 1981-12-18 1981-12-18 Manufacture of semiconductor device Pending JPS58106835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20481481A JPS58106835A (en) 1981-12-18 1981-12-18 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20481481A JPS58106835A (en) 1981-12-18 1981-12-18 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS58106835A true JPS58106835A (en) 1983-06-25

Family

ID=16496812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20481481A Pending JPS58106835A (en) 1981-12-18 1981-12-18 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS58106835A (en)

Similar Documents

Publication Publication Date Title
JPS5821419B2 (en) Lattice defect removal method
JPS58106835A (en) Manufacture of semiconductor device
JPH07176742A (en) Manufacture of semiconductor device and semiconductor device
JPS58103122A (en) Manufacture of compound semiconductor device
JPH01303727A (en) Impurity gettering process
JPS63164440A (en) Manufacture of semiconductor device
JPH0212920A (en) Manufacture of semiconductor device
JPH01245519A (en) Manufacture of semiconductor device
JP2743452B2 (en) Method for manufacturing semiconductor device
JPH0587016B2 (en)
JPS60176241A (en) Manufacture of semiconductor substrate
JPH02105410A (en) Manufacture of semiconductor device
JPS61156820A (en) Manufacture of semiconductor device
JPH0235455B2 (en)
JPS63133673A (en) Manufacture of semiconductor device
KR100207470B1 (en) Method for forming field insulation layer
JPS63120430A (en) Method for preventing occurrence of crystal defect
JPH036844A (en) Manufacture of semiconductor integrated circuit
JPS62266831A (en) Formation of pattern for mask alignment
JPS63144567A (en) Manufacture of semiconductor device
JPS58153337A (en) Manufacture of semiconductor device
JPS61124127A (en) Manufacture of semiconductor device
JPS62166531A (en) Manufacture of epitaxial wafer
JPS6129537B2 (en)
JPH01260832A (en) Manufacture of semiconductor device