JPS5810213A - Control circuit for flicker absorber - Google Patents

Control circuit for flicker absorber

Info

Publication number
JPS5810213A
JPS5810213A JP10850781A JP10850781A JPS5810213A JP S5810213 A JPS5810213 A JP S5810213A JP 10850781 A JP10850781 A JP 10850781A JP 10850781 A JP10850781 A JP 10850781A JP S5810213 A JPS5810213 A JP S5810213A
Authority
JP
Japan
Prior art keywords
current
load
transformer
voltage
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10850781A
Other languages
Japanese (ja)
Inventor
Taisuke Inoue
岱介 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP10850781A priority Critical patent/JPS5810213A/en
Publication of JPS5810213A publication Critical patent/JPS5810213A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/70Regulating power factor; Regulating reactive current or power

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To decrease the fluctuation of power supply voltage, by supplying ineffective power in response to a rapid load fluctuation, through the provision of a current transformer detecting a current of a load with large flicker. CONSTITUTION:When a current TC flows to a converter CV, a relation with the secondary voltage V of a transformer PT is calculated and a converted voltage DC1 is outputted. On the other hand, a synchronizing compensator SC1 outputs a compensated voltage DC2 with a current 1C of a load L1 and a forecasting signal B1. A compensated voltage DC2 and the converted voltage DC1 are synthesized to obtain a control signal DC4. A pulse generator receiving the control signal DC4 generates a pulse P with the secondary voltage V of the transformer and a trigger pulse is given to a thyristor SCR of a flicker absorber F to control a control current FC. In this case, when the flicker absorber is employed with a reactor, the trigger angle of the thyristor SCR is controlled and when the absorber is provided with a capacitor, the number of triggered SCRs can be controlled.

Description

【発明の詳細な説明】 本発明は、急激な負荷変動に応じた無効電力を供給して
、電源電圧変動を少くする7リソカ吸収装置の制御回路
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control circuit for a 7-resoka absorption device that reduces power supply voltage fluctuations by supplying reactive power in response to rapid load fluctuations.

従来、この種の装置は、負荷電流を検出する方式と予知
信号により制御する方式の内、いずれか一方を使用して
いた。前者は工場内の全体の負荷による電圧変動を吸収
する長所があるが、制御遅れが出る欠点があり、後者は
制御遅れi′iないが、工場の一部の負荷の電圧変動を
吸収するにずぎないという欠点があった。
Conventionally, this type of device has used either a method of detecting the load current or a method of controlling using a prediction signal. The former has the advantage of absorbing voltage fluctuations due to the entire load in the factory, but has the disadvantage of causing a control delay. It had the disadvantage of being unnatural.

本発明は両者を同時に満足させるために考えられたもの
で、特(大きなフリッカを発生ずる負荷に対しては、予
知信号を、その他の負荷に対しては、負荷電流を主に用
いて制御するようにして、両者の長所を生かすようをこ
したものである。
The present invention has been devised to satisfy both requirements at the same time, and is particularly designed to control loads that generate large flicker by using a predictive signal, and to control other loads by mainly using the load current. In this way, we tried to take advantage of the strengths of both.

以下、図によって、本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は、本発明の詳細な説明するための単線結線図で
ある。単線結線図とは、三相回路を省略して、一本の線
で書いた図面である。
FIG. 1 is a single line diagram for explaining the present invention in detail. A single-line diagram is a drawing drawn with a single line, omitting the three-phase circuit.

今、第2図の同期補償器EI01.E+02.を使用せ
ず、変流器oTの2次電流Toと変成器FTの2次電圧
Vの信号のみを用いて、制御した場合を考えると、第3
図のように変流器OTの2次電流To(以後、本文およ
び図面では、OTの2次電流Toを、合計電流と略称す
る。)より遅れて変換電圧DO1が発生し、それよりさ
らに遅れて制御電流FOが流れるため、電源の電圧変動
△Vを防ぎきれない。
Now, the synchronous compensator EI01 in FIG. E+02. Considering the case where control is performed using only the signals of the secondary current To of the current transformer oT and the secondary voltage V of the transformer FT without using the
As shown in the figure, the converted voltage DO1 is generated with a delay from the secondary current To of the current transformer OT (hereinafter, in the main text and drawings, the secondary current To of the OT is abbreviated as the total current), and even later than that. Since the control current FO flows, it is impossible to prevent the voltage fluctuation △V of the power supply.

次に、第2図の同期補償器801のみ入力回路として使
用し、かつ、第1図の負荷L1.以外は負荷がない場合
は、第3図のように、合計電流TOが流れるより先に、
予知信号B1が発生し、合計電流TOが零になるより先
に、予知信号B1が零になるので、制御信号DO4が合
計電流T。
Next, only the synchronous compensator 801 in FIG. 2 is used as an input circuit, and the load L1 in FIG. If there is no load other than that, as shown in Figure 3, before the total current TO flows,
Since the prediction signal B1 becomes zero before the prediction signal B1 is generated and the total current TO becomes zero, the control signal DO4 becomes the total current T.

を予知することになり、制御電流poの遅れはなくなり
、電圧変動△Vは零をこなる。
As a result, the delay in the control current po disappears, and the voltage fluctuation ΔV exceeds zero.

次に、第2図の全体を生かして制御した場合を考えてみ
る。これは、第5図と第4図を合計した動作となるよう
をこ思われるが、実際には、負荷L1.L2.の電流が
合計電流TOの中に含まれているのでこれをそのままに
しておくと2重に制御することになり良くない。そこで
、本発明では第5図に示すように、予知信号B1を加工
して、補償電圧na2として使用している。
Next, let us consider a case where control is performed by making full use of the entirety of FIG. This seems to be a combination of the operations shown in FIGS. 5 and 4, but in reality, the load L1. L2. Since this current is included in the total current TO, if this current is left as it is, it will result in double control, which is not good. Therefore, in the present invention, as shown in FIG. 5, the prediction signal B1 is processed and used as the compensation voltage na2.

すなわち、補償電圧D02.と合計電流TOの中に含ま
れる負荷I、1の成分とを合計した場合、第4図の制御
信号DO4と同じ波形となるようにしている。負荷n5
.L4.・・・・・弓こついては、第3図と同様な動作
となる。
That is, the compensation voltage D02. When the components of the load I, 1 included in the total current TO are summed, the waveform is the same as that of the control signal DO4 in FIG. 4. load n5
.. L4. ...When bowing, the action is similar to that shown in Figure 3.

以下、第2図と第5図について、詳細に説明する。第5
図は、第1図の負荷L1.にだけ電流が流れた場合の動
作を示したものである。合計電流TOが変換器Ovに流
れると、変成器FTの2次電圧Vとの関係を変換器Ov
が計算して、変換電圧DO1を出力する。
Hereinafter, FIGS. 2 and 5 will be explained in detail. Fifth
The figure shows the load L1. of FIG. This figure shows the operation when current flows only through. When the total current TO flows through the transformer Ov, the relationship with the secondary voltage V of the transformer FT is expressed as the transformer Ov
calculates and outputs the converted voltage DO1.

一方、負荷L1の電流10と予知信号E1により、同期
補償器801が補償電圧DO2を出力する。このとき、
電流1Cの初めの値は前回の電流を記憶しておいて使用
する。変換電圧DOiと補償電圧DO2を3相合成器3
1?で合成し、出力電圧として、制御信号DO4を得る
。制御信号DO4は変換電圧1101と似たような波形
で、詩興は先行している。このたり−1合計電流Toと
i御電流10は時間的に一致し、電源電圧変動△Vは0
になる。
On the other hand, the synchronous compensator 801 outputs the compensation voltage DO2 based on the current 10 of the load L1 and the prediction signal E1. At this time,
The previous current is memorized and used as the initial value of the current 1C. A three-phase synthesizer 3 converts the converted voltage DOi and the compensation voltage DO2.
1? The control signal DO4 is obtained as an output voltage. The control signal DO4 has a waveform similar to that of the converted voltage 1101, and the signal is in the lead. In this case, -1 total current To and i control current 10 coincide in time, and power supply voltage fluctuation △V is 0.
become.

ここで第2図にもどって、制御信号DO4を受は取った
パルス発生器は変成器の2次電圧Vと共にパルスPを発
生し、フリッカ吸収装置νのサイリスタ80Rに点弧パ
ルスを送って制御電流lPOを制御する?このとき、フ
リッカ吸収装置がリアクトルを用いたものであればサイ
リスタSORの点弧角を制御し、コンデンサを用いたも
のであれば、サイリスタSORの点弧する数を制御する
Returning to FIG. 2, the pulse generator that receives the control signal DO4 generates a pulse P together with the secondary voltage V of the transformer, and sends a firing pulse to the thyristor 80R of the flicker absorber ν to control it. Control current lPO? At this time, if the flicker absorption device uses a reactor, the firing angle of the thyristor SOR is controlled, and if the flicker absorption device uses a capacitor, the number of fired thyristors SOR is controlled.

同期補償器1901. S02.が同時に動作したり、
負荷L3.L4.・・・・・・が動作したときの波形と
回路の作用は、前述のものが同時に行なわれ、加算され
ることになる。さらに同期補償器S O1゜S02.は
、本文では2台のみ記されているが、数には、制限がな
い。
Synchronous compensator 1901. S02. operate at the same time,
Load L3. L4. When . . . operates, the waveforms and circuit actions described above are performed simultaneously and added. Furthermore, the synchronous compensator SO1゜S02. Although only two are mentioned in the text, there is no limit to the number.

以上述べたように、本発明によれば激しい変動を行なう
負荷に対しては予知制御方式により対応し、ゆるやかな
変動や、小さい変動が数多く集ったような負荷軒対して
は、合計電流で制御するため、総合的に7リノカ吸収効
果の高い装置を作ることができる。
As described above, according to the present invention, a load that fluctuates drastically can be dealt with using a predictive control method, and a load that fluctuates slowly or has a large number of small fluctuations can be handled by controlling the total current. Because of this control, it is possible to create a device that has a high overall 7-linoka absorption effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の装置を設置する電源設備の単線結線
図である。記号説明は下記の通り。 F・・・・・・フリッカ吸収装置、PO・・・・・・フ
リッカ吸収装置に流れる制御電流、PT・・・・・・変
成器、■・・・・・・変成器の2次電圧、OT・・・・
・・変流器ri、L2゜LM、II4.・・・・・・負
荷、OTl、OT2.・・・・・・変流器、10.20
・・・・・φ変流器OT1.OT2.の2次電流、B1
.B2.・・・・・・負荷11.L2より取り出した予
知信号 第2図は、本発明の実施例を示すブロックダイヤグラム
である。記号は下記の通り。 aV・・・・・・変換器、3F・・・・・・5相合成器
、PO・・・・・・パμ;g発生N、san・・・・・
・サイリスタ、801゜E102・・・・・・同期補償
器、DOl・・・・・・変換電圧。 DO4・・・・・・制御信号、P・・・・・・パ/L’
ス、DO2゜DO5・・・・・・補償電圧 第3.4,5.図は、本発明を説明するためのタイミン
グチャートである。 この図にわいて、ΔVは電源電圧の変動分である。 他の記号説明は先述の通りである。 特許出願人  井 上 岱 介
FIG. 1 is a single line diagram of power supply equipment in which the device of the present invention is installed. The symbol explanation is as follows. F: Flicker absorption device, PO: Control current flowing through the flicker absorption device, PT: Transformer, ■: Secondary voltage of transformer, OT...
...Current transformer ri, L2゜LM, II4. ...Load, OTl, OT2. ...Current transformer, 10.20
...φ current transformer OT1. OT2. Secondary current of B1
.. B2. ...Load 11. Prediction signal extracted from L2 FIG. 2 is a block diagram showing an embodiment of the present invention. The symbols are as follows. aV...converter, 3F...5-phase synthesizer, PO...pa μ; g generation N, san...
・Thyristor, 801°E102...Synchronous compensator, DOl...Conversion voltage. DO4... Control signal, P... Pa/L'
Compensation voltage No. 3.4, 5. The figure is a timing chart for explaining the present invention. In this figure, ΔV is the variation in the power supply voltage. Other symbol explanations are as described above. Patent applicant Daisuke Inoue

Claims (1)

【特許請求の範囲】 第1図に示すように (1)負荷電流の合計を検出する変流器OTと、電源電
圧を検出する変成器pTと、特に7す゛ツカの大きい負
荷L1.L2.の電流を検出する変流器OT1’、OT
2.を設置すること。 (2)負荷11.L2.が実際に負荷電流を流すより交
流の波仝20〜90度速く立上り、立下る予知信号B1
.B2を負荷v1. ′Lz、より取り出讐こと。 (3)′負荷電流の合計を検出する変流器OTより電源
側に、サイリスタの点弧を制御して負荷電流に応じた無
効電流FOを流す7リソカ吸収装置rを取りつけること
。 (4)゛第2図に示すように 変流器OTの2次電流T01と変成器FTの2次電圧V
を変換器Ovに加え、各相ごとの制御電圧DO1を作り
、さらに変流器OT1゜O12,の2次電流10,20
.および予知信号111.B2.を同期補償器801,
802に加え、その結果、それぞれ補償信号、DO2゜
B03.を作ること。 (5)この補償信号、DO2,Do3.を3相合成器5
1Fに加え、その結果、負荷L1.L2.の信号のみ進
ませた各相ごとの制御信号D04゜を得て、この電圧と
変成器FTの2次電圧■とをパルス発生器POに加えて
、得られたパルスPを7リツカ吸収装置rの中のサイリ
スタSORの点弧パルスとして使用すること。 以上、(1)  (2)、 (3)、 (4)、 (5
)の項目を同時に使用することを特徴とする7リノカ吸
収装置の制御回路
Scope of Claims: As shown in FIG. 1, (1) a current transformer OT for detecting the total load current, a transformer pT for detecting the power supply voltage, and a particularly large load L1. L2. current transformer OT1', OT that detects the current of
2. to be installed. (2) Load 11. L2. The prediction signal B1 rises and falls 20 to 90 degrees faster than when the load current actually flows.
.. B2 is loaded v1. 'Lz, it's more like taking revenge. (3)' A 7-resoka absorption device r is installed on the power supply side from the current transformer OT that detects the total load current, which controls the firing of the thyristor to flow a reactive current FO according to the load current. (4)゛As shown in Figure 2, the secondary current T01 of current transformer OT and the secondary voltage V of transformer FT
is added to the converter Ov to create the control voltage DO1 for each phase, and the secondary current 10, 20 of the current transformer OT1゜O12,
.. and prediction signal 111. B2. The synchronous compensator 801,
802 and the resulting compensation signals, respectively, DO2°B03. to make. (5) These compensation signals, DO2, Do3 . 3 phase combiner 5
1F, and as a result, the load L1. L2. Obtain a control signal D04° for each phase in which only the signal of To be used as the firing pulse of the thyristor SOR in the Above, (1) (2), (3), (4), (5
) Control circuit for a 7-linoka absorption device characterized by using the following items at the same time
JP10850781A 1981-07-10 1981-07-10 Control circuit for flicker absorber Pending JPS5810213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10850781A JPS5810213A (en) 1981-07-10 1981-07-10 Control circuit for flicker absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10850781A JPS5810213A (en) 1981-07-10 1981-07-10 Control circuit for flicker absorber

Publications (1)

Publication Number Publication Date
JPS5810213A true JPS5810213A (en) 1983-01-20

Family

ID=14486528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10850781A Pending JPS5810213A (en) 1981-07-10 1981-07-10 Control circuit for flicker absorber

Country Status (1)

Country Link
JP (1) JPS5810213A (en)

Similar Documents

Publication Publication Date Title
JPH03183324A (en) Voltage variation and harmonic wave suppressor
JPS60237821A (en) Stationary reactive power compensator
JPS54121921A (en) Induction motor controller
JPS5810213A (en) Control circuit for flicker absorber
US4122516A (en) Inverter control apparatus
JPH08140268A (en) Controller of reactive power compensator
JP2017184345A (en) Phase error correction device and control method for pll control in hydraulic power generation system
JPH07236230A (en) Controller for voltage fluctuation suppresser
JPH01264535A (en) Method of controlling parallel operation of shaft generator
JP2581243B2 (en) Control method of reactive power compensator
JPS5854727B2 (en) Operation control method for AC/DC interconnection systems
JPH01206894A (en) Ac variable speed motor controller
JPS61102124A (en) Frequency controller for direct current transmission system
JPH0628011B2 (en) Reactive power controller
JPH03293930A (en) Purchase power quantity control device
JPS6154880A (en) Power source
JP2823347B2 (en) Turbine control device
SU959254A1 (en) Apparatus for controlling static frequency converter
JPS6320514A (en) Control method for reactive power compensating device
JPH08314557A (en) Controller for reactive power compensator
JPS62147999A (en) Controlling method on throwing-in of motor load on induction generator for single operation
JPH0412485B2 (en)
JPS60102823A (en) Hybrid transmission power controller
JPS6290718A (en) Control system for reactive power compensator
JPS59117244U (en) Reactive power control device