JPH01264535A - Method of controlling parallel operation of shaft generator - Google Patents

Method of controlling parallel operation of shaft generator

Info

Publication number
JPH01264535A
JPH01264535A JP63092226A JP9222688A JPH01264535A JP H01264535 A JPH01264535 A JP H01264535A JP 63092226 A JP63092226 A JP 63092226A JP 9222688 A JP9222688 A JP 9222688A JP H01264535 A JPH01264535 A JP H01264535A
Authority
JP
Japan
Prior art keywords
output
generator
frequency
shaft
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63092226A
Other languages
Japanese (ja)
Inventor
Iwao Takasaki
高崎 巌
Hidekazu Kanbara
神原 英一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIYO ELECTRIC Manufacturing CO Ltd
Original Assignee
TAIYO ELECTRIC Manufacturing CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIYO ELECTRIC Manufacturing CO Ltd filed Critical TAIYO ELECTRIC Manufacturing CO Ltd
Priority to JP63092226A priority Critical patent/JPH01264535A/en
Publication of JPH01264535A publication Critical patent/JPH01264535A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

PURPOSE:To improve the rapidity at the time of output sharing shift and the economy of a device by providing a frequency control function only in other generator, and conducting output sharing control by output controlling function provided only in a shaft generator. CONSTITUTION:In order to detect the output current I1 of a shaft generator, the output current i1 of a current transformer 24 is input to an I/V converter 25 to be converted to a voltage e3 having a suitable amplitude. This e3 and an output current set signal e4 are input to an output current detector 19, its differential voltage e is formed, which is input to a controller 7a for controlling the phase of a thyristor converter 4, thereby controlling the control angle of the converter 4 so that the e approaches zero. Accordingly, the output current I1 of the shaft generator can be arbitrarily controlled by suitably operating the amplitude of the signal e4. On the other hand, other generator is all the same as a conventional one including the frequency control function.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は船舶における主エンジンの軸出力の一旦を利用
して発電電力を得るサイリスクインバータ式軸発電装置
と、タービンまたは補機エンジン駆動の発電機の並列運
転時の負荷分担の制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a silice inverter-type shaft power generator that generates power by once utilizing the shaft output of a main engine in a ship, and a shaft power generator driven by a turbine or an auxiliary engine. This invention relates to a method for controlling load sharing during parallel operation of generators.

「従来の技術」 近時船舶では、省エネルギーの見地より、船内で必要と
する電力は、主エンジンの出力の一旦を利用して発電電
力を得るサイリスクインバータ式軸発電装置と、タービ
ンまたは補機エンジン駆動の同期発電機(以後は他発電
機という)の並列運転によってまかなうケースが多くな
っている。サイリスクインバータ式軸発電装置を第2図
を用いて、もう少し詳しく説明すると、同期発電機2は
船舶のプロペラPを駆動する主エンジン1により直接あ
るいは増速機を介して駆動され、また、その出力電圧は
界磁巻線2aの回路に設けられた自動電圧調整器(以後
はAVRという)3によって自動調整される。この同期
発電機2の交流出力はコンバータ4によって直流電力に
交換され、さらに平滑りアクドル5を通して平滑した後
、他動式サイリスクインバータ6によって一定周波数の
交流電力に変換され、無効電力分は後述のように他見電
機より供給をうけて、有効電力分を母線9側へ出力する
。コンバータ4はサイリスクコバータとして構成され、
インバータ6と共に制御装置7により制御される。
``Conventional technology'' In modern ships, from the standpoint of energy conservation, the power required on board is achieved by using a silis inverter type shaft power generation device that generates power by temporarily utilizing the output of the main engine, and a turbine or auxiliary engine. In many cases, power is provided by parallel operation of engine-driven synchronous generators (hereinafter referred to as other generators). The synchronous generator 2 is driven directly or via a speed increaser by the main engine 1 that drives the propeller P of the ship, and the synchronous generator 2 is driven by the main engine 1 that drives the propeller P of the ship, and The output voltage is automatically adjusted by an automatic voltage regulator (hereinafter referred to as AVR) 3 provided in the circuit of the field winding 2a. The AC output of the synchronous generator 2 is exchanged into DC power by a converter 4, and after being smoothed through a smoothing axle 5, it is converted to AC power at a constant frequency by a passive syrisk inverter 6, and the reactive power component will be explained later. As shown in FIG. 2, it receives the supply from the electric power generator and outputs the active power to the bus 9 side. The converter 4 is configured as a silico converter,
It is controlled by a control device 7 together with an inverter 6 .

以上が既に周知のサイリスクインバータ式軸発電装置(
以後は単に軸発電機という)の構成と作用の概要である
が、さらに、第2図について説明すると、母線9にはし
ゃ断H15を介して負荷16がつながれている。また、
一方、母線9にはしゃ断器12を介して他見電機10が
つながれており、前述の軸発電機と並列運転が行われ、
両機より後述の負荷分担制御により配分される有効電力
分を負荷16に供給する。なお、この場合、負荷16お
よび前述したサイリスクインバータ6への無効電力分の
供給は他見電機10によって、また母線9の電圧制御は
その界磁10aの回路に設けられたAVRIIによって
行われることは周知である。
The above is the already well-known Sirisk inverter type shaft power generator (
This is an overview of the structure and operation of the shaft generator (hereinafter simply referred to as a shaft generator).To further explain FIG. 2, a load 16 is connected to the busbar 9 via a cutoff H15. Also,
On the other hand, a Tamami electric machine 10 is connected to the busbar 9 via a breaker 12, and is operated in parallel with the above-mentioned shaft generator.
Both devices supply the load 16 with active power distributed by load sharing control, which will be described later. In this case, the supply of reactive power to the load 16 and the above-mentioned thyrisk inverter 6 is performed by the Tami Electric Machine 10, and the voltage control of the bus bar 9 is performed by the AVR II provided in the circuit of the field 10a. is well known.

従来、この並列運転の負荷分担制御は、両機のそれぞれ
に後述のような任意の周波数設定のできる周波□数制御
機能をもたせ、両機の周波数設定値を゛適当に操作する
ことで行っていた。
Conventionally, this load sharing control for parallel operation has been carried out by providing each of the machines with a frequency control function capable of setting an arbitrary frequency as described below, and appropriately manipulating the frequency setting values of both machines.

即ち、周波数制御機能として、軸発電機の方はその出力
周波数ft&をF/V変換器17aで検出し適当な大き
さの電圧信号etaに変換・出力させ、このetaと周
波数設定信号eiaを周波数差検出器18aに入力して
、その差電圧△el  (=esB、−e2&)を作り
、これをサイリスクコンバータ4の位相制御を司どる制
御装置7aに入力し、Δe21が零に近づくように、つ
まりは出力周波数fL&が前記の周波数設定信号e2a
に対応する設定周波数f2ヶに近づくように、サイリス
クコンバータ4の制御角α次を制御する。さらに言えば
Δea>0の時はαaを大きくし、逆にΔea<Oの時
はaCを小さくするような制御をさせる。また、他見電
機の方は、出力周波数flbをF /’ V変換器17
bで検出し適当な大きさの電圧信号etbに変換、出力
させ、このelbと周波数設定信号e2iを周波数差検
出器18bに入力して、その差電圧△e。
That is, as a frequency control function, the output frequency ft& of the shaft generator is detected by the F/V converter 17a, converted and outputted to a voltage signal eta of an appropriate magnitude, and this eta and the frequency setting signal eia are adjusted to the frequency. The differential voltage △el (=esB, -e2&) is input to the difference detector 18a, and this is input to the control device 7a that controls the phase control of the sirisk converter 4 so that ∆e21 approaches zero. , that is, the output frequency fL& is the frequency setting signal e2a.
The control angle α order of the sirisk converter 4 is controlled so that it approaches the set frequency f2 corresponding to . Furthermore, when Δea>0, αa is increased, and when Δea<O, aC is decreased. In addition, for Tamami Electric, the output frequency flb is converted to F/'V converter 17.
elb and the frequency setting signal e2i are input to the frequency difference detector 18b to obtain the difference voltage Δe.

(”elb  e2b)を作り、これをタービン20の
ガバナモータ22の発停コントローラ23に入力し適当
な大きさの出力信号に変換・出力して、ガバナモータ2
2に加え、Δe1.が零に近づくように、つまりは出力
周波数ftbが周波数設定信号eハに対応する設定周波
数f 2’bに近づくようにガバナモータ22の発停お
よび回転方向の制御をする。
("elb e2b)", input this to the start/stop controller 23 of the governor motor 22 of the turbine 20, convert it to an output signal of an appropriate size, and output it to the governor motor 22.
2 plus Δe1. The start/stop and rotational direction of the governor motor 22 is controlled so that the output frequency ftb approaches zero, that is, the output frequency ftb approaches the set frequency f2'b corresponding to the frequency setting signal ec.

さらに言えばガバナモータ22をΔe、〉0の時は調節
弁21が閉じる方向に、逆にΔeb<の時は開く方向に
回すような制御を行わせる。
More specifically, the governor motor 22 is controlled so that the control valve 21 is turned in the closing direction when Δe>0, and conversely in the opening direction when Δeb<.

両親に、以上説明したような周波数制御機能をもたせた
上で、両機の並列運転の負荷分担制御(別の言い方をす
れば出力分担制御)は、従来、船舶で補機エンジン駆動
どうしの或いは補機エンジン駆動とタービン駆動の発電
機間で多く行われていたのと同様に、両機にそれぞれの
周波数設定信号ea(fza)、ezb(f*b)を入
れこの値を適当に操作することで行っていた。さらに言
えば負荷分担量を増やす方の設定値を上げ、逆に減らす
方の設定値を下げることで行っていた。
Load sharing control (in other words, output sharing control) for parallel operation of both engines is conventionally carried out on ships by providing frequency control functions such as those explained above. As is often done between engine-driven and turbine-driven generators, by inputting frequency setting signals ea (fza) and ezb (f*b) to both machines and appropriately manipulating these values. I was going. Furthermore, this was done by increasing the setting value for increasing the load sharing amount, and lowering the setting value for decreasing the load sharing amount.

「発明が解決しようとする課題」 以上、説明した従来例では、両機に周波数制御機能をも
たせるため、それに要する費用が過大であった。また、
両機の出力分担制御の応答性において、軸発電機の方は
他見電機におけるようなタービン20および発電機10
の慣性モーメントによる遅れがないのできわめて速く、
両機の間に大幅な相違があることにより満足した出力分
担持性が得難いとい課題があった。
``Problem to be Solved by the Invention'' In the conventional example described above, since both devices were provided with a frequency control function, the cost required for this was excessive. Also,
Regarding the responsiveness of the output sharing control of both machines, the shaft generator has a turbine 20 and a generator 10 as in Tamami Electric.
It is extremely fast because there is no delay due to the moment of inertia of
Due to the large differences between the two machines, it was difficult to obtain satisfactory power sharing.

「課題を解決するための手段」 本発明は、前述した両機の出力分担制御の応答性に大幅
な相違のあることに着目し、母線の周波数制御は応答速
度の遅い方の、しかし、従来から多く行われており、良
しとされている例えば補機エンジン駆動の発電機どうし
の並列運転に於ける応答速度とほぼ同程度の他見電機の
周波数制v4胤能の働きだけに依存させ、従って軸発電
機の方の周波数制御機能は不要とし、一方、両機の出力
分担制御は応答速度の速い軸発電機の方にのみ設けた出
力制御機能、即ち周波数制御機能に替わって、もっと安
価にできる出力電流検出器と電流差検出器により構成さ
れる出力制御機能を働かせることによって行わせ、出力
分担制御の安定性と経済的効果の向上を図ること力けき
る。
``Means for Solving the Problems'' The present invention focuses on the fact that there is a large difference in the response of the output sharing control of the two machines mentioned above, and the frequency control of the bus bar is performed on the one with the slower response speed, but compared to the conventional one. This is often done and is considered to be a good idea, for example, by relying only on the function of the frequency control v4 function of the electric generator, which is approximately the same as the response speed in parallel operation of generators driven by auxiliary engines. The frequency control function of the shaft generator is not required, and on the other hand, the output sharing control of both machines can be made cheaper by replacing the output control function provided only for the shaft generator, which has a faster response speed, that is, the frequency control function. It is possible to improve the stability and economical effects of output sharing control by activating the output control function composed of an output current detector and a current difference detector.

「実施例」 本発明の実施例を第1図に示し、以下これについて説明
する。なお、既に説明した第2図と同一旦分は同一符号
を付し説明は省略をする。
"Example" An example of the present invention is shown in FIG. 1, and will be described below. Note that the same parts as those in FIG. 2 already explained are given the same reference numerals, and the explanation will be omitted.

軸発電機の1、なる出力電流を検出するために、その2
4なる変流器の出力電流i、を25なる■/■変換器に
入れ適当な大きさの電圧e3に変換−出力させ、このe
3と出力電流設定信号e4を19なる出力電流差検出器
に入力して、その差電圧△e<−e3  ea)を作り
、これをサイリスクコンバータ4の位相制御を司どる制
御装置7aに入力しΔeか零に近づくように、つまりは
出力電流■、が出力電流設定信号e4に対応する設定電
流工2に近づくように、サイリスクコンバータ4の制御
角αCを制御する。さらに言えばΔe〉0の時はαCを
大きくして工、を減するようにし、逆に△e<0の時は
αCを小さくして■、を増やすように制御させる。従っ
て、出力電流設定信号e4の大きさを適当に繰作するこ
とにより軸発電機の出力電流■、を任意にコント・ロー
ルすることができる。その結果、両機の出力分担は先ず
軸発電機の方の分担量が定まり、残りを他発電機の方が
分担することになる。
In order to detect the output current of the shaft generator, the second
The output current i of a current transformer of 4 is put into a 25 /
3 and the output current setting signal e4 are input to the output current difference detector 19 to create a difference voltage Δe<-e3 ea), which is input to the control device 7a that controls the phase control of the thyrisk converter 4. The control angle αC of the sirisk converter 4 is controlled so that Δe approaches zero, that is, the output current ■ approaches the set current value 2 corresponding to the output current setting signal e4. Furthermore, when Δe>0, control is made to increase αC to decrease , and conversely, when Δe<0, control is made to decrease αC to increase . Therefore, by suitably adjusting the magnitude of the output current setting signal e4, the output current (2) of the shaft generator can be arbitrarily controlled. As a result, the amount of output shared by both machines is determined first by the shaft generator, and the rest is shared by the other generators.

一方、他発電機の方は周波数制御機能を含めすべて第2
図の従来例のものと同一であり、従ってその出力周波数
f□、は前述の従来例の場合と同様に制御される。そし
て軸発電機の方は従来例のような周波数制御機能を設け
ていないので母線9の周波数f。は他発電機の方の周波
数制御機能のみによってその周波数設定信号f2bに近
づくよう制御されることになる。
On the other hand, all other generators, including the frequency control function,
It is the same as that of the conventional example shown in the figure, and therefore its output frequency f□ is controlled in the same manner as in the conventional example described above. Since the shaft generator does not have a frequency control function like the conventional example, the frequency of the bus 9 is f. is controlled to approach the frequency setting signal f2b only by the frequency control function of the other generator.

以上は、他発電機としてタービン駆動発電機を用いた場
合につき説明したか、補機エンジン駆動発電機を用いた
場合も同様のことが言えることはもちろんである。また
、第1図の実施例では軸発電機の出力制御として出力電
流量を対象にしているか電力量を対象にすることができ
ることも当然である。
Although the above description has been made regarding the case where a turbine-driven generator is used as the other generator, it goes without saying that the same can be said when an auxiliary engine-driven generator is used. Further, in the embodiment shown in FIG. 1, it is natural that the output control of the shaft generator can be performed on the amount of output current or on the amount of electric power.

「発明の効果」 以上説明したように、従来は母線の周波数制御並びに両
機の出力分担制御を両機の各々に装備した周波数制御機
能を働かせて行っていたものを、本発明では周波数制御
機能は他発電機の方のみもたせ、母線の周波数制御はこ
の他の方のみで行うようにし、出力分担制御の方は軸発
電機の方のみ ゛に装備した安価にでき、しかも応答速
度の速い出力制御機能の働きによって行わせるようにし
たので従来のものより出力分担移行時の迅速性と装置の
経済的効果の向上を図ることがてきる。
"Effects of the Invention" As explained above, in the past, frequency control of the bus and output sharing control of both machines were carried out by using the frequency control function installed in each machine, but in the present invention, the frequency control function is Only the generator is controlled, the frequency control of the bus bar is controlled only by this other unit, and the output sharing control is performed only by the shaft generator. Since this is done by the function of , it is possible to improve the speed at which the output sharing is shifted and the economical effect of the device compared to the conventional system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、それぞれ本発明および−ε − 従来の一実施例を示すブロック説明図である。 1−・・主エンジン、2.10−・・同期発電機、3゜
11・・・自動電圧調整器、4・・・サイリスクコンバ
ーク、6・・・サイリスクインバータ、7・・・制御装
置、16−負荷、17a、 17b−F/V変換器、1
8a、18b・・・周波数差検出器、19・・・出力電
流差検出器、20−・・タービン、22・・・ガバナモ
ーフ、23−・発停コントローラ、′24・・・変流器
、25・・・I/′V変換器、62a 、 e 2b−
’周波数設定信号、e4・・−出力電流設定信号。 VI:し凡ア
FIG. 1 and FIG. 2 are block explanatory diagrams showing an embodiment of the present invention and a -ε- conventional example, respectively. 1- Main engine, 2.10- Synchronous generator, 3゜11... Automatic voltage regulator, 4... Cyrisk converter, 6... Cyrisk inverter, 7... Control Device, 16-Load, 17a, 17b-F/V converter, 1
8a, 18b... Frequency difference detector, 19... Output current difference detector, 20-... Turbine, 22... Governor morph, 23-- Start/stop controller, '24... Current transformer, 25 ...I/'V converter, 62a, e2b-
'Frequency setting signal, e4...-output current setting signal. VI: Shibona

Claims (1)

【特許請求の範囲】[Claims] 船舶の回転変動のある主エンジン軸より直接または増速
機を介して同期発電機を駆動し、その同期発電機の変動
周波数出力を一旦コンバータで直流変換した後、インバ
ータで定周波交流に変換し出力する軸発電機と、補機エ
ンジンまたはタービン駆動の同期発電機である他発電機
の並列運転制御方法として、これら両機の出力端子をつ
なぐ母線の周波数制御は、他発電機側に設けられた周波
数制御機能の働きのみによって行わせ、両機の間の出力
分担制御は、軸発電機側に設けられた出力制御機能の働
きによる軸発電機側の出力分担量の優先的制御にって行
わせることを特徴とする軸発電機の並列運転制御方法。
A synchronous generator is driven directly or via a speed increaser from the ship's main engine shaft, which has rotational fluctuations, and the fluctuating frequency output of the synchronous generator is first converted to DC using a converter, and then converted to constant frequency AC using an inverter. As a method for parallel operation control of the output shaft generator and another generator, which is an auxiliary engine or turbine-driven synchronous generator, frequency control of the bus bar connecting the output terminals of these two machines is provided on the other generator side. This is performed only by the frequency control function, and the output sharing control between both machines is performed by preferentially controlling the output sharing amount on the shaft generator side by the output control function provided on the shaft generator side. A method for controlling parallel operation of a shaft generator, characterized in that:
JP63092226A 1988-04-14 1988-04-14 Method of controlling parallel operation of shaft generator Pending JPH01264535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63092226A JPH01264535A (en) 1988-04-14 1988-04-14 Method of controlling parallel operation of shaft generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63092226A JPH01264535A (en) 1988-04-14 1988-04-14 Method of controlling parallel operation of shaft generator

Publications (1)

Publication Number Publication Date
JPH01264535A true JPH01264535A (en) 1989-10-20

Family

ID=14048524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63092226A Pending JPH01264535A (en) 1988-04-14 1988-04-14 Method of controlling parallel operation of shaft generator

Country Status (1)

Country Link
JP (1) JPH01264535A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648344U (en) * 1992-12-11 1994-06-28 西芝電機株式会社 In-vehicle power supply device
CN100442625C (en) * 2005-05-11 2008-12-10 三菱电机株式会社 Controlling device and method for power source system and electric power system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648344U (en) * 1992-12-11 1994-06-28 西芝電機株式会社 In-vehicle power supply device
CN100442625C (en) * 2005-05-11 2008-12-10 三菱电机株式会社 Controlling device and method for power source system and electric power system

Similar Documents

Publication Publication Date Title
US4137489A (en) Feedback control for reduction of cogging torque in controlled current AC motor drives
JPS62118068A (en) Variable-speed wind-force turbine device
JPH041194B2 (en)
US4980629A (en) AC-excited generator/motor apparatus
JPH01264535A (en) Method of controlling parallel operation of shaft generator
JPH0530686A (en) Controller for superconducting energy storage device
Akpinar et al. Modeling and analysis of closed-loop slip energy recovery induction motor drive using a linearization technique
JP2524545Y2 (en) Voltage control device for main shaft drive generator
JPH11103600A (en) Method of controlling voltage of induction generator
JP2521646Y2 (en) Voltage control device for main shaft drive generator
JP2001238493A (en) Control unit of generator
JPH0522938A (en) Controlling circuit for power conversion system
JP2519078Y2 (en) Frequency control device for main shaft drive generator
JPS60219983A (en) Drive controller of induction motor
JPS62221825A (en) Automatic operation controller
JP2544555Y2 (en) Voltage control device for main shaft drive generator
SU1053255A1 (en) Device for controlling asynchronous machine with phase rotor
JPH04165992A (en) Operation controller for synchronous phase modifier
JP2512414Y2 (en) Control device for main shaft drive generator
JPS6055879A (en) Secondary side winding slip controlling method of wound-rotor type generator motor
JPS62181698A (en) Controlling device for variable-speed generating system
JPH0454832A (en) Rotary system linkage unit
KR20210019058A (en) Thyristor starting device
JPH08149895A (en) Generator system driven by load-commutated inverter
JPH0739299U (en) Voltage controller for main shaft drive generator