JPS61156820A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61156820A
JPS61156820A JP27610284A JP27610284A JPS61156820A JP S61156820 A JPS61156820 A JP S61156820A JP 27610284 A JP27610284 A JP 27610284A JP 27610284 A JP27610284 A JP 27610284A JP S61156820 A JPS61156820 A JP S61156820A
Authority
JP
Japan
Prior art keywords
wafer
region
film
diffusion
gettering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27610284A
Other languages
Japanese (ja)
Inventor
Kuniaki Kumamaru
熊丸 邦明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP27610284A priority Critical patent/JPS61156820A/en
Publication of JPS61156820A publication Critical patent/JPS61156820A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering

Abstract

PURPOSE:To allow the gettering of damaging impurities and lattice distortions in the epitaxial growth process by implanting selectively ionized Si atoms onto the surface of a semiconductor substrate to form dislocation regions on the substrate surface and applying heat-treatment prior to the process. CONSTITUTION:By depositing a BSG film 7 on the surface of a wafer 1 which has been partially implanted with ionized Si atoms through a diffusion window 4, and applying heat-treatment to the wafer 1, a P<+> type diffusion region 8 is formed due to boron diffusion from the film 7 and, at the same time, a disloca tion region 6' is formed in the portion where Si ions have been implanted. The dislocation region 6' absorbs damaging impurities 5 remaining in the wafer 1 by virtue of gettering effect of the region 6' so that a wafer free from defects in its crystalline structure is produced. Accordingly heat-treatment at about 1,000 deg.C, which has been separately applied as adopted in the conventional method that uses a PSG film, is omitted to facilitate the manufacture of semicon ductor devices having shallow junctions such as high speed and high frequency transistors.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、半導体装置の製造方法に関し、更に詳しく格
子歪や格子欠陥あるいはす) IJウム等の有害不純物
が活性領域に発生するのを抑制するゲッタリング工程を
改良した半導体装置の製造方法に係る。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device, and more specifically, for suppressing generation of harmful impurities such as lattice strain, lattice defects, and IJium in an active region. The present invention relates to a method of manufacturing a semiconductor device with an improved gettering process.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

半導体装置、特に半導体集積回路においてはその製造工
程中、あるいは前後に重金属、カーが7等の有害不純物
に汚染されることが多い。
BACKGROUND ART Semiconductor devices, particularly semiconductor integrated circuits, are often contaminated with harmful impurities such as heavy metals and carbon dioxide during or before and after the manufacturing process.

これら有害不純物あるいは格子歪や欠陥が素子の活性領
域に存在すると、逆方向耐圧の劣化、電流増幅率の低下
、雑音指数の増大等の不都合が生じ、正常な半導体装置
が得られない。このようなことより、従来においてはシ
リコン基板の表面及び裏面に燐添加ガラス膜(PSG膜
)を形成し、1000℃程度の熱処理を施すことにより
、PSGの有害不純物吸い出し効果を利用する方法が採
用されていた。
If these harmful impurities, lattice strains, or defects are present in the active region of the device, problems such as deterioration of reverse breakdown voltage, decrease in current amplification factor, and increase in noise figure occur, making it impossible to obtain a normal semiconductor device. For this reason, conventionally a method has been adopted in which a phosphorous-doped glass film (PSG film) is formed on the front and back surfaces of a silicon substrate, and heat treatment is performed at approximately 1000°C to take advantage of the harmful impurity suction effect of PSG. It had been.

しかしながら、上述したPSG膜を用いてゲッタリング
する従来方法にあっては、次のような問題がありた。
However, the conventional method of gettering using the PSG film described above has the following problems.

■ PEGに重金属やカーがン等の有害不純物を吸い出
させる為には1000℃程度の熱処理を要するので、微
細化素子、高速度・高周波素子等のように浅い接合を必
要とする半導体装置には適用することができない。
■ Heat treatment at around 1000°C is required to suck out harmful impurities such as heavy metals and carbon from PEG, so it is suitable for semiconductor devices that require shallow junctions such as miniaturized elements, high speed/high frequency elements, etc. cannot be applied.

■ 有害不純物吸い出し効果と同時にシリコン基板の裏
面にも高濃度の燐が拡散し、次工程での該燐の外方拡散
現象が起こる。
(2) At the same time as the effect of sucking out harmful impurities, highly concentrated phosphorus also diffuses to the back surface of the silicon substrate, and an outward diffusion phenomenon of the phosphorus occurs in the next process.

上述した問題点を軽減しようとすると、半導体集積回路
の種類によりPSG膜の形成条件が制約されることにな
り、従って電気的に高性能の半導体装置を得ることが困
難となるという不都合さを生じる。
If the above-mentioned problems are to be alleviated, the conditions for forming the PSG film will be restricted depending on the type of semiconductor integrated circuit, resulting in the inconvenience that it will be difficult to obtain a semiconductor device with electrically high performance. .

〔発明の目的〕[Purpose of the invention]

本発明は、従来法のようにPSG膜による1000℃前
後でのピックリングを別途行なわず、プロセス中の熱処
理で有害不純物や格子歪等をビッタリングでき、浅い接
合を有する高集積度で電気的性能の優れた半導体装置を
製造し得る方法を提供できる。
The present invention eliminates the need for separate pickling using a PSG film at around 1000°C as in conventional methods, and can remove harmful impurities and lattice distortion through heat treatment during the process. A method for manufacturing an excellent semiconductor device can be provided.

〔発明の概要〕[Summary of the invention]

本発明は、エピタキシャル工程前の半導体基板表面に選
択的にシリコン原子をイオン注入して該基板表面に転位
領域を形成する工程と、熱処理を施して半導体基板の活
性領域の有害不純物をビッタリングする工程とを具備し
たことを特徴とするものである。
The present invention includes a step of selectively implanting silicon atoms into the surface of a semiconductor substrate before an epitaxial process to form a dislocation region on the surface of the substrate, and a step of performing heat treatment to bitter harmful impurities in the active region of the semiconductor substrate. It is characterized by having the following.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明をバイポーラICに用いるエピタキシャル
ウェハの製造に適用した例を第1図(、)〜(d)を参
照して説明する。
Hereinafter, an example in which the present invention is applied to manufacturing an epitaxial wafer used in a bipolar IC will be described with reference to FIGS. 1(,) to (d).

ま工、p型シリコン基板(p型シリコンウェハ)にn型
不純物、例えばアンチモンをドーピングしてn中型拡散
層2を形成した後、熱酸化兜理してウェハ1表面に厚い
酸化膜3を形成した。
Machining: After doping a p-type silicon substrate (p-type silicon wafer) with an n-type impurity, such as antimony, to form an n-medium diffusion layer 2, thermal oxidation treatment is performed to form a thick oxide film 3 on the surface of the wafer 1. did.

つづいて、酸化膜3をフォトエツチング技術により選択
的に除去して素子分離領域形成用拡散窓4を開孔した(
第1図(a)図示)。なお、図中の5はクエへ1内に存
在する有害不純物である。
Subsequently, the oxide film 3 was selectively removed using photoetching technology to open a diffusion window 4 for forming an element isolation region (
FIG. 1(a) (Illustrated). In addition, 5 in the figure is a harmful impurity present in Kueh 1.

次いで、シリコン原子を加速電圧50ksV。Next, silicon atoms were accelerated at a voltage of 50 ksV.

ドーズ量5X103の条件で拡散窓4を1通してウェハ
1表面にイオン注入して過剰Siの歪層6を形成した(
同図(b)図示)。
Ions were implanted into the surface of the wafer 1 through one diffusion window 4 at a dose of 5 x 103 to form a strained layer 6 of excess Si (
Figure (b) shown).

次いで、全面に?ロン添加ガラス膜(BSG膜)7を堆
積した後、熱処理を施した。この時、BSGS2O2ボ
ロンが拡散窓4を通してウェハ1表面に拡散してp生型
拡散領域8が形成された。
Next, all over? After depositing a ron-doped glass film (BSG film) 7, heat treatment was performed. At this time, BSGS2O2 boron was diffused into the surface of the wafer 1 through the diffusion window 4, and a p-type diffusion region 8 was formed.

同時に、該拡散領域8において、歪層6の過剰Stによ
る転位の移動が起こり、常温にて存在していた該歪層6
の残留応力は一部解放される。
At the same time, in the diffusion region 8, movement of dislocations due to excess St in the strained layer 6 occurs, and the strained layer 6 that existed at room temperature
Some residual stress is released.

この転位の移動と残留応力の一部解放の過程において、
同図(c)に示すように有害不純物5が転位領域6′に
吸収され、ビッタリングされる。これによシ結晶欠陥の
ない良好な°ウェハが作製される。
In this process of movement of dislocations and partial release of residual stress,
As shown in FIG. 6(c), the harmful impurity 5 is absorbed into the dislocation region 6' and is bittened. As a result, a good wafer with no crystal defects is produced.

次いで、BAG膜7及び酸化膜3を全て除去した後、エ
ピタキシャル成長を行なってシリコンエピタキシャル層
9をウニへ1上に形成した。
Next, after completely removing the BAG film 7 and the oxide film 3, epitaxial growth was performed to form a silicon epitaxial layer 9 on the sea urchin 1.

この熱処理工程において、ウェハ1表面のn中型拡散層
2及びp生型拡散領域8が工ぜタキシャル層り側にも拡
散してn中型埋込層10. p中型素子分離領域11が
夫々ウェハ1とエピタキシャル層9の界面付近に形成さ
れた(同図(d)図示)。
In this heat treatment step, the n-medium type diffusion layer 2 and the p-type natural diffusion region 8 on the surface of the wafer 1 diffuse to the engineered taxial layer side, and the n-medium type buried layer 10. P medium-sized element isolation regions 11 were formed near the interface between the wafer 1 and the epitaxial layer 9 (as shown in FIG. 2D).

なお、この熱処理工程においても、残留応力の解放がひ
きつづき起こり、エピタキシャル層9中に含有される有
害不純物が転位領域6′に吸収された。
It should be noted that during this heat treatment step, residual stress continued to be released, and harmful impurities contained in the epitaxial layer 9 were absorbed into the dislocation region 6'.

しかして、本発明によればウェハ1表面にシリコン原子
を拡散窓4を通してイオン注入し、BSGS2O2積を
行なった後、熱処理することによりて、BSGS2O2
のメロン拡散によるp+型拡散領域8の形成と同時に、
シリコンイオン注入部分に転位領域6′を形成し、該転
位領域6′によるビッタリング作用によりウェハ1中の
有害不純物5を吸収でき、結晶欠陥のないウェハを作製
できる。したがりて、PSG膜を用いる従来法のように
1000℃程度の熱処理を別途行なうのを省略でき、高
速度、高周波のトランジスタのような浅い接合を有する
半導体装置の製造に好適となる。また、PSG膜を用い
る従来法ではウェハの裏面にも高濃度の燐を拡散するた
め、次工程での燐の外方拡散が問題になるが、本発明方
法ではかかる懸念は全くない。
According to the present invention, silicon atoms are ion-implanted into the surface of the wafer 1 through the diffusion window 4, BSGS2O2 product is performed, and then heat treatment is performed to produce BSGS2O2.
At the same time as forming the p+ type diffusion region 8 by melon diffusion,
A dislocation region 6' is formed in the silicon ion implanted area, and the harmful impurities 5 in the wafer 1 can be absorbed by the bitter effect of the dislocation region 6', making it possible to produce a wafer free of crystal defects. Therefore, it is possible to omit a separate heat treatment of about 1000° C., which is required in the conventional method using a PSG film, and the method is suitable for manufacturing semiconductor devices having shallow junctions such as high-speed, high-frequency transistors. Further, in the conventional method using a PSG film, a high concentration of phosphorus is also diffused on the back surface of the wafer, which causes a problem of outward diffusion of phosphorus in the next step, but the method of the present invention has no such concern.

事実、本実施例で得たエピタキシャルウエノ・を用いて
エミッタ形成までの工程を施し、各種の絶縁膜を除去し
、つづいて1100℃のウェット酸化を行なって厚さ1
0000Xの酸化膜を形成した後、該酸化膜を全て除去
し、ライトエツチング法により結晶欠陥を表出させて・
観察した。
In fact, the epitaxial wafer obtained in this example was subjected to the steps up to emitter formation, various insulating films were removed, and then wet oxidation was performed at 1100°C to a thickness of 1.
After forming an oxide film of 0000X, the oxide film was completely removed and crystal defects were exposed using a light etching method.
Observed.

その結果、ピックリングを行なわないエピタキシャルウ
ェハでは積層欠陥が認められたのに対し、本実施例では
PSG膜を用いてゲッタリングを行なった従来のエピタ
キシャルウェハと同等で、積層欠陥は全く認められなか
った。
As a result, stacking faults were observed in the epitaxial wafer without pickling, whereas in this example, the epitaxial wafer was equivalent to a conventional epitaxial wafer in which gettering was performed using a PSG film, and no stacking faults were observed at all. Ta.

また、本実施例で得たエピタキシャルウェハ、PSG膜
によるゲッタリングを行なって得たエピタキシャルウェ
ハ(比較例)及びゲッタリングを施さないエピタキシャ
ルウェハ(従来例)を用いてラテラルP”P)ランジス
タを製造し、これらトランジスタについて周波数に対す
る雑音特性を調べた。その結果、第2図に示す特性図を
得た。なお、第2図中のAは本実施例の周波数−雑音特
性線、Bは比較例の同特性線、Cは従来例の同特性線で
ある。
In addition, lateral P''P) transistors were manufactured using the epitaxial wafer obtained in this example, an epitaxial wafer obtained by gettering with a PSG film (comparative example), and an epitaxial wafer without gettering (conventional example). The noise characteristics of these transistors with respect to frequency were investigated. As a result, the characteristic diagram shown in Fig. 2 was obtained. In Fig. 2, A is the frequency-noise characteristic line of the present example, and B is the comparative example. C is the same characteristic line of the conventional example.

第2図よシ明らかな如く、本実施例のpnp)ランジス
タは低周波領域での雑音を著しく改善され、いわゆる1
4雑音が減少していることがわかる。
As is clear from FIG. 2, the pnp transistor of this embodiment has significantly improved noise in the low frequency region,
4 It can be seen that the noise has decreased.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば従来法のようにPS
G膜による1000℃前後でのゲッタリングを別途性な
わずに、プロセス中の熱処理工程において有害不純物や
格子歪等をゲッタリングでき、ひいては浅い接合を有す
る高集積度で電気的性能の優れた半導体装置を有効に製
造し得る方法を提供できる。
As described in detail above, according to the present invention, unlike the conventional method, PS
Harmful impurities and lattice distortions can be gettered in the heat treatment process during the process without the need for gettering at around 1000°C by the G film, resulting in highly integrated semiconductors with shallow junctions and excellent electrical performance. A method for effectively manufacturing the device can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(d)は本発明の実施例におけるエピタ
キシャルウェハの製造工程を示す断面図、第2図は本実
施例、比較例及び従来例で得たエピタキシャルウェハよ
り製造されたpnp トランジスタにおける周波数−雑
音特性図である。 1・・・p型シリコン基板(ウェハ)、4・・・素子分
離領域形成用拡散窓、5・・・有害不純物、6′・・・
転位領域、7・・・BSG膜、9・・・シリコンエピタ
キシャル層、n十型埋込層、11・・・p十型素子分離
領域。 出願人代理人 弁理士 鈴 江 武 門弟1 図
FIGS. 1(a) to (d) are cross-sectional views showing the manufacturing process of epitaxial wafers in Examples of the present invention, and FIG. 2 is PNPs manufactured from epitaxial wafers obtained in Examples, Comparative Examples, and Conventional Examples. It is a frequency-noise characteristic diagram in a transistor. DESCRIPTION OF SYMBOLS 1... P-type silicon substrate (wafer), 4... Diffusion window for forming an element isolation region, 5... Harmful impurities, 6'...
Dislocation region, 7...BSG film, 9...Silicon epitaxial layer, n+ type buried layer, 11...p+ type element isolation region. Applicant's agent Patent attorney Takeshi Suzue Disciple 1 Figure

Claims (2)

【特許請求の範囲】[Claims] (1)エピタキシャル工程前の半導体基板表面に選択的
にシリコン原子をイオン注入して該基板表面に転位領域
を形成する工程と、熱処理を施して前記転位領域に半導
体基板の活性領域の有害不純物をゲッタリングする工程
とを具備したことを特徴とする半導体装置の製造方法。
(1) A step of selectively implanting silicon atoms into the surface of the semiconductor substrate before the epitaxial process to form a dislocation region on the surface of the substrate, and a heat treatment to eliminate harmful impurities in the active region of the semiconductor substrate into the dislocation region. A method for manufacturing a semiconductor device, comprising the step of gettering.
(2)前記有害不純物をゲッタリングする熱処理を、半
導体装置の製造工程での他の熱処理によって兼ねること
を特徴とする特許請求の範囲第1項記載の製造方法。
(2) The manufacturing method according to claim 1, wherein the heat treatment for gettering the harmful impurities is also performed by another heat treatment in the manufacturing process of the semiconductor device.
JP27610284A 1984-12-28 1984-12-28 Manufacture of semiconductor device Pending JPS61156820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27610284A JPS61156820A (en) 1984-12-28 1984-12-28 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27610284A JPS61156820A (en) 1984-12-28 1984-12-28 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61156820A true JPS61156820A (en) 1986-07-16

Family

ID=17564824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27610284A Pending JPS61156820A (en) 1984-12-28 1984-12-28 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61156820A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03116820A (en) * 1989-09-29 1991-05-17 Shin Etsu Handotai Co Ltd Misfit transposition control method
US6255153B1 (en) 1997-12-30 2001-07-03 Hyundai Electronics Industries Co., Ltd. Method of manufacturing a semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03116820A (en) * 1989-09-29 1991-05-17 Shin Etsu Handotai Co Ltd Misfit transposition control method
US6255153B1 (en) 1997-12-30 2001-07-03 Hyundai Electronics Industries Co., Ltd. Method of manufacturing a semiconductor device

Similar Documents

Publication Publication Date Title
EP0090940B1 (en) Method of forming emitter and intrinsic base regions of a bipolar transistor
JPH0469814B2 (en)
KR100935567B1 (en) Semiconductor device and method for manufacturing same
JP2856157B2 (en) Method for manufacturing semiconductor device
JPH0878644A (en) Manufacture of semiconductor integrated circuit device
JP3311210B2 (en) Semiconductor device and manufacturing method thereof
JPH0521448A (en) Manufacture of semiconductor device
JPS61156820A (en) Manufacture of semiconductor device
JPH06216137A (en) Semiconductor device and manufacture thereof
JP2006294772A (en) Method of manufacturing semiconductor device
JPH05152306A (en) Semiconductor substrate and manufacture thereof
JP2528660B2 (en) Method for forming compound semiconductor conductive layer
JPS5854502B2 (en) Manufacturing method of semiconductor device
JPH05102183A (en) Manufacture of semiconductor device
JP3384439B2 (en) Method for manufacturing semiconductor device
JPH01108772A (en) Manufacture of bipolar transistor
WO2022179615A1 (en) Method for manufacturing semiconductor-on-insulator structure
JPS60175416A (en) Manufacture of semiconductor device
JPS5830144A (en) Manufacture of semiconductor device
JPH0235455B2 (en)
JP2644201B2 (en) Method for manufacturing semiconductor device
JPS59119761A (en) Manufactuer of semiconductor device
JPH0562922A (en) Manufacture of semiconductor integrated circuit device
JPS61124127A (en) Manufacture of semiconductor device
JPS63296225A (en) Manufacture of semiconductor device