JPS61102124A - Frequency controller for direct current transmission system - Google Patents

Frequency controller for direct current transmission system

Info

Publication number
JPS61102124A
JPS61102124A JP59221923A JP22192384A JPS61102124A JP S61102124 A JPS61102124 A JP S61102124A JP 59221923 A JP59221923 A JP 59221923A JP 22192384 A JP22192384 A JP 22192384A JP S61102124 A JPS61102124 A JP S61102124A
Authority
JP
Japan
Prior art keywords
power
frequency
transmission system
power transmission
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59221923A
Other languages
Japanese (ja)
Other versions
JPH0515136B2 (en
Inventor
国吉 俊治
彰一 色川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59221923A priority Critical patent/JPS61102124A/en
Publication of JPS61102124A publication Critical patent/JPS61102124A/en
Publication of JPH0515136B2 publication Critical patent/JPH0515136B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は直流送電システムにおける発電所側交流母線周
波数を一定に制御するための周波数制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a frequency control device for controlling a power plant side AC bus frequency to a constant value in a DC power transmission system.

[発明の技術的背景コ 地熱発電所のように負荷中心より遠隔地に設置された発
電所にて発電された電力を長距離・大電力送電するため
に、系統安全度および送電線布設コストの問題により、
直流送電が交流送電に比へて有利であることから、直流
送電が諸外国において採用されてきている。直流送電を
採用した場合には、発電機は負荷側と非同期であるため
、系統状態の変動等により発電機周波数が変動し易くな
る。この発電機周波数の変動は1発電所の所内補機の運
転に好ましくないばかりでなく1周波数変動幅が大きく
なると、発電機を停止させるための保護リレーが動作す
ることになる。
[Technical Background of the Invention] In order to transmit large amounts of power over long distances from power plants that are installed at power plants located far from the load center, such as geothermal power plants, it is necessary to improve system safety and reduce transmission line installation costs. Due to the problem
Since DC power transmission is more advantageous than AC power transmission, DC power transmission has been adopted in many countries. When direct current power transmission is adopted, the generator is asynchronous with the load side, so the generator frequency tends to fluctuate due to fluctuations in the system status, etc. This fluctuation in the generator frequency is not only unfavorable for the operation of the auxiliary equipment in the power plant, but also when the width of the frequency fluctuation becomes large, a protection relay for stopping the generator is activated.

[背景技術の問題点コ そこで、従来はこの発電機周波数の変動を制御するため
に1発電所側交流母線周波数を基準周波数と比較し、そ
の偏差で直流送電電力を制御するようにしていた。しか
し、そのような方法によると、周波数変動が発生してか
ら始めて周波数を基準周波数に戻そうとする制御が行な
われるため。
[Problems with the Background Art] Therefore, in the past, in order to control this fluctuation in the generator frequency, the AC bus frequency on one power station side was compared with a reference frequency, and the DC transmitted power was controlled based on the deviation. However, according to such a method, control is performed to return the frequency to the reference frequency only after frequency fluctuation occurs.

その応答速度に若干の時間遅れが存在し、発電所側へ影
響を及ぼす問題点があった。
There was a slight time delay in the response speed, which was a problem that affected the power plant side.

[発明の目的] 本発明は複数ある直流送電系統の1つに何らかの異常が
発生し、その直流送電系統の送電電力が低下した場合に
おいても、周波数変動を抑制し。
[Object of the Invention] The present invention suppresses frequency fluctuations even when some kind of abnormality occurs in one of a plurality of DC transmission systems and the transmitted power of that DC transmission system decreases.

系統状態を安定維持できる直流送電の周波数制御装置を
提供することを目的とする。
The purpose of the present invention is to provide a frequency control device for DC power transmission that can maintain stable system conditions.

[発明の概要コ このため本発明は、異常となった直流送電系統の送電指
令を正常な直流送電系統に分配することにより、時間遅
れなく発生電力と送電電力をバランスさせるようにした
ことを特徴としている。
[Summary of the Invention] Therefore, the present invention is characterized in that the power transmission command from the abnormal DC power transmission system is distributed to the normal DC power transmission system, thereby balancing the generated power and the transmitted power without time delay. It is said that

[発明の実施例] 第1図は本発明の一実施例に係る直流送電システムの構
成図を示したもので、同期発電機lは発電機遮断器2を
介して発電所側交流母線即ち山側母a3に接続されてい
る。山側母線3は変換器用遮断器4A 、 4Bおよび
変換器用変圧器5A、5Bを介して多数個のサイリスタ
の直並列接続から構成される順変換器6A 、 6Bに
接続されている。順変換器6A、68は交流電力を直流
電力に変換し、各サイリスタの点弧位相を制御すること
により直流送電電力を制御する。順変換器6A、6Bに
より直流に変換された電力は平滑リアクトル7A 、 
7B、直流送電線8A、8B、平滑りアクドル9A 、
 9Bを介して逆変換器+OA、IOBにより再び交流
電力に変換される。逆変換器10A、IOCにより交流
に変換された電力は変換器用変圧器11A、IIB、変
換器用遮断器12A、12Bを介して負荷側交流母線即
ち爪側母線13に達する。
[Embodiment of the Invention] Fig. 1 shows a configuration diagram of a DC power transmission system according to an embodiment of the present invention, in which a synchronous generator l is connected to an AC bus on the power plant side, that is, on the mountain side, via a generator circuit breaker 2. Connected to mother a3. The mountain side busbar 3 is connected to forward converters 6A, 6B, which are composed of a large number of thyristors connected in series and parallel, via converter circuit breakers 4A, 4B and converter transformers 5A, 5B. The forward converters 6A, 68 convert AC power into DC power, and control the DC transmitted power by controlling the firing phase of each thyristor. The power converted to DC by the forward converters 6A and 6B is transferred to a smoothing reactor 7A,
7B, DC transmission line 8A, 8B, flat sliding axle 9A,
It is converted back into AC power via inverter +OA and IOB via 9B. The power converted into AC by the inverse converter 10A and IOC reaches the load-side AC bus, that is, the claw-side bus 13, via converter transformers 11A, IIB, and converter circuit breakers 12A, 12B.

このように構成される直流送電システムにおいて、周波
数制御装置は周波数検出器14.基準周波数発生器15
、演算器16、制御器17および分配回路18から構成
される。周波数検出器14にて検出された山側母線周波
数fは、基準周波数発生器15の出力である基準周波数
fθとともに演算器)6に入力される。演算器16は周
波数偏差Δfを出力し、それが制御器17に入力される
。制御器17は周波股部       1差△fを入力
し、PID制御を行ない、直流系統送電電力指令値ΣP
dρを出力するものである。
In the DC power transmission system configured in this manner, the frequency control device includes a frequency detector 14. Reference frequency generator 15
, a computing unit 16, a controller 17, and a distribution circuit 18. The mountain side bus frequency f detected by the frequency detector 14 is inputted to the arithmetic unit 6 together with the reference frequency fθ which is the output of the reference frequency generator 15. Arithmetic unit 16 outputs frequency deviation Δf, which is input to controller 17 . The controller 17 inputs the frequency crotch 1 difference △f, performs PID control, and sets the DC system transmission power command value ΣP.
It outputs dρ.

次に、分配回路の構成を第2図に示す。分配回路】8は
乗算器20、運転極数設定値21、コンパレータ22、
バイアス設定値23、演算器24より成る6周波数偏差
Δfはコンパレータ22に入力され、周波数高検出用設
定値Δfsと比較される。周波数偏差Δfが△fsより
大きい場合、コンパレータは切換器25によりバイアス
設定値23の出力に′を演算器24へ入力する6演算器
24はに′とともに運転極数設定器の出力Kを入力し、
補正運転極数に′を乗算器20へ入力する。乗算器20
は直流系統送電電力指令値ΣPdρと、補正運転極数に
′を入力することにより、各運転極に対する送電電力指
令値Pdp−AおよびPdp−sを出力する。
Next, FIG. 2 shows the configuration of the distribution circuit. Distribution circuit] 8 is a multiplier 20, an operating pole number setting value 21, a comparator 22,
Six frequency deviations Δf made up of a bias setting value 23 and an arithmetic unit 24 are input to a comparator 22 and compared with a frequency high detection setting value Δfs. When the frequency deviation Δf is larger than Δfs, the comparator inputs '' to the output of the bias setting value 23 to the calculator 24 through the switch 25. ,
' is input to the multiplier 20 as the number of corrected operating poles. Multiplier 20
By inputting DC system transmission power command value ΣPdρ and ' as the corrected number of operating poles, outputs transmission power command values Pdp-A and Pdp-s for each operating pole.

今、A系、B系の2極の直流送電系統があり、安定して
直流送電を行なっているものとする。このとき、′M転
転極膜設定器21出力には2であり、またコンパレータ
22は動作せずに’ =に=2の値が乗算器20へ入力
されている。即ち、 の値が各種への送電電力指令となっている。
It is now assumed that there is a two-pole DC power transmission system, system A and system B, and that DC power is being transmitted stably. At this time, the output of the M inversion film setter 21 is 2, and the comparator 22 is not operating, and the value 2 is input to the multiplier 20. In other words, the value of is the power transmission command for each type.

この状態で、A系の直流送電系統に何らかの異常が発生
し、A系の送電電力が低下した場合を仮定する。即ち、
A系の送電電力Pdc−AとB系の送電電力Pdc−s
の和は。
In this state, it is assumed that some abnormality occurs in the A-system DC power transmission system and the transmitted power of the A-system decreases. That is,
Transmission power Pdc-A of system A and transmission power Pdc-s of system B
The sum of

Pdc−A + Pdc−a <ΣPdpとなる。この
結果、負荷と送電電力のバランスがくずれて山側母線周
波数fが上昇し1周波数偏差Δfも上昇する。この様子
を第3図に示す。周波数偏差Δfが周波数高検出用設定
値△fsより大きくなったとき、コンパレータ22が動
作し、バイアス設定器23の出力に″(通常は1に設定
されている)が演算器24に入力される。演算器24は
に−K“=2−1=1の演算を行ない補正運転極数に’
 (=1)を乗算器20へ出力する。その結果、A系、
B系の送電電力指令Pdp−A、Pdp−BはともにΣ
Pdpとなり、健全極側であるB系の送電電力が増加す
ること(負荷移動)により周波数上昇は抑制される。
Pdc-A + Pdc-a <ΣPdp. As a result, the balance between the load and the transmitted power is disrupted, the mountain side bus frequency f increases, and the 1-frequency deviation Δf also increases. This situation is shown in FIG. When the frequency deviation Δf becomes larger than the frequency high detection setting value Δfs, the comparator 22 operates, and the output of the bias setter 23 is inputted to the calculator 24. The calculator 24 calculates -K"=2-1=1 to obtain the corrected number of operating poles.
(=1) is output to the multiplier 20. As a result, A series,
The transmission power commands Pdp-A and Pdp-B of system B are both Σ
Pdp, and the frequency increase is suppressed by increasing the transmitted power of the B system, which is the healthy pole side (load shift).

その後、周波数偏差Δfが減少し、周波数高検出用設定
値△fsより小さくなった場合にはコンパレータ22は
復帰動作を行ない、バイアス設定器23の出力に’は演
算器24へ人出されなくなる。その結果。
Thereafter, when the frequency deviation Δf decreases and becomes smaller than the frequency high detection setting value Δfs, the comparator 22 performs a return operation, and the output of the bias setter 23 is no longer sent to the calculator 24. the result.

Pdp−AおよびPdp−aはそれぞれΣP dp/2
となり、A系の故障が復帰していれば安定に送電を行な
うことが可能となる。
Pdp-A and Pdp-a are each ΣP dp/2
Therefore, if the failure in system A has been recovered, stable power transmission will be possible.

尚、上記実施例においては、直流送電系統が2極の並列
接続にて構成されている例で説明したが。
In the above embodiment, an example was described in which the DC power transmission system was configured with two poles connected in parallel.

2極以上の並列接続にて構成されている直流送電系統に
も本発明を適用し得ることは勿論である。
Of course, the present invention can also be applied to a DC power transmission system configured with two or more poles connected in parallel.

その場合、補正運転極数も1に限らず、異常となった直
流送電系統数となることは言う迄もない。そのためには
、例えは第2図においてコンパレータ22での比較結果
をバイアス設定器23にも伝達し、偏差が減少しないと
き、バイアス設定値23の出力に’を順次増加させれば
良い。
In that case, it goes without saying that the number of corrected operation poles is not limited to one, but is the same as the number of abnormal DC power transmission systems. To do this, for example, in FIG. 2, the comparison result from the comparator 22 may be transmitted to the bias setter 23, and when the deviation does not decrease, the output of the bias setting value 23 may be sequentially increased by '.

また、上記実施例では、第2図のコンパレータ22に周
波数偏差Δfを入力しているが、山側母線周波数fを入
力し、その周波数fが設定値を越えた時にコンパレータ
動作となるような回路構成でも本発明は実施できる。ま
た、コンパレータ動作に関し、動作値と復帰値を別の値
にしても良い。さらに、上記実施例で説明したコンパレ
ータの代わすに山側母線周波数fあるいは周波数偏差△
fの変化率を検出して上記実施例と同様な機能を持たせ
ても本発明を実施できる。
In addition, in the above embodiment, the frequency deviation Δf is input to the comparator 22 in FIG. 2, but the circuit configuration is such that the mountain side bus frequency f is input and the comparator operates when the frequency f exceeds a set value. However, the present invention can be implemented. Further, regarding the comparator operation, the operation value and the return value may be set to different values. Furthermore, instead of the comparator explained in the above embodiment, the mountain side bus frequency f or the frequency deviation △
The present invention can also be implemented by detecting the rate of change of f and providing the same function as the above embodiment.

また、上記実施例では、運転極数設定器は予め運転極数
を設定しておくように説明したが、極側の運転情報ある
いは直流送電系統の送電電力等の信号により自動的に運
転極数を判断するものであってもよい。
In addition, in the above embodiment, it was explained that the operating pole number setting device sets the operating pole number in advance, but the operating pole number setting device automatically sets the operating pole number based on the operating information on the pole side or the signal such as the transmitted power of the DC transmission system. It may also be used to judge.

また、上記実施例では、各直流系統への送電電力指令値
を共通の乗算器20から取り出すようにしたが、第4図
に示すようにそれぞれ乗算器20A 、 20B ゛を
設は各乗算器20A 、 20Bから各直流系統へ送電
電力指令を出すように構成してもよい。そうした場合に
は、各送電電力指令値をそのときの系統の状態に応じて
変えることができるようになる。
Further, in the above embodiment, the transmission power command value to each DC system is taken out from the common multiplier 20, but as shown in FIG. , 20B may issue a transmission power command to each DC system. In such a case, each transmission power command value can be changed according to the state of the grid at that time.

[発明の効果] 以上のように本発明によれば、直流送電系統に異常が発
生したとき、山側母線周波数と151周波数との周波数
偏差により、運転極数を補正するようにしたので、山側
母線の周波数を安定に制御することか可能となり、その
結果、直流送電システムの採用における発電所側への影
響をなくすことができるようになる。
[Effects of the Invention] As described above, according to the present invention, when an abnormality occurs in the DC power transmission system, the number of operating poles is corrected based on the frequency deviation between the mountain side bus frequency and the 151 frequency. It becomes possible to stably control the frequency of the DC power transmission system, and as a result, it becomes possible to eliminate the influence on the power plant side when adopting a DC power transmission system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る直流送電システムの構
成図、第2図は第1図の分配回路の詳細ブロック図、第
3図は第1図の直流送電系統異常時の動作説明図、第4
図は本発明の他の実施例に係る分配回路の詳細ブロック
図である。 1・・・同期発電機、2・・・発電機遮断器、3・・・
山側母線、4A、4B、12A、12B・・・変換器用
遮断器、5A、5B、IIA、IIB・・・変換器用変
圧器、6A 、 6B・・・順変換器、7A、7B、9
A、9B  ・・平滑リアクトル、8^、8B・・・直
流送電線、 IOA、IOB・・・逆変換器、13・・
・爪側母線、14・・・周波数検出器、15・・・基準
周波数発生器、16.24・・・演算器、17・・・制
御器、18・・・分配回路、20・・・乗算器、21・
・・運転極数設定値、22・・・コンパレータ、23・
・・バイアス設定値。 、・−゛・ ′〜−−ノ′ 第3図 故障才I争 第 4 因
Fig. 1 is a block diagram of a DC power transmission system according to an embodiment of the present invention, Fig. 2 is a detailed block diagram of the distribution circuit shown in Fig. 1, and Fig. 3 is an explanation of the operation when an abnormality occurs in the DC power transmission system shown in Fig. 1. Figure, 4th
The figure is a detailed block diagram of a distribution circuit according to another embodiment of the present invention. 1...Synchronous generator, 2...Generator circuit breaker, 3...
Mountain side bus bar, 4A, 4B, 12A, 12B... Converter circuit breaker, 5A, 5B, IIA, IIB... Converter transformer, 6A, 6B... Forward converter, 7A, 7B, 9
A, 9B...Smoothing reactor, 8^, 8B...DC transmission line, IOA, IOB...Inverse converter, 13...
- Claw side bus bar, 14... Frequency detector, 15... Reference frequency generator, 16.24... Arithmetic unit, 17... Controller, 18... Distribution circuit, 20... Multiplication Vessel, 21・
・・Operation pole number setting value, 22・・Comparator, 23・
...Bias setting value. ,・−゛・ ′〜−−ノ′ Figure 3: Troubleshooting I dispute 4th cause

Claims (1)

【特許請求の範囲】[Claims] 発電所側交流母線から負荷側交流系統に複数の直流送電
系統を介して並列送電する直流送電システムの前記発電
所側交流母線周波数を一定に制御する装置において、運
転極数を設定する手段と、前記発電所側交流母線周波数
を検出し、その検出値に応じて前記運転極数を補正する
手段と、直流系統送電電力指令値をその補正された運転
極数で分配して各直流送電系統に与える手段とを備えて
いることを特徴とする直流送電系統の周波数制御装置。
In a device for controlling a power plant side AC bus frequency to a constant in a DC power transmission system that transmits power in parallel from a power plant side AC bus to a load side AC system via a plurality of DC transmission systems, means for setting the number of operating poles; Means for detecting the AC bus frequency on the power plant side and correcting the number of operating poles according to the detected value; and means for distributing the DC system transmission power command value by the corrected number of operating poles to each DC transmission system. 1. A frequency control device for a DC power transmission system, comprising: means for controlling a frequency of a DC power transmission system.
JP59221923A 1984-10-24 1984-10-24 Frequency controller for direct current transmission system Granted JPS61102124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59221923A JPS61102124A (en) 1984-10-24 1984-10-24 Frequency controller for direct current transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59221923A JPS61102124A (en) 1984-10-24 1984-10-24 Frequency controller for direct current transmission system

Publications (2)

Publication Number Publication Date
JPS61102124A true JPS61102124A (en) 1986-05-20
JPH0515136B2 JPH0515136B2 (en) 1993-02-26

Family

ID=16774270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59221923A Granted JPS61102124A (en) 1984-10-24 1984-10-24 Frequency controller for direct current transmission system

Country Status (1)

Country Link
JP (1) JPS61102124A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0396725U (en) * 1990-01-25 1991-10-03
JPH045392U (en) * 1990-04-27 1992-01-17
JP2014075872A (en) * 2012-10-03 2014-04-24 Toshiba Corp System frequency control device
WO2015156307A1 (en) * 2014-04-09 2015-10-15 株式会社 東芝 Frequency control device for dc interconnection system and dc interconnection system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57130546U (en) * 1981-02-06 1982-08-14
JPS59149736A (en) * 1983-02-10 1984-08-27 株式会社東芝 Frequency controller of dc transmission

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57130546U (en) * 1981-02-06 1982-08-14
JPS59149736A (en) * 1983-02-10 1984-08-27 株式会社東芝 Frequency controller of dc transmission

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0396725U (en) * 1990-01-25 1991-10-03
JPH045392U (en) * 1990-04-27 1992-01-17
JP2014075872A (en) * 2012-10-03 2014-04-24 Toshiba Corp System frequency control device
WO2015156307A1 (en) * 2014-04-09 2015-10-15 株式会社 東芝 Frequency control device for dc interconnection system and dc interconnection system
JP2015201993A (en) * 2014-04-09 2015-11-12 株式会社東芝 Frequency controller of dc interconnection system
CN106134027A (en) * 2014-04-09 2016-11-16 株式会社东芝 The frequency control apparatus of antiflaming DC united welding system and antiflaming DC united welding system
CN106134027B (en) * 2014-04-09 2019-01-29 株式会社东芝 The frequency control apparatus and direct current system of connections of direct current system of connections

Also Published As

Publication number Publication date
JPH0515136B2 (en) 1993-02-26

Similar Documents

Publication Publication Date Title
CN105826908A (en) Quick distance protection method and apparatus for power transmission line containing UPFC
JP2011015493A (en) Distributed power supply device
US4680692A (en) Control apparatus of AC/DC power converter
US9998029B2 (en) Inverter and inverter device
JPS61102124A (en) Frequency controller for direct current transmission system
GB1241674A (en) Improvements in or relating to h.v.d.c. transmission systems
EP3780373A1 (en) Power conversion device
JP2010110120A (en) Ac power supply system
EP0205100B1 (en) Method and system for preventing an excessive voltage build-up in a power converter system
JP2019054641A (en) Power conversion equipment
Dougherty et al. Power system stability considerations with dynamically responsive DC transmission lines
JPS59149736A (en) Frequency controller of dc transmission
JPS6336214B2 (en)
RU51796U1 (en) ELECTRICITY QUALITY DEVICE IN ELECTRIC NETWORKS
JPH0145825B2 (en)
JPS642016B2 (en)
JPH06105556A (en) Power converter
JPH056414B2 (en)
JPH011431A (en) power supply
JPS63242126A (en) Failure detector of generator
JPS5921233A (en) Power control system for ac/dc parallel operation system
JPS58215934A (en) Control system for power facility
JPH04265632A (en) Load unbalance eliminating device for uninterruptible power supply
JPS58133127A (en) Power control system for ac/dc interlocking system
JPH0556564A (en) Distributed power system