JP2010110120A - Ac power supply system - Google Patents

Ac power supply system

Info

Publication number
JP2010110120A
JP2010110120A JP2008280069A JP2008280069A JP2010110120A JP 2010110120 A JP2010110120 A JP 2010110120A JP 2008280069 A JP2008280069 A JP 2008280069A JP 2008280069 A JP2008280069 A JP 2008280069A JP 2010110120 A JP2010110120 A JP 2010110120A
Authority
JP
Japan
Prior art keywords
power
current
semiconductor circuit
converter
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008280069A
Other languages
Japanese (ja)
Inventor
Mikisuke Fujii
幹介 藤井
Kazuyuki Yoda
和之 依田
Kazuyoshi Kurashima
和義 倉島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2008280069A priority Critical patent/JP2010110120A/en
Publication of JP2010110120A publication Critical patent/JP2010110120A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Abstract

<P>PROBLEM TO BE SOLVED: To uniformize current sharing of a semiconductor circuit breaker while maintaining the stable supply of a load voltage. <P>SOLUTION: In an AC power supply system, an electric power is supplied to a load 2 from an AC power system 1 through a plurality of semiconductor circuit breakers 3 and 3' connected in parallel during a normal period. When the AC power system 1 comes into an abnormal state, the semiconductor circuit breakers 3 and 3' are opened and the power is supplied from converters 7 and 8 which have energy an accumulating function. An AC reactor is inserted into a system side and a load side of the semiconductor circuit breakers, and a power converter is connected between each semiconductor circuit breaker and a load side AC reactor. The power converters 7 and 8 uniformize current sharing between semiconductor circuit breakers 3 and 3'. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、常時商用給電型無停電電源装置(UPS)に代表される交流電源システムに関する。   The present invention relates to an AC power supply system represented by an always commercial power supply type uninterruptible power supply (UPS).

図5に、例えば特許文献1に開示の交流電源システム例を示す。
図示のように、電力系統1から比較的小容量の複数の半導体遮断器3,3’を用いて負荷2に電力を供給するシステムでは、系統正常時に半導体遮断器3,3’に流れる電流を均一にするため、トランス4を介して系統に接続する。このトランス4は巻数比が1:1となっており、半導体遮断器3,3’のオン電圧相当の電圧が得られる巻数となっている。なお、複数台の無停電電源装置からスイッチを介して負荷2に電力を供給するシステムで、各スイッチの電流バランスを図る従来例として、特許文献2,3等に示すものがある。
FIG. 5 shows an example of an AC power supply system disclosed in Patent Document 1, for example.
As shown in the figure, in a system that supplies power to the load 2 from the power system 1 using a plurality of semiconductor breakers 3, 3 ′ having a relatively small capacity, the current flowing through the semiconductor circuit breakers 3, 3 ′ when the system is normal In order to make it uniform, it is connected to the system via a transformer 4. The transformer 4 has a turns ratio of 1: 1, which is a number of turns at which a voltage corresponding to the on-voltage of the semiconductor breakers 3 and 3 ′ can be obtained. In addition, there exist some which are shown to patent documents 2, 3, etc. as a prior art example which aims at the electric current balance of each switch in the system which supplies electric power to the load 2 via a switch from several uninterruptible power supply apparatuses.

ここで、図5に示す電力変換器7が例えば図6のような主回路構成となっており、その制御ブロックが図7のようになっているものとして、以下に説明する。
まず、系統正常時には、電力変換器7は電流制御型変換器として動作し、この動作モードを連系運転モ−ドと言う。このモードでは、バッテリ30の電圧を検出器25により検出し、これが電圧指令値35に一致するようにPI調節器26が動作し、その出力を有効電流指令とする。この有効電流指令と無効電流0指令を座標変換器36に入力し、例えばR相とT相の電流指令を演算する。この2つの電流指令と出力電流28の2相分の偏差を電流調節器(ACR)29に入力し、その結果に出力電圧検出値27を加算することで電圧指令を求める。なお、S相の電圧と加算する電流制御量は、R相とT相の電流制御量との和が0になるようにして求めるものとする。ただし、3相4線回路の場合は、S相の電流制御量もR相やT相と同様に演算する。
Here, the power converter 7 shown in FIG. 5 has a main circuit configuration as shown in FIG. 6, for example, and its control block is as shown in FIG.
First, when the system is normal, the power converter 7 operates as a current control type converter, and this operation mode is referred to as an interconnection operation mode. In this mode, the voltage of the battery 30 is detected by the detector 25, and the PI controller 26 operates so that it matches the voltage command value 35, and the output is used as an active current command. The active current command and the reactive current 0 command are input to the coordinate converter 36 and, for example, R-phase and T-phase current commands are calculated. The deviation between the two current commands and the two phases of the output current 28 is input to the current regulator (ACR) 29, and the output voltage detection value 27 is added to the result to obtain the voltage command. The S-phase voltage and the current control amount to be added are determined so that the sum of the R-phase and T-phase current control amounts becomes zero. However, in the case of a three-phase four-wire circuit, the S-phase current control amount is calculated in the same manner as in the R-phase and T-phase.

一方、系統異常時には例えば半導体遮断器3を解列することで、電力変換器7は電圧制御型変換器として動作する電圧モ−ドで運転され、電圧振幅指令22と基準位相発生器21で決まる電圧指令で動作する。
ところで、図5に示す2つの電力変換器7,8が上記電圧モ−ドで動作している場合、各変換器が出力する負荷電流をバランスさせる必要がある。その方法としてはいくつかあるが、図8のような分担電流を検出して制御する方法について説明する。
On the other hand, when the system is abnormal, for example, by disconnecting the semiconductor breaker 3, the power converter 7 is operated in a voltage mode that operates as a voltage-controlled converter, and is determined by the voltage amplitude command 22 and the reference phase generator 21. Operates with voltage command.
By the way, when the two power converters 7 and 8 shown in FIG. 5 are operating in the voltage mode, it is necessary to balance the load currents output by the converters. Although there are several methods, a method for detecting and controlling the shared current as shown in FIG. 8 will be described.

図8では、各変換器の出力電流10,11と動作判定器38,39を用い、変換器が動作しているかどうかを判定する。動作判定器38,39は、変換器が動作していると判断したときは、論理「1」を出力するので、2(n)台とも動作しているときは負荷電流9の1/2(1/n)の電流が分担電流17として出力される。座標変換器18は、分担電流17と出力電流10との差分を有効電流と無効電流とに分離する。   In FIG. 8, the output currents 10 and 11 of each converter and the operation determiners 38 and 39 are used to determine whether or not the converter is operating. When the operation determining units 38 and 39 determine that the converter is operating, the operation determining units 38 and 39 output a logic “1”. Therefore, when 2 (n) units are operating, 1 / n) current is output as the shared current 17. The coordinate converter 18 separates the difference between the shared current 17 and the output current 10 into an effective current and a reactive current.

上記有効電流成分はPI調節器19に入力され、その出力が基準位相発生器21に入力されて、出力周波数を微調整する。一方、無効電流成分はPI調節器20に入力され、その出力に電圧振幅指令22が加算され、出力振幅が微調整される。
以上の各モード毎に求められた電圧指令値は、切替スイッチ31を経てパルス生成器23に入力され、その出力がゲートドライブユニット(GDU)24を介して電力変換器7に出力される。
The effective current component is input to the PI adjuster 19, and the output is input to the reference phase generator 21 to finely adjust the output frequency. On the other hand, the reactive current component is input to the PI controller 20, and the voltage amplitude command 22 is added to the output of the reactive current component to finely adjust the output amplitude.
The voltage command value obtained for each mode is input to the pulse generator 23 via the changeover switch 31, and the output is output to the power converter 7 via the gate drive unit (GDU) 24.

特開2008−029135号公報JP 2008-029135 A 特開2005−333775号公報JP 2005-333775 A 特開2008−092734号公報JP 2008-092734 A

上述のように、トランスを使用して半導体遮断器の電流分担を実現しようとするものでは、実際にはトランスの漏れインダクタンス5,6が回線に直列に接続される。この漏れインダクタンスはトランスの構造に依存しており、高圧回路に適用するトランスでは絶縁の問題から10%程度の大きさとなる。そのため、負荷電圧の電圧変動率が負荷の力率により著しく増大するという問題が発生する。
したがって、この発明の課題は、複数台の半導体遮断器を用いた交流電源システムで安定な負荷電圧供給を維持しつつ、半導体遮断器の電流分担を均一化することにある。
As described above, in the case where the current sharing of the semiconductor circuit breaker is to be realized using a transformer, the leakage inductances 5 and 6 of the transformer are actually connected in series to the line. This leakage inductance depends on the structure of the transformer, and a transformer applied to a high voltage circuit has a magnitude of about 10% due to insulation problems. Therefore, there arises a problem that the voltage fluctuation rate of the load voltage is remarkably increased due to the power factor of the load.
Accordingly, an object of the present invention is to equalize the current sharing of the semiconductor circuit breaker while maintaining a stable load voltage supply in an AC power supply system using a plurality of semiconductor circuit breakers.

このような課題を解決するため、請求項1の発明では、通常時には並列接続された複数の半導体遮断器を介して交流電力系統から負荷に電力を供給し、交流電力系統が異常になったときは前記半導体遮断器を解列して蓄電機能を持つ複数の変換器から電力を供給する交流電源システムにおいて、
前記各半導体遮断器の系統側および負荷側にそれぞれ交流リアクトルを挿入するとともに、各半導体遮断器と負荷側交流リアクトルとの間にそれぞれ電力変換器を接続したことを特徴とする。
この請求項1の発明においては、前記各電力変換器は、前記半導体遮断器のオン電圧のばらつきによる電流アンバランスを、前記各電力変換器から無効電流を流すことで平衡化することができる(請求項2の発明)。
In order to solve such a problem, in the invention of claim 1, when power is supplied to the load from the AC power system through a plurality of semiconductor circuit breakers connected in parallel at normal times, and the AC power system becomes abnormal Is an AC power supply system that supplies power from a plurality of converters having a power storage function by disconnecting the semiconductor breaker,
An AC reactor is inserted into the system side and the load side of each semiconductor circuit breaker, and a power converter is connected between each semiconductor circuit breaker and the load side AC reactor.
In this invention of Claim 1, each said power converter can balance the current imbalance by the dispersion | variation in the on-voltage of the said semiconductor circuit breaker by sending a reactive current from each said power converter ( Invention of Claim 2).

請求項3の発明では、通常時には並列接続された複数の半導体遮断器を介して交流電力系統から負荷に電力を供給し、交流電力系統が異常になったときは前記半導体遮断器を解列して蓄電機能を持つ複数の変換器から電力を供給する交流電源システムにおいて、
前記各半導体遮断器の負荷側にそれぞれ交流リアクトルを挿入するとともに、この負荷側交流リアクトルと半導体遮断器との間にそれぞれ電力変換器を接続し、この電力変換器の直流回路を互いに接続したことを特徴とする。
この請求項3の発明においては、前記各電力変換器は、前記半導体遮断器のオン電圧のばらつきによる電流アンバランス分を、前記各電力変換器間に流すことで平衡化することができる(請求項4の発明)。
In the invention of claim 3, power is supplied to the load from the AC power system through a plurality of semiconductor circuit breakers connected in parallel at normal times, and when the AC power system becomes abnormal, the semiconductor circuit breaker is disconnected. In an AC power supply system that supplies power from a plurality of converters having a power storage function,
An AC reactor was inserted on the load side of each semiconductor breaker, a power converter was connected between the load side AC reactor and the semiconductor breaker, and the DC circuits of the power converter were connected to each other. It is characterized by.
In this invention of Claim 3, each said power converter can equilibrate by flowing the electric current unbalance part by the dispersion | variation in the ON voltage of the said semiconductor circuit breaker between each said power converter. Item 4).

この発明によれば、複数の半導体遮断器を用いた交流電源システムにおいて、トランスの漏れインダクタンスよりも小さなACリアクトルを回線に挿入し、かつ電力変換器から適切な電流を注入することにより、半導体遮断器間に生じるオン電圧のバラツキを補正するようにしたので、各半導体遮断器に流れる電流を均一にすることが可能となる。   According to the present invention, in an AC power supply system using a plurality of semiconductor circuit breakers, an AC reactor smaller than the leakage inductance of the transformer is inserted into the line, and an appropriate current is injected from the power converter, thereby cutting off the semiconductor. Since the variation in the on-voltage generated between the devices is corrected, the current flowing through each semiconductor breaker can be made uniform.

図1はこの発明の実施の形態を示すシステム構成図である。図5に示すものに対し、半導体遮断器3,3’の各系統側にACリアクトル13,15を、各負荷側にACリアクトル14,16をそれぞれ挿入した点が特徴である(ACリアクトルのインダクタンスは、トランスの漏れインダクタンスよりも小さくする)。ここでは半導体遮断器が2並列の場合を示すが、3並列以上の場合も同様にACリアクトルを接続する。なお、遮断器と各負荷側リアクトルとの間に、電力変換器7,8を接続する。   FIG. 1 is a system configuration diagram showing an embodiment of the present invention. 5 is characterized in that AC reactors 13 and 15 are inserted on each system side of the semiconductor circuit breakers 3 and 3 ′, and AC reactors 14 and 16 are inserted on each load side (inductance of the AC reactor). Is smaller than the transformer leakage inductance). Here, although the case where two semiconductor breakers are parallel is shown, the AC reactor is similarly connected also when three or more parallels are used. In addition, the power converters 7 and 8 are connected between the circuit breaker and each load side reactor.

上記変換器7,8は電圧モードでは従来と同様に動作するので、以下では系統連系モード時の制御について図2を参照して説明する。図2のブロックは、図7の切替スイッチ31の次段に入力される信号を生成する。
直流電圧25を制御するためのPI調節器26や座標変換器36は図7と同様であるが、その座標変換器36の出力に対し電流バランスを図るための電流指令を加算する点で相違する。
Since the converters 7 and 8 operate in the voltage mode in the same manner as in the prior art, the control in the grid connection mode will be described below with reference to FIG. The block in FIG. 2 generates a signal that is input to the next stage of the changeover switch 31 in FIG.
The PI controller 26 and the coordinate converter 36 for controlling the DC voltage 25 are the same as those shown in FIG. 7 except that a current command for balancing the current is added to the output of the coordinate converter 36. .

上記電流指令は相毎に演算されるが、3相(R,S,T相)電流の和は“0”にする必要があるので、ここでは2相(R,T相)のみ演算する。ただし、3相4線回路の場合は、3相分を同様に演算する。
2相(R,T相)とも構成は同じで、まず、分担電流17と変換器出力電流10との差から、その実効値を演算器40で求め、PI調節器41に入力する。一方、変換器出力電圧27は位相補正器42において90°位相を遅らされ、この90°位相遅れの電圧がPI調節器41の出力と掛け合わされて、例えばR相の電流指令(無効電流指令)が生成される。同様にしてT相の電流指令を求め、上記直流電圧制御のための座標変換器36の出力に加算する。この電流指令値と出力電流28との差を電流調節器29に入力し、その出力に変換器出力電圧27をそれぞれ加算して、電圧指令が生成される。S相成分は、R相成分とT相成分とから図示のように求められる。
The current command is calculated for each phase, but since the sum of the three-phase (R, S, T phase) currents needs to be “0”, only the two phases (R, T phase) are calculated here. However, in the case of a three-phase four-wire circuit, three phases are calculated in the same manner.
The configuration is the same for the two phases (R and T phases). First, the effective value is obtained by the arithmetic unit 40 from the difference between the shared current 17 and the converter output current 10, and is input to the PI controller 41. On the other hand, the converter output voltage 27 is delayed by 90 ° in the phase corrector 42, and this 90 ° phase lag voltage is multiplied with the output of the PI regulator 41, for example, an R-phase current command (invalid current command). ) Is generated. Similarly, a T-phase current command is obtained and added to the output of the coordinate converter 36 for DC voltage control. The difference between the current command value and the output current 28 is input to the current regulator 29, and the converter output voltage 27 is added to the output to generate a voltage command. The S phase component is obtained from the R phase component and the T phase component as shown in the figure.

図3はこの発明の別の実施の形態を示すシステム構成図である。この例は、半導体遮断器3,3’の各負荷側にのみACリアクトル14,16をそれぞれ挿入し、電力変換器7,8の直流回路どうしを接続した点が特徴である(ACリアクトルのインダクタンスは、トランスの漏れインダクタンスよりも小さくする)。ここでは半導体遮断器が2並列の場合を示すが、3並列以上の場合も同様にACリアクトルを接続し、全電力変換器の直流回路どうしを接続する。   FIG. 3 is a system configuration diagram showing another embodiment of the present invention. This example is characterized in that the AC reactors 14 and 16 are inserted only on the respective load sides of the semiconductor circuit breakers 3 and 3 ′, and the DC circuits of the power converters 7 and 8 are connected to each other (inductance of the AC reactor). Is smaller than the transformer leakage inductance). Here, a case where two semiconductor breakers are connected in parallel is shown, but an AC reactor is connected in the same manner when there are three or more parallel circuit breakers, and DC circuits of all power converters are connected.

上記変換器7,8は電圧モードでは従来と同様に動作するので、以下では系統連系モード時の制御について図4を参照して説明する。図4のブロック図では、図7の切替スイッチ31の次段に入力される信号を生成する。
直流電圧25を制御するためのPI調節器26や座標変換器36は図7と同様であるが、有効電流指令と無効電流指令に電流バランスを図るための電流指令を加算する点で相違している。
Since the converters 7 and 8 operate in the voltage mode in the same manner as in the prior art, the control in the grid connection mode will be described below with reference to FIG. In the block diagram of FIG. 4, a signal input to the next stage of the changeover switch 31 of FIG. 7 is generated.
The PI controller 26 and the coordinate converter 36 for controlling the DC voltage 25 are the same as in FIG. 7, but differ in that the current command for balancing the current is added to the active current command and the reactive current command. Yes.

上記電流指令は、例えば電力変換器7の場合は、分担電流17からリアクトル電流43を引いたものとし、電力変換器8の場合はリアクトル電流44との差となる。この電流指令値と変換器出力電流10とを一致させるため、それらの差分を変換器18で座標変換して有効電流成分と無効電流成分とを抽出し、PI調節器37にそれぞれ入力する。そして、有効電流成分対応のPI調節器37の出力をPI調節器26の出力に加算して座標変換器36の一方の入力に、また、無効電流成分対応のPI調節器37の出力を座標変換器36の他方の入力に入力する。座標変換器36は有効電流,無効電流を3相交流量に変換するが、以後の動作は図7の説明と同様なので、説明は省略する。   For example, in the case of the power converter 7, the current command is obtained by subtracting the reactor current 43 from the shared current 17. In the case of the power converter 8, the current command is a difference from the reactor current 44. In order to make this current command value and the converter output current 10 coincide with each other, the difference between them is coordinate-converted by the converter 18 to extract the effective current component and the reactive current component, which are input to the PI controller 37, respectively. Then, the output of the PI controller 37 corresponding to the active current component is added to the output of the PI controller 26 and converted to one input of the coordinate converter 36, and the output of the PI controller 37 corresponding to the reactive current component is subjected to coordinate conversion. The other input of the device 36 is input. The coordinate converter 36 converts the effective current and reactive current into a three-phase alternating current amount, but the subsequent operation is the same as the description of FIG.

この発明の実施の形態を構成図Configuration of the embodiment of the present invention 図1の制御回路例を示すブロック図1 is a block diagram showing an example of the control circuit in FIG. この発明の別の実施の形態を示す構成図The block diagram which shows another embodiment of this invention 図3の制御回路例を示すブロック図FIG. 3 is a block diagram showing an example of the control circuit of FIG. 交流電源システムの従来例を示す構成図Configuration diagram showing a conventional example of an AC power supply system 従来例の変換回路と検出器の関係を示す構成図Configuration diagram showing the relationship between the conventional conversion circuit and detector 図5の制御回路例を示すブロック図The block diagram which shows the example of a control circuit of FIG. 分担電流の検出回路例を示すブロック図Block diagram showing an example of a shared current detection circuit

符号の説明Explanation of symbols

1…電力系統、2…負荷、3,3’…半導体遮断器、4…直列トランス、5,6…漏れインダクタンス、7,8…蓄電機能付電力変換器、9…負荷電流検出器、10,11,28…出力電流検出器、12…電流指令生成部、13〜16…ACリアクトル、17…分担電流、18,36…座標変換器、19,20,26,37,41…PI調節器、21…基準位相生成器、22…基準振幅、23…パルス発生器、24…ゲートドライブユニット(GDU)、25…直流電圧(検出器)、26…2乗演算器、27…出力電圧(検出器)、28…出力電流(検出器)、29…電流調節器(ACR)、30…蓄電池(バッテリ)、31…切替スイッチ、32…出力リアクトル、33…フィルタ、34…トランス、35…直流電圧指令値、38,39…動作判定器、40…実効値演算器、42…位相補正器、43,44…リアクトル電流(検出器)。   DESCRIPTION OF SYMBOLS 1 ... Electric power system, 2 ... Load, 3, 3 '... Semiconductor breaker, 4 ... Series transformer, 5, 6 ... Leakage inductance, 7, 8 ... Power converter with an electrical storage function, 9 ... Load current detector, 10, DESCRIPTION OF SYMBOLS 11,28 ... Output current detector, 12 ... Current command production | generation part, 13-16 ... AC reactor, 17 ... Shared current, 18, 36 ... Coordinate converter, 19, 20, 26, 37, 41 ... PI controller, DESCRIPTION OF SYMBOLS 21 ... Reference phase generator, 22 ... Reference amplitude, 23 ... Pulse generator, 24 ... Gate drive unit (GDU), 25 ... DC voltage (detector), 26 ... Square calculator, 27 ... Output voltage (detector) , 28 ... output current (detector), 29 ... current regulator (ACR), 30 ... storage battery (battery), 31 ... changeover switch, 32 ... output reactor, 33 ... filter, 34 ... transformer, 35 ... DC voltage command value , 38, 39 ... Work determiner, 40 ... effective value computing unit, 42 ... phase corrector, 43, 44 ... reactor current (detector).

Claims (4)

通常時には並列接続された複数の半導体遮断器を介して交流電力系統から負荷に電力を供給し、交流電力系統が異常になったときは前記半導体遮断器を解列して蓄電機能を持つ複数の変換器から電力を供給する交流電源システムにおいて、
前記各半導体遮断器の系統側および負荷側にそれぞれ交流リアクトルを挿入するとともに、各半導体遮断器と負荷側交流リアクトルとの間にそれぞれ電力変換器を接続したことを特徴とする交流電源システム。
Normally, power is supplied to the load from the AC power system through a plurality of semiconductor circuit breakers connected in parallel, and when the AC power system becomes abnormal, the semiconductor circuit breaker is disconnected and a plurality of power storage functions are provided. In an AC power supply system that supplies power from a converter,
An AC power supply system, wherein an AC reactor is inserted on each of the system breaker side and the load side of each semiconductor breaker, and a power converter is connected between each semiconductor breaker and the load side AC reactor.
前記各電力変換器は、前記半導体遮断器のオン電圧のばらつきによる電流アンバランスを、前記各電力変換器から無効電流を流すことで平衡化することを特徴とする請求項1に記載の交流電源システム。   2. The AC power supply according to claim 1, wherein each of the power converters balances a current imbalance caused by a variation in an ON voltage of the semiconductor circuit breaker by flowing a reactive current from each of the power converters. system. 通常時には並列接続された複数の半導体遮断器を介して交流電力系統から負荷に電力を供給し、交流電力系統が異常になったときは前記半導体遮断器を解列して蓄電機能を持つ複数の変換器から電力を供給する交流電源システムにおいて、
前記各半導体遮断器の負荷側にそれぞれ交流リアクトルを挿入するとともに、この負荷側交流リアクトルと半導体遮断器との間にそれぞれ電力変換器を接続し、この電力変換器の直流回路を互いに接続したことを特徴とする交流電源システム。
Normally, power is supplied to the load from the AC power system through a plurality of semiconductor circuit breakers connected in parallel, and when the AC power system becomes abnormal, the semiconductor circuit breaker is disconnected and a plurality of power storage functions are provided. In an AC power supply system that supplies power from a converter,
An AC reactor was inserted on the load side of each semiconductor breaker, a power converter was connected between the load side AC reactor and the semiconductor breaker, and the DC circuits of the power converter were connected to each other. AC power supply system characterized by
前記各電力変換器は、前記半導体遮断器のオン電圧のばらつきによる電流アンバランス分を、前記各電力変換器間に流すことで平衡化することを特徴とする請求項3に記載の交流電源システム。   4. The AC power supply system according to claim 3, wherein each of the power converters is balanced by flowing a current unbalance due to a variation in an on-voltage of the semiconductor circuit breaker between the power converters. .
JP2008280069A 2008-10-30 2008-10-30 Ac power supply system Pending JP2010110120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008280069A JP2010110120A (en) 2008-10-30 2008-10-30 Ac power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008280069A JP2010110120A (en) 2008-10-30 2008-10-30 Ac power supply system

Publications (1)

Publication Number Publication Date
JP2010110120A true JP2010110120A (en) 2010-05-13

Family

ID=42299009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008280069A Pending JP2010110120A (en) 2008-10-30 2008-10-30 Ac power supply system

Country Status (1)

Country Link
JP (1) JP2010110120A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179186A1 (en) * 2016-04-15 2017-10-19 東芝三菱電機産業システム株式会社 Uninterruptible power source device
JP2020014318A (en) * 2018-07-18 2020-01-23 株式会社日立製作所 Uninterruptible power supply
CN111009957A (en) * 2019-12-09 2020-04-14 深圳供电局有限公司 Parallel uninterrupted power supply
WO2022020982A1 (en) * 2020-07-25 2022-02-03 华为数字能源技术有限公司 Non-current-sharing ups apparatus, shunting method, and ups parallel connection system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05336683A (en) * 1992-05-28 1993-12-17 Nippon Electric Ind Co Ltd Building block type ups
JPH08205544A (en) * 1995-01-25 1996-08-09 Nippon Electric Ind Co Ltd Inverter for intermediate and large capacity ups system and operation control method therefor
JP2004343908A (en) * 2003-05-16 2004-12-02 Densei Lambda Kk Uninterruptible power supply system and parallel operation method for uninterruptible power supply device
JP2005333775A (en) * 2004-05-21 2005-12-02 Sanken Electric Co Ltd Ac power supply
JP2006014444A (en) * 2004-06-24 2006-01-12 Fuji Electric Holdings Co Ltd Parallel operation device of power supply apparatus having bypass circuit
JP2008092734A (en) * 2006-10-04 2008-04-17 Sanken Electric Co Ltd Ac power supply unit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05336683A (en) * 1992-05-28 1993-12-17 Nippon Electric Ind Co Ltd Building block type ups
JPH08205544A (en) * 1995-01-25 1996-08-09 Nippon Electric Ind Co Ltd Inverter for intermediate and large capacity ups system and operation control method therefor
JP2004343908A (en) * 2003-05-16 2004-12-02 Densei Lambda Kk Uninterruptible power supply system and parallel operation method for uninterruptible power supply device
JP2005333775A (en) * 2004-05-21 2005-12-02 Sanken Electric Co Ltd Ac power supply
JP2006014444A (en) * 2004-06-24 2006-01-12 Fuji Electric Holdings Co Ltd Parallel operation device of power supply apparatus having bypass circuit
JP2008092734A (en) * 2006-10-04 2008-04-17 Sanken Electric Co Ltd Ac power supply unit

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179186A1 (en) * 2016-04-15 2017-10-19 東芝三菱電機産業システム株式会社 Uninterruptible power source device
CN109075604A (en) * 2016-04-15 2018-12-21 东芝三菱电机产业系统株式会社 Uninterrupted power supply
CN109075604B (en) * 2016-04-15 2021-12-07 东芝三菱电机产业系统株式会社 Uninterruptible power supply device
JP2020014318A (en) * 2018-07-18 2020-01-23 株式会社日立製作所 Uninterruptible power supply
JP7100519B2 (en) 2018-07-18 2022-07-13 株式会社日立インダストリアルプロダクツ Uninterruptible power system
CN111009957A (en) * 2019-12-09 2020-04-14 深圳供电局有限公司 Parallel uninterrupted power supply
CN111009957B (en) * 2019-12-09 2021-12-07 深圳供电局有限公司 Parallel uninterrupted power supply
WO2022020982A1 (en) * 2020-07-25 2022-02-03 华为数字能源技术有限公司 Non-current-sharing ups apparatus, shunting method, and ups parallel connection system

Similar Documents

Publication Publication Date Title
JP6147363B2 (en) Power converter
US10826378B2 (en) Power conversion apparatus for interconnection with a three-phrase ac power supply
TWI554005B (en) Uninterruptible power supply device
KR101804469B1 (en) UPS having 3 Phase 4 wire inverter with 3-leg
JP2008141887A (en) Instantaneous voltage drop compensation circuit, power converting device, instantaneous voltage drop compensation method and instantaneous voltage drop compensation program
JP6030263B1 (en) Power interconnection device for grid connection and output current control method thereof
US9337657B2 (en) Power unit control system
JP5367252B2 (en) AC voltage control method
KR101806595B1 (en) Apparatus for controlling inverter
JPH0336930A (en) Three-phase converter
JP2010110120A (en) Ac power supply system
WO2016163066A1 (en) Power conversion device
JP5961932B2 (en) Electric power leveling device
JP2001047894A (en) Alternate current feeding device and control method for the same
TWI505597B (en) Micro-grid operation system with smart energy management
JP4034458B2 (en) Self-excited AC / DC converter control device and circuit breaker circuit control device
US20190214918A1 (en) Power supply system
JP4400442B2 (en) Parallel operation control method for uninterruptible power supply
Biel et al. Control strategy for parallel-connected three-phase inverters
JP2006311725A (en) Controller for power converter
JP4612342B2 (en) Power conversion device and superconducting power storage device
Pranith et al. Multimode controller design for DSTATCOM integrated with battery energy storage for smart grid applications
Kolhatkar et al. An optimum UPQC with minimum VA requirement and mitigation of unbalanced voltage sag
WO2018020666A1 (en) Power conversion device and control method therefor
CN117916994A (en) Power conversion device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130730