JP5961932B2 - Electric power leveling device - Google Patents

Electric power leveling device Download PDF

Info

Publication number
JP5961932B2
JP5961932B2 JP2011139297A JP2011139297A JP5961932B2 JP 5961932 B2 JP5961932 B2 JP 5961932B2 JP 2011139297 A JP2011139297 A JP 2011139297A JP 2011139297 A JP2011139297 A JP 2011139297A JP 5961932 B2 JP5961932 B2 JP 5961932B2
Authority
JP
Japan
Prior art keywords
power
command
converter
block
reactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011139297A
Other languages
Japanese (ja)
Other versions
JP2013009481A (en
Inventor
洋一郎 中島
洋一郎 中島
伊東 洋一
洋一 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2011139297A priority Critical patent/JP5961932B2/en
Publication of JP2013009481A publication Critical patent/JP2013009481A/en
Application granted granted Critical
Publication of JP5961932B2 publication Critical patent/JP5961932B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、系統連系点における電力変動を補償する電力平準化装置に関するものである。   The present invention relates to a power leveling device that compensates for power fluctuations at a grid connection point.

近年、太陽光発電装置や風力発電装置等の自然エネルギーを利用した分散型電源の導入が進んでおり、これら分散型電源は、安定な電力供給を行うために商用電力系統に接続される。しかし、自然エネルギーの発電では、一般に発電量が安定せずに、系統側の電力変動が大きくなることがある。そして、電力変動が大きくなって系統不安定状態となると、大規模停電を引き起こす虞があることから、そのような状態を防止するために、各種の技術が提案されている。   In recent years, distributed power sources using natural energy such as solar power generation devices and wind power generation devices have been introduced, and these distributed power sources are connected to a commercial power system in order to supply stable power. However, in the case of natural energy power generation, in general, the power generation amount is not stable, and the power fluctuation on the grid side may become large. And if electric power fluctuation becomes large and it will be in a system unstable state, since there exists a possibility of causing a large-scale power failure, various techniques are proposed in order to prevent such a state.

例えば、分散型電源と併用して、バッテリ等のエネルギー蓄積要素と、半導体スイッチング素子を使用した電力変換器を用いた電力平準化装置を導入し、電力供給の安定化を図っている。また、有効電力だけでなく、無効電力の制御も行い、電力系統の過渡安定度向上を図っている。より具体的な例としては、風力発電や太陽光発電のような自然エネルギー発電の設備の電力系統にそれぞれ鉛蓄電池を有する複数のパワーコンディショナ(PCS)を接続した技術がある(例えば、特許文献1参照)。この技術では、それらパワーコンディショナを順次選択し鉛蓄電池を満充電とするために、システムとしての必要容量の電力平準化を保ちながら1台ずつ周期的に順次満充電とするように制御されている。また別の技術として、重要負荷に電力供給を行う商用電力系統の給電ラインが停電した場合に、蓄電池及び太陽電池により重要負荷に電力を継続供給する技術も開示されている(例えば、特許文献2参照)。   For example, in combination with a distributed power source, an energy storage element such as a battery and a power leveling device using a power converter using a semiconductor switching element are introduced to stabilize power supply. In addition to active power, reactive power is also controlled to improve the transient stability of the power system. As a more specific example, there is a technology in which a plurality of power conditioners (PCS) each having a lead storage battery are connected to an electric power system of a natural energy power generation facility such as wind power generation or solar power generation (for example, Patent Documents). 1). In this technology, in order to select those power conditioners in order and to fully charge the lead-acid battery, it is controlled so as to be sequentially fully charged one by one while maintaining the power level of the required capacity as a system. Yes. As another technique, there is also disclosed a technique for continuously supplying power to an important load by a storage battery and a solar battery when a power supply line of a commercial power system that supplies power to the important load fails (for example, Patent Document 2). reference).

ここで、電力平準化処理について説明する。図6は、三相電源システムにおける電力平準化装置50のシステム構成図である。   Here, the power leveling process will be described. FIG. 6 is a system configuration diagram of the power leveling device 50 in the three-phase power supply system.

通常では、電力平準化装置50は、分散型電源6で発電した電力を、需要家の重要負荷7に供給しつつ、余剰となった電力を商用電力系統1側へ回生する。ただし、系統連系点3での電力潮流の変動が大きい場合は、上述のように系統側(商用電力系統1側)を不安定にさせてしまう虞があるので、なるべく系統連系点3での電力潮流を平準化させる必要がある。そこで、重要負荷接続点9aにおける電圧検出部9で検出した電圧と、重要負荷電流検出器11で検出した重要負荷7へ流れ込む電流と、電力変換器電流検出器10で検出した電力変換器12へ流れ込む電流とを検出して、制御装置14にて重要負荷7側及び電力変換器12側それぞれの有効電力と無効電力を求めて、電力指令値(有効電力指令Pref及び無効電力指令Qref)に追従するように電力変換器12を制御することで系統連系点3の電力平準化を図ることがなされている。 Normally, the power leveling device 50 regenerates surplus power to the commercial power system 1 side while supplying the power generated by the distributed power source 6 to the important load 7 of the consumer. However, when the fluctuation of the power flow at the grid connection point 3 is large, the grid side (commercial power grid 1 side) may be unstable as described above. It is necessary to level the power flow of Therefore, the voltage detected by the voltage detection unit 9 at the important load connection point 9 a, the current flowing into the important load 7 detected by the important load current detector 11, and the power converter 12 detected by the power converter current detector 10. The control device 14 detects the current flowing in and obtains the active power and reactive power on the important load 7 side and the power converter 12 side, respectively, and outputs power command values (active power command P ref and reactive power command Q ref ). By controlling the power converter 12 so as to follow the power level, power leveling at the grid connection point 3 is attempted.

商用電力系統1側で停電が発生した場合、停電検出ブロック15が停電を検出する。さらに、停電検出ブロック15は停電検出を制御装置14に通知し、高速SW8を開放する。電力変換器12は、エネルギー蓄積要素13に蓄積された電力を用いたUPS(Uninterruptible Power Supply)動作となり、重要負荷7に対して電力供給を行う。その後、非常用発電機5が立ち上がり電力供給可能な状態になると電力平準化装置50は非常用発電機5の電力変動をアシストする動作に代わる。   When a power failure occurs on the commercial power system 1 side, the power failure detection block 15 detects the power failure. Further, the power failure detection block 15 notifies the control device 14 of the power failure detection and opens the high-speed SW 8. The power converter 12 performs a UPS (Uninterruptible Power Supply) operation using the power stored in the energy storage element 13 and supplies power to the important load 7. Thereafter, when the emergency generator 5 rises and can supply power, the power leveling device 50 replaces the operation of assisting the power fluctuation of the emergency generator 5.

特開2008−72774号公報JP 2008-72774 A 特開2011−10412号公報JP 2011-10412 A

ところで、これら一連の動作の中で、停電検出が重要となるが、電力平準化装置50から商用電力系統1側に電力回生した場合、系統連系点3で商用電力系統1側からの電力供給が0となると、系統連系点3での停電検出が困難となる。その結果、商用電力系統1と切り離された状態において、連系している発電設備の運転だけで負荷に電力供給するいわゆる単独運転状態となる。単独運転状態が継続すると、保守点検の際に点検者に感電等の問題が生じる。このため、商用電力系統1側へ電力回生する機能を有する装置では、単独運転検出機能を設けることが義務付けられている。従来の単独運転検出法として、太陽光パワーコンディショナ等に用いられている周波数シフト方式や無効電力変動方式がある。ただし、一般的なパワーコンディショナでは有効電力と無効電力補償機能はない。一方で、電力平準化装置50では、有効電力と無効電力の補償機能が備わる。このため、周波数シフト方式では、電力平準化装置50と一般負荷4との電力需給が完全にバランスすると、上記のように商用電力系統1からの電力供給が0になる状態となって、単独運転を検出できないという課題があった。また、無効電力変動方式では、無効電力制御に外乱を与えてしまうため、大きな無効電力変動を加えられず単独運転検出感度が悪くなるという課題があった。   By the way, power failure detection is important in these series of operations, but when power is regenerated from the power leveling device 50 to the commercial power system 1 side, power is supplied from the commercial power system 1 side at the grid connection point 3. When 0 becomes 0, it becomes difficult to detect a power failure at the grid connection point 3. As a result, in a state disconnected from the commercial power system 1, a so-called single operation state in which electric power is supplied to the load only by operation of the power generation facility connected to the commercial power system 1 is obtained. If the islanding state continues, problems such as electric shock occur to the inspector during maintenance inspection. For this reason, an apparatus having a function of regenerating power to the commercial power system 1 side is obliged to provide an isolated operation detection function. As a conventional isolated operation detection method, there are a frequency shift method and a reactive power fluctuation method that are used in solar power conditioners and the like. However, a general power conditioner does not have an active power and reactive power compensation function. On the other hand, the power leveling device 50 has a compensation function for active power and reactive power. For this reason, in the frequency shift method, when the power supply and demand between the power leveling device 50 and the general load 4 is completely balanced, the power supply from the commercial power system 1 becomes 0 as described above, and the single operation is performed. There was a problem that cannot be detected. In addition, the reactive power fluctuation method has a problem in that the reactive power control is disturbed, so that a large reactive power fluctuation cannot be applied and the isolated operation detection sensitivity is deteriorated.

本発明の目的は、有効電力と無効電力の補償機能を備えた電力平準化装置において、完全に商用電力系統からの電力供給がない状態でも単独運転検出が可能な技術を提供することにある。   An object of the present invention is to provide a technique capable of detecting an isolated operation even in a state where no power is supplied from a commercial power system in a power leveling apparatus having a compensation function for active power and reactive power.

本発明の電力平準化装置は、商用電力系統と重要負荷及び分散型電源とを接続するスイッチと、前記スイッチと前記重要負荷及び前記分散型電源との接続ラインに、交流側が接続される交流直流変換器と、前記交流直流変換器の直流側に接続されるエネルギー蓄積要素と、前記スイッチと前記重要負荷及び前記分散型電源との接続ラインの電圧を検出する電圧検出部と、前記重要負荷に流れる電流を検出する第1電流検出部と、前記交流直流変換器の交流側に流れる電流を検出する第2電流検出部と、前記電圧検出部、前記第1電流検出部及び前記第2電流検出部からの各検出値を入力して算出した前記交流直流変換器及び前記重要負荷のそれぞれの有効電力及び無効電力を、それぞれに対応する有効電力指令及び無効電力指令に一致するように前記交流直流変換器を制御する制御装置と、を備え、前記制御装置は、前記商用電力系統との連系点の周波数を変化させ、単独運転をPLL回路を用いて能動的に検出する能動検出部及びPLL回路を用いて受動的に検出する受動検出部を備える単独運転検出部と、前記交流直流変換器の無効電力指令に対して、所定の変動幅で周期的に変動する信号を付加する無効電力変動指令部とを備え、前記分散型電源と前記商用電力系統の電力供給がバランスして、前記商用電力系統との前記連系点での前記商用電力系統からの電力供給が実質的に無い場合に、前記無効電力変動指令部の指令に起因した周波数変化に基づいて、単独運転を検出する。
また、前記制御装置は、前記単独運転を検出すると、前記商用電力系統に停電が発生したと判定し、前記スイッチを開放して前記重要負荷に前記エネルギー蓄積要素からの電力供給となるよう前記交流直流変換器を制御してもよい。
The power leveling apparatus according to the present invention includes a switch for connecting a commercial power system, an important load and a distributed power source, and an AC / DC connected to an AC side of a connection line between the switch, the important load and the distributed power source. A converter, an energy storage element connected to a DC side of the AC / DC converter, a voltage detection unit for detecting a voltage of a connection line between the switch, the important load and the distributed power source, and the important load. A first current detecting unit for detecting a flowing current; a second current detecting unit for detecting a current flowing on an AC side of the AC / DC converter; the voltage detecting unit; the first current detecting unit; and the second current detecting unit. The active power and reactive power of the AC / DC converter and the important load calculated by inputting the detected values from the unit coincide with the corresponding active power command and reactive power command, respectively. Wherein and a control device for controlling the AC-DC converter, the control device, active said changing the frequency of the interconnection point of the commercial power system, to actively detect the islanding operation by using the PLL circuit An independent operation detection unit including a detection unit and a passive detection unit that passively detects using a PLL circuit, and a signal that periodically fluctuates within a predetermined fluctuation range are added to the reactive power command of the AC / DC converter. A reactive power fluctuation command unit that balances the power supply of the distributed power source and the commercial power system, so that the power supply from the commercial power system at the interconnection point with the commercial power system is substantially If not, an isolated operation is detected based on a frequency change resulting from the command of the reactive power fluctuation command unit.
Further, when detecting the isolated operation, the control device determines that a power failure has occurred in the commercial power system, and opens the switch to supply power to the important load from the energy storage element. The direct current converter may be controlled.

本発明によれば、有効電力と無効電力の補償機能を備えた電力平準化装置において、完全に商用電力系統からの電力供給がない状態でも単独運転検出が可能な技術を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, in the power leveling apparatus provided with the compensation function of active power and reactive power, the technique which can detect an isolated operation even in the state without the power supply from a commercial power system completely can be provided.

本発明の実施形態に係る、電力平準化装置のシステム構成図である。1 is a system configuration diagram of a power leveling device according to an embodiment of the present invention. 本発明の実施形態に係る、制御装置のブロック図である。It is a block diagram of a control device concerning an embodiment of the present invention. 本発明の実施形態に係る、能動検出PLLブロックのブロック図である。2 is a block diagram of an active detection PLL block according to an embodiment of the present invention. FIG. 本発明の実施形態に係る、受動検出PLLブロックのブロック図である。2 is a block diagram of a passive detection PLL block according to an embodiment of the present invention. FIG. 本発明の実施形態に係る、無効電力指令値の変動量を示す図である。It is a figure which shows the variation | change_quantity of the reactive power command value based on embodiment of this invention. 従来技術に係る、電力平準化装置のシステム構成図である。It is a system configuration | structure figure of the power leveling apparatus based on a prior art.

以下に、本発明の好適な実施形態を図面を参照して説明する。
本実施形態の三相電源システムにおける電力平準化装置50aの概略の構成は、図1で示した構成と類似の構成で実現できるので、同一の構成要素には同一符号を付して説明する。異なる点は、電力平準化装置50aと一般負荷4との電力需給が完全にバランスして商用電力系統1からの電力供給が0になる状態となった場合でも、単独運転検出を実現した点にあり、その結果として、従来の停電検出信号を用いずに、つまり、停電検出ブロック15を省いた構成で停電検出機能を実現した点にある。
In the following, preferred embodiments of the present invention will be described with reference to the drawings.
Since the schematic configuration of the power leveling device 50a in the three-phase power supply system of the present embodiment can be realized by a configuration similar to the configuration shown in FIG. 1, the same components are described with the same reference numerals. The difference is that even when the power supply and demand between the power leveling device 50a and the general load 4 is perfectly balanced and the power supply from the commercial power system 1 becomes zero, the independent operation detection is realized. As a result, the power failure detection function is realized without using the conventional power failure detection signal, that is, without the power failure detection block 15.

電力平準化装置50aは、系統連系点3において、商用電力系統1や非常用発電機5、一般負荷4に接続される。また、重要負荷接続点9aで分散型電源6及び重要負荷7に接続される。分散型電源6は、需要家によって発電される発電設備であって、例えば、風力発電や太陽光発電等の自然エネルギー発電設備や、燃料電池発電設備である。上述の通り、商用電力系統1と系統連系点3の間には、商用電力系統1での停電発生時に、解列するための連系点CB2が配置されている。なお、本実施形態では、従来技術のように系統連系点3で停電を検出するのはなく、単独運転を検出することによって停電と判断する。   The power leveling device 50 a is connected to the commercial power system 1, the emergency generator 5, and the general load 4 at the grid connection point 3. Further, it is connected to the distributed power source 6 and the important load 7 at the important load connection point 9a. The distributed power source 6 is a power generation facility that generates electricity by a consumer, and is, for example, a natural energy power generation facility such as wind power generation or solar power generation, or a fuel cell power generation facility. As described above, between the commercial power system 1 and the grid connection point 3, the grid connection point CB <b> 2 for disconnecting when a power failure occurs in the commercial power system 1 is arranged. In this embodiment, a power failure is not detected at the grid connection point 3 as in the prior art, but a power failure is determined by detecting an isolated operation.

電力平準化装置50aは、高速SW8と、電力変換器12と、エネルギー蓄積要素13と、制御装置14aとを備えている。さらに、電力平準化装置50aは、電圧検出部9と、電力変換器電流検出器10と、重要負荷電流検出器11とを備える。電圧検出部9は、重要負荷接続点9aに配置され、重要負荷接続点9aの電圧(V,V,V)を検出し、制御装置14aへ通知する。電力変換器電流検出器10は、重要負荷接続点9aと電力変換器12の間の経路に配置され、その経路の電流値(I,I,I)を検出し、制御装置14aへ通知する。同様に、重要負荷電流検出器11は、重要負荷接続点9aと重要負荷7との間の経路に配置され、その経路の電流値(Iul,Ivl,Iwl)を検出し、制御装置14aへ通知する。 The power leveling device 50a includes a high-speed SW 8, a power converter 12, an energy storage element 13, and a control device 14a. Furthermore, the power leveling device 50 a includes a voltage detection unit 9, a power converter current detector 10, and an important load current detector 11. The voltage detection unit 9 is disposed at the important load connection point 9a, detects the voltage (V r , V s , V t ) at the important load connection point 9a, and notifies the control device 14a of the voltage. The power converter current detector 10 is arranged in a path between the important load connection point 9a and the power converter 12, detects a current value (I u , I v , I w ) of the path, and sends it to the control device 14a. Notice. Similarly, the important load current detector 11 is arranged in a path between the important load connection point 9a and the important load 7, detects a current value (I ul , I vl , I wl ) of the path, and controls the control device. 14a is notified.

エネルギー蓄積要素13は、例えば、鉛蓄電池等のような二次電池である。電力変換器12は、交流電力と直流電力とを相互に変換可能な交流直流変換器である。そして、商用電力系統1や分散型電源6と、エネルギー蓄積要素13とは、電力変換器12を介して接続されている。制御装置14aは、電力変換器12の動作を制御するとともに、商用電力系統1の停電発生を検知する。   The energy storage element 13 is a secondary battery such as a lead storage battery, for example. The power converter 12 is an AC / DC converter that can convert AC power and DC power into each other. The commercial power system 1 and the distributed power source 6 and the energy storage element 13 are connected via the power converter 12. The control device 14 a controls the operation of the power converter 12 and detects the occurrence of a power failure in the commercial power system 1.

図2は、制御装置14aのブロック図を示す。図示のように、制御装置14aは、図2(a)に示す電力演算ブロック101と、図2(b)に示す能動検出PLLブロック102及び受動検出PLLブロック103と、図2(c)に示す制御信号生成ブロック130とを備えている。詳細は後述するが、本実施形態の制御装置14aは、図2(b)に示すように、能動検出PLLブロック102及び受動検出PLLブロック103の出力の単独運転検出判定論理和回路104より、単独運転検出を行う。さらに、制御装置14aは、単独運転検出判定論理和回路104における単独運転検出によって、商用電力系統1に停電が発生したと判断する。なお、単独運転検出の受動検出方式として、例えば、電圧位相跳躍検出方式や周波数変化率検出方式等がある。能動検出方式として、例えば、出力電圧変動検出方式や周波数シフト検出方式などがある。本実施形態では、受動検出方式として電圧位相跳躍検出方式について、能動検出方式として出力電圧変動検出方式について例示する。   FIG. 2 shows a block diagram of the control device 14a. As illustrated, the control device 14a includes a power calculation block 101 illustrated in FIG. 2A, an active detection PLL block 102 and a passive detection PLL block 103 illustrated in FIG. 2B, and a control unit 14a illustrated in FIG. And a control signal generation block 130. Although details will be described later, the control device 14a according to the present embodiment is independent from the isolated operation detection determination OR circuit 104 of the outputs of the active detection PLL block 102 and the passive detection PLL block 103, as shown in FIG. Run detection. Further, the control device 14 a determines that a power failure has occurred in the commercial power system 1 by the isolated operation detection in the isolated operation detection logical sum circuit 104. In addition, as a passive detection method for detecting an isolated operation, for example, there are a voltage phase jump detection method, a frequency change rate detection method, and the like. Examples of the active detection method include an output voltage fluctuation detection method and a frequency shift detection method. In the present embodiment, a voltage phase jump detection method is exemplified as a passive detection method, and an output voltage fluctuation detection method is exemplified as an active detection method.

図2(a)に示すように、制御装置14aの電力演算ブロック101は、電圧検出部9で検出された電圧(V,V,V)及び重要負荷電流検出器11で検出された電流値(Iul,Ivl,Iwl)を用いて、重要負荷7の有効電力PLOAD、無効電力QLOADを演算する。さらに、制御装置14aは、電圧検出部9で検出された電圧(V,V,V)及び電力変換器電流検出器10で検出された電流値(I,I,I)を用いて、電力変換器12の有効電力PINV、無効電力QINVを演算する。 As shown in FIG. 2A, the power calculation block 101 of the control device 14a is detected by the voltage (V r , V s , V t ) detected by the voltage detector 9 and the important load current detector 11. Using the current values (I ul , I vl , I wl ), the active power P LOAD and reactive power Q LOAD of the important load 7 are calculated. Furthermore, the control device 14a uses the voltage (V r , V s , V t ) detected by the voltage detector 9 and the current value (I u , I v , I w ) detected by the power converter current detector 10. Is used to calculate the active power P INV and reactive power Q INV of the power converter 12.

そして、図2(c)に示すように、制御装置14aの制御信号生成ブロック130では、図示しない上位コントローラ(外部機器)からの電力変換器12への有効電力指令Prefと無効電力指令Qrefに追従するよう、無効電力偏差演算器108及び有効電力偏差演算器112で、それぞれ有効電力PINV及び無効電力QINVとの偏差が演算される。なお、無効電力指令Qrefについては、後述する無効電力変動指令処理が付加されている。そして、それら偏差をもとに、無効電力PI制御ブロック109及び有効電力PI制御ブロック113によってPI制御がなされる。その後、無効電力指令リミッタ110及び有効電力指令リミッタ114でリミット処理がなされ、無効電流指令演算ゲイン111及び有効電流指令演算ゲイン115でゲイン処理がなされ、有効電流指令Iprefと無効電流指令Iqrefが得られる。なお、上位コントローラからの各指令(Pref,Qref)が電力変換器12ではなく、系統連系点3の各指令であった場合は、制御装置14aは、先に述べた重要負荷7の有効電力PLOADと無効電力QLOADを減算して電力変換器12の各指令(Pref,Qref)に換算を行う。 As shown in FIG. 2 (c), in the control signal generation block 130 of the control device 14a, the active power command P ref and the reactive power command Q ref to the power converter 12 from a host controller (external device) (not shown). The reactive power deviation calculator 108 and the active power deviation calculator 112 calculate deviations from the active power P INV and the reactive power Q INV , respectively. Reactive power fluctuation command processing described later is added to reactive power command Q ref . Based on these deviations, PI control is performed by the reactive power PI control block 109 and the active power PI control block 113. Thereafter, the reactive power command limiter 110 and the active power command limiter 114 perform limit processing, the reactive current command calculation gain 111 and the active current command calculation gain 115 perform gain processing, and the active current command I pref and the reactive current command I qref are can get. When each command (P ref , Q ref ) from the host controller is not the power converter 12 but each command at the grid connection point 3, the control device 14 a determines the important load 7 described above. The active power P LOAD and the reactive power Q LOAD are subtracted to convert each command (P ref , Q ref ) of the power converter 12.

有効電流指令Iprefと無効電流指令Iqrefは、座標変換ブロック116で回転座標変換がなされ、U相電流指令IurefとW相電流指令Iwrefが得られる。変換時に使用する位相として、単独運転の能動検出機能付きのPLLブロックである能動検出PLLブロック102で生成した同期位相θPLL1が用いられる。そして、U相電流偏差演算器117及びW相電流偏差演算器119で、U相電流iとW相電流iの偏差が演算される。その演算結果をもとに、U相電流PI制御ブロック118及びW相電流PI制御ブロック120でPI制御がそれぞれなされ、U相、V相、W相の各相電圧指令値(Vuref,Vvref,Vwref)が演算される。V相の電圧指令値Vvrefは、U相及びW相の各相電圧指令値(Vuref,Vwref)をもとにV相電圧指令演算器121で演算される。それら、U相、V相、W相の各相電圧指令値(Vuref,Vvref,Vwref)をもとに、PWMゲート信号生成器122においてPWMゲート信号が生成され、電力変換器12の制御がなされる。 The effective current command I pref and the reactive current command I qref are subjected to rotational coordinate conversion by the coordinate conversion block 116, and a U-phase current command I uref and a W-phase current command I wref are obtained. As a phase used at the time of conversion, a synchronous phase θ PLL1 generated by an active detection PLL block 102 which is a PLL block with an active detection function for single operation is used. Then, the U-phase current deviation calculator 117 and W-phase current deviation calculator 119, the deviation of the U-phase current i u and the W-phase current i w is calculated. Based on the calculation results, PI control is performed by the U-phase current PI control block 118 and the W-phase current PI control block 120, and the U-phase, V-phase, and W-phase voltage command values (V uref , V vref). , V wref ) is calculated. The V-phase voltage command value V vref is calculated by the V-phase voltage command calculator 121 based on the U-phase and W-phase voltage command values (V uref , V wref ). A PWM gate signal is generated in the PWM gate signal generator 122 based on the U-phase, V-phase, and W-phase voltage command values (V uref , V vref , V wref ). Control is made.

電力平準化装置50aにおいて、商用電力系統1からの電力供給が0になった場合、電力変換器12は単独運転状態となるが、本実施形態では、図2の能動検出PLLブロック102及び受動検出PLLブロック103による並列処理に加え、無効電力変動指令部(無効電力変動指令105、無効電力変動指令加算器106)及びLPF107に示す無効電力変動指令処理を行う。この処理によって、検出感度が高く、誤検出による不要動作を起こさない単独運転検出方式を実現できる。以下に各ブロックの動作を説明する。   In the power leveling device 50a, when the power supply from the commercial power system 1 becomes zero, the power converter 12 is in an independent operation state. In this embodiment, the active detection PLL block 102 and the passive detection in FIG. In addition to parallel processing by the PLL block 103, reactive power fluctuation command processing (reactive power fluctuation command 105, reactive power fluctuation command adder 106) and reactive power fluctuation command processing shown in the LPF 107 are performed. By this processing, it is possible to realize an isolated operation detection system that has high detection sensitivity and does not cause unnecessary operation due to erroneous detection. The operation of each block will be described below.

始めに、能動検出PLLブロック102の構成及び能動方式の単独運転検出動作を説明する。図3は、図2(b)の能動検出PLLブロック102の詳細図を示す。基本となる位相同期ブロック207によるPLL処理は、従来方式と同様に回転座標変換したq軸電圧を0に同期させる方式である。なお、演算に使用するのがq軸電圧のみのため、回転座標変換は、q軸電圧演算ブロック201にて以下の式(図3では式(1)と表記する)を用いて行う。この式のθPLLには、能動方式のときにθPLL1を用い、受動方式のときにθPLL2を用いる。 First, the configuration of the active detection PLL block 102 and the active single operation detection operation will be described. FIG. 3 shows a detailed view of the active detection PLL block 102 of FIG. The PLL processing by the basic phase synchronization block 207 is a method of synchronizing the q-axis voltage obtained by rotating coordinate conversion to 0 as in the conventional method. Since only the q-axis voltage is used for the calculation, the rotation coordinate conversion is performed in the q-axis voltage calculation block 201 using the following expression (denoted as expression (1) in FIG. 3). As the θ PLL in this equation, θ PLL1 is used in the active method, and θ PLL2 is used in the passive method.

Vq={−2sinθPLL×V+(sinθPLL+√3cosθPLL)×V+(sinθPLL−√3cosθPLL)×V}/√6 ・・・式(1) Vq = {- 2sinθ PLL × V r + (sinθ PLL + √3cosθ PLL) × V s + (sinθ PLL -√3cosθ PLL) × V t} / √6 ··· Equation (1)

その後、電圧ノミナル化ゲイン202を用いて、電圧実効値(200V)で除算する。そして、位相同期PIブロック203で補償角周波数を演算し、基本周波数加算器204にて50Hzないし60Hz相当の角周波数を加算し、積分器205で積算した値に外乱周波数を外乱周波数加算器206にて加算した値を同期位相θPLL1とする。ここで求めた同期位相θPLL1は、式(1)の演算に用いる他、電力制御の回転座標変換(座標変換ブロック116)においても使用される。 Thereafter, the voltage nominal gain 202 is used to divide by the effective voltage value (200 V). Then, the compensation angular frequency is calculated by the phase synchronization PI block 203, the angular frequency corresponding to 50 Hz to 60 Hz is added by the basic frequency adder 204, and the disturbance frequency is added to the value integrated by the integrator 205 to the disturbance frequency adder 206. The value added in this manner is defined as a synchronization phase θ PLL1 . The synchronization phase θ PLL1 obtained here is used not only for the calculation of the equation (1) but also for the rotation coordinate transformation (coordinate transformation block 116) for power control.

外乱周波数の生成は、位相同期PIブロック203から出力される補償角周波数を高域側ローパスフィルタ(LPF1)208と低域側ローパスフィルタ(LPF2)209で構成したBPFブロック210で特定周波数帯域成分を抽出した後、外乱周波数ゲイン(KP2)212でゲイン倍処理をし、更に外乱周波数リミッタ213でリミット処理された後、外乱周波数加算器206にて同期位相に加算される。なお、この外乱周波数が大きいと周波数の乱れが大きくなることから、単独運転検出が可能な限り、外乱周波数ゲインは大きくせず(基本はゲイン1倍)、リミット値も基本位相の数%程度でリミットするようにしておく。   The disturbance frequency is generated by using a BPF block 210 in which the compensation angular frequency output from the phase-synchronized PI block 203 is composed of a high-frequency low-pass filter (LPF1) 208 and a low-frequency low-pass filter (LPF2) 209. After the extraction, the gain is multiplied by the disturbance frequency gain (KP2) 212, further limited by the disturbance frequency limiter 213, and added to the synchronization phase by the disturbance frequency adder 206. If the disturbance frequency is large, the frequency disturbance increases, so as long as the isolated operation can be detected, the disturbance frequency gain is not increased (the gain is 1 times the basic value), and the limit value is about several percent of the basic phase. Try to limit.

そして、単独運転検出部の動作は、前出のBPFブロック210の出力を検出感度ゲイン211でゲイン倍し、更に絶対値ブロック215で絶対値化した値と、検出基準値214を比較器216で比較し、検出基準値214を越えたときに能動方式での単独運転検出信号を出力する。なお、検出感度を高めるため、検出感度ゲイン211は、任意に可変できるようにしている。また、比較器216では、1回の比較で判定せず、連続回数による判定条件を設け、通常動作中の単独運転誤検出による不要動作を防止している。   The operation of the isolated operation detection unit is performed by multiplying the output of the BPF block 210 by the detection sensitivity gain 211 and further converting the absolute value by the absolute value block 215 and the detection reference value 214 by the comparator 216. In comparison, when the detection reference value 214 is exceeded, an isolated operation detection signal in the active system is output. Note that the detection sensitivity gain 211 is arbitrarily variable in order to increase the detection sensitivity. In addition, the comparator 216 does not make a determination by one comparison, but provides a determination condition based on the number of consecutive times to prevent an unnecessary operation due to an erroneous detection of an isolated operation during a normal operation.

図4は、図2(b)の受動検出PLLブロック103の詳細図を示す。図示に基づき、受動検出PLLブロック103の構成及び受動方式の単独運転検出動作を説明する。位相同期PLL(位相同期ブロック310)の構成は、能動方式の位相同期PLL(位相同期ブロック207)と同じであるが、PIゲインの時定数を能動方式と別に設定する必要があるため、別々の位相同期PLLとして設けている。つまり、q軸電圧演算ブロック301と、電圧ノミナル化ゲイン302と、位相同期PIブロック303と、基本周波数加算器304と、積分器305とを備えている。そして、単独運転検出の判定は、q軸電圧演算ブロック301の出力であるq軸電圧Vqを絶対値ブロック306で絶対値化した値と、周波数基準値307とを比較器308で比較し、周波数基準値307を越えたときに、受動方式での単独運転検出信号を出力する。また、比較器308では、能動方式と同様に、1回の比較で判定せず、連続回数による判定条件を設け、通常動作中の単独運転誤検出による不要動作を防止している。   FIG. 4 shows a detailed view of the passive detection PLL block 103 of FIG. Based on the drawing, the configuration of the passive detection PLL block 103 and the passive single operation detection operation will be described. The configuration of the phase synchronization PLL (phase synchronization block 310) is the same as that of the active system phase synchronization PLL (phase synchronization block 207), but it is necessary to set the time constant of the PI gain separately from the active system. It is provided as a phase synchronization PLL. That is, a q-axis voltage calculation block 301, a voltage nominal gain 302, a phase synchronization PI block 303, a fundamental frequency adder 304, and an integrator 305 are provided. Then, the determination of the isolated operation is performed by comparing the value obtained by converting the q-axis voltage Vq, which is the output of the q-axis voltage calculation block 301, into an absolute value by the absolute value block 306, and the frequency reference value 307 by using the comparator 308. When the reference value 307 is exceeded, an isolated operation detection signal in a passive system is output. Further, in the comparator 308, as in the active method, determination is not performed by one comparison, but a determination condition based on the number of consecutive times is provided to prevent unnecessary operation due to erroneous detection of an isolated operation during normal operation.

そして、結果として、単独運転検出判定論理和回路104で、上述の能動方式による単独運転検出信号と受動方式での単独運転検出信号との論理和を取り、いずれか一方の単独運転検出信号が有効になったときに単独運転検信号を出力する。   As a result, the single operation detection determination logical sum circuit 104 calculates the logical sum of the above-described active method single operation detection signal and the passive single operation detection signal, and either one of the single operation detection signals is effective. The isolated operation detection signal is output when

上記単独運転検出機能を用いた場合でも、上述の電力平準化装置50aから商用電力系統1側に電力回生し、商用電力系統1側からの電力供給が0となった場合、単独運転検出が難しくなる。そこで、図5に示すように、無効電力指令Qrefを、周期Tで±ΔQ(以下、「周期変動」という)だけ変動させる処理を追加する。つまり、図2(c)で示すように、上位コントローラから指令された無効電力指令Qrefに上記の周期変動を無効電力変動指令加算器106で加算し、更にLPF107でLPF処理を行うことで、無効電力指令が緩やかに変動するようにした。その後、上述のように、無効電力偏差演算器108で無効電力フィードバック値(無効電力QINV)の偏差を演算し、無効電力PI制御ブロック109におけるPI制御の出力を無効電力指令リミッタ110でリミットする。更に、電圧ノミナル化した値をq軸電流指令として電力平準化装置50aの電流制御を行う。なお、無効電力指令の変動量は、図5に示すパルス状の波形ではなく正弦波状の波形でもよい。この場合、LPF107のLPF処理を省略することができる。 Even when the islanding operation detection function is used, when the power is regenerated from the power leveling device 50a to the commercial power system 1 side and the power supply from the commercial power system 1 side becomes 0, it is difficult to detect the islanding operation. Become. Therefore, as shown in FIG. 5, a process of changing the reactive power command Q ref by ± ΔQ (hereinafter referred to as “period fluctuation”) in the period T is added. That is, as shown in FIG. 2 (c), by adding the periodic fluctuation to the reactive power command Q ref commanded from the host controller by the reactive power fluctuation command adder 106, and further performing LPF processing by the LPF 107, The reactive power command was changed slowly. Then, as described above, the reactive power deviation calculator 108 calculates the deviation of the reactive power feedback value (reactive power Q INV ), and the reactive power PI control block 109 limits the PI control output by the reactive power command limiter 110. . Further, current control of the power leveling device 50a is performed using the voltage nominal value as a q-axis current command. Note that the amount of change in the reactive power command may be a sine waveform instead of the pulse waveform shown in FIG. In this case, the LPF process of the LPF 107 can be omitted.

この結果、電力平準化装置50aと一般負荷4との電力需給が完全にバランスして商用電力系統1からの電力供給が0になる状態となった場合でも、商用電力系統1側からの無効電力供給が周期的に生じるため、商用電力系統1の異常時(停電)の周波数変化が大きくなり、確実な単独運転検出が行えるようになる。また、無効電力指令の変動量ΔQは、PLLブロックの無効電流指令演算ゲイン111(検出感度ゲイン)で単独運転検出感度を調整できるので、大きな無効電力変動にする必要がなく、無効電力制御に与える外乱が従来の無効電力変動方式と比較して少なくて済む。また、制御装置14aは、前記商用電力系統1からの電力供給が0になる状態を検出すると、商用電力系統1に停電が発生したと判定し、高速SW8を開放し、重要負荷7にエネルギー蓄積要素13からの電力供給が行われるように電力変換器12を制御する。   As a result, even when the power supply and demand between the power leveling device 50a and the general load 4 is completely balanced and the power supply from the commercial power system 1 becomes zero, the reactive power from the commercial power system 1 side is obtained. Since the supply occurs periodically, the frequency change at the time of abnormality (power failure) of the commercial power system 1 becomes large, and it becomes possible to perform reliable isolated operation detection. Further, the reactive power command fluctuation amount ΔQ can be adjusted to the reactive power control because the independent operation detection sensitivity can be adjusted by the reactive current command calculation gain 111 (detection sensitivity gain) of the PLL block. The disturbance can be reduced as compared with the conventional reactive power fluctuation method. When the controller 14a detects that the power supply from the commercial power grid 1 is zero, it determines that a power failure has occurred in the commercial power grid 1, opens the high-speed SW 8, and stores energy in the important load 7. The power converter 12 is controlled so that power is supplied from the element 13.

以上説明したように、従来であれば商用電力系統1側へ電力回生が可能な電力平準化装置50で検出が困難であった負荷状態であっても、つまり、電力平準化装置50aと一般負荷4との電力需給が完全にバランスして商用電力系統1からの電力供給が0になる状態であっても、商用電力系統1の異常時に確実に単独運転が検出できる。さらに、商用電力系統1が正常時には、単独運転誤検出をしない検出方法を実現できる。また、本実施形態の単独運転検出法は、電力平準化装置50aのみならず太陽光や燃料電池など電力系統に接続する電源装置に適用が可能である。さらにまた、通常の運転状態において単独運転誤検出による不要動作が起きることを防止できる。   As described above, even in a load state that has been difficult to detect with the power leveling device 50 that can regenerate power to the commercial power system 1 side in the past, that is, the power leveling device 50a and the general load. Even when the power supply and demand with 4 is perfectly balanced and the power supply from the commercial power system 1 becomes zero, the isolated operation can be reliably detected when the commercial power system 1 is abnormal. Furthermore, when the commercial power system 1 is normal, it is possible to realize a detection method that does not detect erroneous single operation. Further, the isolated operation detection method of the present embodiment can be applied not only to the power leveling device 50a but also to a power supply device connected to a power system such as sunlight or a fuel cell. Furthermore, it is possible to prevent an unnecessary operation due to erroneous detection of an isolated operation in a normal operation state.

以上、本発明を実施形態をもとに説明した。この実施形態は例示であり、それらの各構成要素や処理の組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。例えば、上記実施形態では、停電検出ブロック15が省かれた構成であったが、フェールセーフの観点から、設けられてもよい。   The present invention has been described based on the embodiments. This embodiment is an exemplification, and it is understood by those skilled in the art that various modifications can be made to combinations of the respective components and processes, and such modifications are also within the scope of the present invention. For example, although the power failure detection block 15 is omitted in the above embodiment, it may be provided from the viewpoint of fail-safe.

1 商用電力系統
2 連系点CB(遮断器)
3 系統連系点
4 一般負荷
5 非常用発電機
6 分散型電源
7 重要負荷
8 高速SW(スイッチ)
9 電圧検出部
9a 重要負荷接続点
10 電力変換器電流検出器(第2電流検出部)
11 重要負荷電流検出器(第1電流検出部)
12 電力変換器(交流直流変換器)
13 エネルギー蓄積要素
14 制御装置
14a 制御装置
15 停電検出ブロック
50 電力平準化装置
50a 電力平準化装置
101 電力演算ブロック
102 能動検出PLLブロック(能動検出部)
103 受動検出PLLブロック(受動検出部)
104 単独運転検出判定論理和回路
105 無効電力変動指令
106 無効電力変動指令加算器
107 ローパスフィルタ(LPF)
108 無効電力偏差演算器
109 無効電力PI制御ブロック
110 無効電力指令リミッタ
111 無効電流指令演算ゲイン
112 有効電力偏差演算器
113 有効電力PI制御ブロック
114 有効電力指令リミッタ
115 有効電流指令演算ゲイン
116 座標変換ブロック
117 U相電流偏差演算器
118 U相電流PI制御ブロック
119 W相電流偏差演算器
120 W相電流PI制御ブロック
121 V相電圧指令演算器
122 PWMゲート信号生成器
130 制御信号生成ブロック
201 q軸電圧演算ブロック
202 電圧ノミナル化ゲイン
203 位相同期PIブロック
204 基本周波数加算器
205 積分器
206 外乱周波数加算器
207 位相同期ブロック
208 高域側ローパスフィルタ(LPF1)
209 低域側ローパスフィルタ(LPF2)
210 BPFブロック
211 検出感度ゲイン
212 外乱周波数ゲイン
213 外乱周波数リミッタ
214 検出基準値
215 絶対値ブロック
216 比較器
301 q軸電圧演算ブロック
302 電圧ノミナル化ゲイン
303 位相同期PIブロック
304 基本周波数加算器
305 積分器
306 絶対値ブロック
307 周波数基準値
308 比較器
310 位相同期ブロック
1 Commercial power system 2 Interconnection point CB (breaker)
3 Grid connection point 4 General load 5 Emergency generator 6 Distributed power supply 7 Important load 8 High-speed SW (switch)
9 Voltage detector 9a Important load connection point 10 Power converter current detector (second current detector)
11 Important load current detector (first current detector)
12 Power converter (AC / DC converter)
13 Energy Storage Element 14 Control Device 14a Control Device 15 Power Failure Detection Block 50 Power Leveling Device 50a Power Leveling Device 101 Power Calculation Block 102 Active Detection PLL Block (Active Detection Unit)
103 Passive detection PLL block (passive detection unit)
104 Isolated operation detection OR circuit 105 Reactive power fluctuation command 106 Reactive power fluctuation command adder 107 Low-pass filter (LPF)
108 reactive power deviation calculator 109 reactive power PI control block 110 reactive power command limiter 111 reactive current command calculation gain 112 active power deviation calculator 113 active power PI control block 114 active power command limiter 115 active current command calculation gain 116 coordinate conversion block 117 U-phase current deviation calculator 118 U-phase current PI control block 119 W-phase current deviation calculator 120 W-phase current PI control block 121 V-phase voltage command calculator 122 PWM gate signal generator 130 control signal generation block 201 q-axis voltage Arithmetic block 202 Voltage nominal gain 203 Phase synchronization PI block 204 Fundamental frequency adder 205 Integrator 206 Disturbance frequency adder 207 Phase synchronization block 208 High-pass low-pass filter (LPF1)
209 Low-pass low-pass filter (LPF2)
210 BPF block 211 Detection sensitivity gain 212 Disturbance frequency gain 213 Disturbance frequency limiter 214 Detection reference value 215 Absolute value block 216 Comparator 301 q-axis voltage calculation block 302 Voltage nominal gain 303 Phase synchronization PI block 304 Basic frequency adder 305 Integrator 306 Absolute value block 307 Frequency reference value 308 Comparator 310 Phase synchronization block

Claims (2)

商用電力系統と重要負荷及び分散型電源とを接続するスイッチと、
前記スイッチと前記重要負荷及び前記分散型電源との接続ラインに、交流側が接続される交流直流変換器と、
前記交流直流変換器の直流側に接続されるエネルギー蓄積要素と、
前記スイッチと前記重要負荷及び前記分散型電源との接続ラインの電圧を検出する電圧検出部と、
前記重要負荷に流れる電流を検出する第1電流検出部と、
前記交流直流変換器の交流側に流れる電流を検出する第2電流検出部と、
前記電圧検出部、前記第1電流検出部及び前記第2電流検出部からの各検出値を入力して算出した前記交流直流変換器及び前記重要負荷のそれぞれの有効電力及び無効電力を、それぞれに対応する有効電力指令及び無効電力指令に一致するように前記交流直流変換器を制御する制御装置と、を備え、
前記制御装置は、
前記商用電力系統との連系点の周波数を変化させ、単独運転をPLL回路を用いて能動的に検出する能動検出部及びPLL回路を用いて受動的に検出する受動検出部を備える単独運転検出部と、
前記交流直流変換器の無効電力指令に対して、所定の変動幅で周期的に変動する信号を加算する無効電力変動指令部と
を備え、
前記分散型電源と前記商用電力系統の電力供給がバランスして、前記商用電力系統との前記連系点での前記商用電力系統からの電力供給が実質的に無い場合に、前記無効電力変動指令部の指令に起因した周波数変化に基づいて、単独運転を検出することを特徴とする電力平準化装置。
A switch for connecting the commercial power system with important loads and distributed power sources;
An AC / DC converter having an AC side connected to a connection line between the switch and the important load and the distributed power source;
An energy storage element connected to the DC side of the AC / DC converter;
A voltage detection unit for detecting a voltage of a connection line between the switch and the important load and the distributed power source;
A first current detector for detecting a current flowing through the important load;
A second current detector for detecting a current flowing on the AC side of the AC / DC converter;
Respective active power and reactive power of the AC / DC converter and the important load calculated by inputting the detection values from the voltage detection unit, the first current detection unit, and the second current detection unit, respectively, A control device for controlling the AC / DC converter so as to coincide with the corresponding active power command and reactive power command,
The control device includes:
Single operation detection provided with an active detection unit that actively detects a single operation using a PLL circuit and a passive detection unit that detects the operation passively using a PLL circuit by changing the frequency of the connection point with the commercial power system And
A reactive power fluctuation command unit that adds a signal that periodically fluctuates with a predetermined fluctuation width to the reactive power command of the AC / DC converter,
When the distributed power source and the power supply of the commercial power system are balanced and there is substantially no power supply from the commercial power system at the interconnection point with the commercial power system, the reactive power fluctuation command An electric power leveling device that detects an isolated operation based on a change in frequency caused by a command from a section.
前記制御装置は、前記単独運転を検出すると、前記商用電力系統に停電が発生したと判定し、前記スイッチを開放して前記重要負荷に前記エネルギー蓄積要素からの電力供給となるよう前記交流直流変換器を制御することを特徴とする請求項1に記載の電力平準化装置。
When the control device detects the islanding operation , the control device determines that a power failure has occurred in the commercial power system, and opens the switch to supply power to the important load from the energy storage element. The power leveling device according to claim 1, wherein the power leveling device is controlled.
JP2011139297A 2011-06-23 2011-06-23 Electric power leveling device Active JP5961932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011139297A JP5961932B2 (en) 2011-06-23 2011-06-23 Electric power leveling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011139297A JP5961932B2 (en) 2011-06-23 2011-06-23 Electric power leveling device

Publications (2)

Publication Number Publication Date
JP2013009481A JP2013009481A (en) 2013-01-10
JP5961932B2 true JP5961932B2 (en) 2016-08-03

Family

ID=47676349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011139297A Active JP5961932B2 (en) 2011-06-23 2011-06-23 Electric power leveling device

Country Status (1)

Country Link
JP (1) JP5961932B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11616363B2 (en) 2020-09-11 2023-03-28 Kabushiki Kaisha Toshiba Electronic apparatus with detection of an islanding condition

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6161985B2 (en) * 2013-08-02 2017-07-12 株式会社ダイヘン Isolated operation detection circuit, isolated operation detection method, inverter device provided with the isolated operation detection circuit, and power system
JP2015144551A (en) * 2013-12-27 2015-08-06 パナソニックIpマネジメント株式会社 inverter device
JP7069784B2 (en) * 2018-02-08 2022-05-18 富士電機株式会社 Independent operation detection device, independent operation detection method, and independent operation detection program
CN108693417A (en) * 2018-03-28 2018-10-23 淮阴师范学院 A kind of intelligent grid non-intrusion type resident load observation circuit and system
CN117856642B (en) * 2024-03-06 2024-05-10 东南大学 Network construction control method and medium applied to multiport optical storage integrated converter

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09285016A (en) * 1996-04-11 1997-10-31 Nissin Electric Co Ltd Power equipment
JP2001327082A (en) * 2000-05-17 2001-11-22 Nissin Electric Co Ltd Power storage system
JP4996017B2 (en) * 2001-06-13 2012-08-08 大阪瓦斯株式会社 Received power adjustment device, private power generation device and control method thereof
JP2003180036A (en) * 2001-10-01 2003-06-27 Canon Inc Power converter, power conversion system, and method of detecting single operation
JP3819805B2 (en) * 2002-05-16 2006-09-13 三菱電機株式会社 Grid interconnection power converter
JP4073387B2 (en) * 2003-10-08 2008-04-09 オムロン株式会社 Single operation detector for distributed power supply
JP4967539B2 (en) * 2006-08-30 2012-07-04 オムロン株式会社 Isolated operation detection device, power conditioner, and isolated operation detection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11616363B2 (en) 2020-09-11 2023-03-28 Kabushiki Kaisha Toshiba Electronic apparatus with detection of an islanding condition

Also Published As

Publication number Publication date
JP2013009481A (en) 2013-01-10

Similar Documents

Publication Publication Date Title
JP5926946B2 (en) Method and system for operating a power generation system
Vandoorn et al. Review of primary control strategies for islanded microgrids with power-electronic interfaces
KR100886194B1 (en) Controller of double-fed induction generator
EP2790312B1 (en) Power decoupling controller and method for power conversion system
JP6205658B2 (en) Photovoltaic power plant and control method thereof
TWI522767B (en) Photovoltaic power generation system
JP5961932B2 (en) Electric power leveling device
EP2926430B1 (en) Power unit control system
JP5226540B2 (en) Inverter control circuit, grid-connected inverter system equipped with this inverter control circuit
KR102035223B1 (en) Hybrid Energy Storage System
JP6159271B2 (en) Power converter and control method of power converter
Hamed et al. A fast recovery technique for grid-connected converters after short dips using a hybrid structure PLL
US20140203646A1 (en) Method and apparatus for power imbalance correction in a multi-phase power generator
JP5790313B2 (en) Electric power leveling device
WO2021124577A1 (en) Power conversion device
WO2014024731A1 (en) Linkage system switching device and power control system
TWI505597B (en) Micro-grid operation system with smart energy management
KR102457332B1 (en) Energy storage system photovoltaic inverter for low voltage ride through
JP2010110120A (en) Ac power supply system
KR20150005822A (en) Apparatus and method of controlling instant power failure of h-bridge multi-level inverter
WO2018020666A1 (en) Power conversion device and control method therefor
JP7139585B2 (en) CONTROL DEVICE, CONTROL METHOD, AND CONTROL PROGRAM FOR POWER CONVERTER
TWI673931B (en) Micro-grid, energy storage system and voltage compensation method
Singh Adaptive Bandpass Digital Filter Control of Photovoltaic-Battery Energy Storage Based Microgrid
JP2006311725A (en) Controller for power converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160613

R150 Certificate of patent or registration of utility model

Ref document number: 5961932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350