JPS58101478A - Manufacture of polycrystalline silicon solar battery - Google Patents

Manufacture of polycrystalline silicon solar battery

Info

Publication number
JPS58101478A
JPS58101478A JP56200287A JP20028781A JPS58101478A JP S58101478 A JPS58101478 A JP S58101478A JP 56200287 A JP56200287 A JP 56200287A JP 20028781 A JP20028781 A JP 20028781A JP S58101478 A JPS58101478 A JP S58101478A
Authority
JP
Japan
Prior art keywords
substrate
etching
silicon substrate
chamber
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56200287A
Other languages
Japanese (ja)
Inventor
Tamotsu Hatayama
畑山 保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56200287A priority Critical patent/JPS58101478A/en
Publication of JPS58101478A publication Critical patent/JPS58101478A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To obtain a battery having excellent electric characteristics by plasma etching a polycrystalline Si substrate under low pressure, then covering by a reduced pressure CVD method the etched substrate with an insulating film containing impurity, heat treating it, diffusing the impurity in the substrate, thereby forming a P-N junction and then heat treating it in H2 plasma, and eliminating the opportunity of exposing to the atmosphere. CONSTITUTION:Many P type polycrystalline Si substrates a1 which are sufficiently cleaned are contained in a cassette C1 in a preliminary chamber Y1, and the chamber Y1 is evacuated. An etching chamber A, a PSG film forming unit B, a phosphorus diffusing unit C, an etching unit D and a hydrogen plasma unit E which are isolated via gate valves G1-G7 are arranged at the downstream of the chamber Y1, the substrate a1 is passed therein while sequentially opening and closing the valves G1-G7, performing the prescribed treatments, and are contained in a cassette C2 in a preliminary chamber Y3. In this manner, all treatments can be performed without contact with the atmosphere, thereby shortening the period of the steps and eliminating the contamination.

Description

【発明の詳細な説明】 発明の技術分野 本発明は多結晶シリコンを用いた太陽電池の製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a method of manufacturing a solar cell using polycrystalline silicon.

発明の技術的背景 従来から多結晶シリコンは、低価格太陽電池用として早
期実現性の十分に高いものとして有望視されてきた。一
般に多結晶シリコン太陽電池線、多結晶シリコン基板の
洗浄と工、チング後、常圧CVD法によりPEGあるい
はBSG glを形成させたのち熱処理してP−N接合
を形成し、または熱拡散によってP−N接合を形成し、
次いで両面に真空蒸着等により電極を形成して作製して
いる。
TECHNICAL BACKGROUND OF THE INVENTION Polycrystalline silicon has long been viewed as promising as a material with high feasibility for early realization as a material for use in low-cost solar cells. Generally, after cleaning, processing, and etching polycrystalline silicon solar cell lines and polycrystalline silicon substrates, PEG or BSG GL is formed by atmospheric pressure CVD, and then heat treated to form a P-N junction, or P by thermal diffusion. - form an N junction;
Next, electrodes are formed on both sides by vacuum evaporation or the like.

背景技術の問題点 従来法で線、各工程毎に基板を大気にさらさなければな
らないこと、多結晶シリコンの粒界には多量の結晶欠陥
や、不純物の集積による高密度の局在準位が存在するた
め、その粒界ではキャリヤのライフタイムが低下するこ
と、郷の理由で電気的特性の優れた太陽電池を低コスト
で作ることが難しかった。
Problems with the background technology In the conventional method, the substrate must be exposed to the atmosphere at each step, and the grain boundaries of polycrystalline silicon have a large number of crystal defects and a high density of localized levels due to the accumulation of impurities. Because of the existence of these particles, the lifetime of the carriers decreases at the grain boundaries, making it difficult to produce solar cells with excellent electrical characteristics at low cost.

発明の目的 本発明は、一連の工程にドライ工程を採用して信頼性向
上、コストダウンおよび特性向上を図った多結晶シリョ
ン太陽電池の製造方法を提供するものである。
OBJECTS OF THE INVENTION The present invention provides a method for manufacturing a polycrystalline solar cell, which employs a dry process in a series of steps to improve reliability, reduce costs, and improve characteristics.

発明の概要 本発明は、多結晶シリコン太陽電池の一連の製造工程を
ドライ化すること、そしてその一連の製造工程、即ち低
圧下において多結晶シリコン基板をエツチングする工程
、その多結晶シリコン基板に不純物を含む絶縁膜を形成
する工程、その絶縁膜から不純物を拡散させて多結晶シ
リコン基板にPN接合を形成する工程およびその多結晶
シリコン基板を水素プラズマ処理する工程を、基板を大
気にふれさせることなく連続的に行うことを特徴として
いる。
SUMMARY OF THE INVENTION The present invention involves drying a series of manufacturing steps for polycrystalline silicon solar cells, etching a polycrystalline silicon substrate under low pressure, and removing impurities from the polycrystalline silicon substrate. A step of forming an insulating film containing a oxide, a step of diffusing impurities from the insulating film to form a PN junction on a polycrystalline silicon substrate, and a step of treating the polycrystalline silicon substrate with hydrogen plasma are performed by exposing the substrate to the atmosphere. It is characterized by being performed continuously.

発明の効果 本発明によれば、一連の処理工程を、基板を大気にふれ
させることなく連続的に行うから、太陽電池製造工程の
時間短縮が可能となり、また基板の汚染が少なく、従っ
て太陽電池の信頼性向上、コストダウンおよび特性向上
が図られる拳 発明の実施例 第1図は本発明の一実施例の製造装置を模式的に示した
ものである。有機溶剤や酸にて洗浄したP形多結晶シリ
コン基板(lロンドープ、1.5O−1)a、を、予備
室Y、の中のカセットc1にセツティングし排気する。
Effects of the Invention According to the present invention, since a series of processing steps are carried out continuously without exposing the substrate to the atmosphere, it is possible to shorten the time required for the solar cell manufacturing process, and there is less contamination of the substrate. Embodiment of the invention that improves reliability, reduces costs, and improves characteristics FIG. 1 schematically shows a manufacturing apparatus according to an embodiment of the invention. A P-type polycrystalline silicon substrate (doped with 1.5 O-1) a, which has been cleaned with an organic solvent or an acid, is set in a cassette c1 in the preliminary chamber Y and evacuated.

予備室Y、の圧力が〜X 10  Torr台に達した
ら、前記シリコン基板をエツチングするため、エツチン
グ装置Aとの間にあるダートパルプG、を開く。後述す
るような搬送機構によりカセッ) atに入っている前
記シリコン基板a、のうち1枚をエツチング装置iAま
で運び込み、RF電極S、の上に置き、r−)パルプG
、を閉じる。エツチング装置Aを5X10−’Torr
の圧力まで排気したのち、前記装置Aの中にエツチング
ガスg4例えばCF4ガスを導入して、圧力4X10 
 TorrRF電源によ)fう、eマを発生させてP形
多結晶シリコン基板a2を約2μ工、チングする。エツ
チングが終了したシリコン基板a2はP8G膜形成に移
る。グートパルグG2を開き、搬送機構により前記シリ
コン基板1□をPEG膜形成装置Bに運び込む、この時
、基板を保持するためのサセプタ纒2は加熱ができまた
矢印のごとく上下できる構造となっており、搬送機構と
同じ高さにあって前記シリコン基板a2を容易にサセプ
タり上に置くことができる。サセプター2上に置かれた
工、チンダ終了済みのP形多結晶シリコン基板a、を上
に移動させ所定の位置で固定して?−)パルプG2を閉
じる。そしてこの装置Bの中にがスg2例えば8iH4
+ PH。
When the pressure in the preliminary chamber Y reaches ~X 10 Torr, the dirt pulp G located between it and the etching apparatus A is opened in order to etch the silicon substrate. One of the silicon substrates (a) contained in the cassette (a) is carried to the etching apparatus iA by a transport mechanism as will be described later, and is placed on the RF electrode S, and the pulp (r-) pulp G is placed on the RF electrode S.
, close. Etching device A at 5X10-'Torr
After exhausting the air to a pressure of
The P-type polycrystalline silicon substrate a2 is etched by about 2 μm by generating a TorrRF power source. After the etching has been completed, the silicon substrate a2 is subjected to P8G film formation. Open the Gutpalg G2 and transport the silicon substrate 1□ to the PEG film forming apparatus B using the transport mechanism. At this time, the susceptor wire 2 for holding the substrate can be heated and can be moved up and down as shown by the arrow. The silicon substrate a2 can be easily placed on the susceptor because it is at the same height as the transport mechanism. Move the finished P-type polycrystalline silicon substrate a placed on the susceptor 2 upwards and fix it in place. -) Close pulp G2. And in this device B there is a sg2 for example 8iH4.
+PH.

+02ガスを導入し、圧力を0.5 Torrに保ち、
RF電源によりRFコイルを加熱して減圧CVDt行な
いP2O膜を15001前記シリコン基板&3 上に形
成させ、次いで81H4+ 0□ガス中で同様に圧力0
.5 Torr %  基板温g400℃のもとで、P
8G膜上に8i02t”1000X形成させノ9シベー
シ、ン膜とする。 PSGおよび8102膜形成終了後
、前記シリコン基板a、はサセプター2を降下させ、r
−トパルプG、を開き搬送機構によシ低圧下にある予備
1i1Y に運び込みf−)パルプG、を閉じる。
Introduce +02 gas and keep the pressure at 0.5 Torr.
A P2O film was formed on the 15001 silicon substrate &3 by heating the RF coil with an RF power supply and performing low pressure CVD, and then the same pressure was applied in 81H4+ 0□ gas.
.. 5 Torr % At a substrate temperature of 400°C, P
An 8i02t"1000X film is formed on the 8G film to form a nine-dimensional film. After the PSG and 8102 films are formed, the silicon substrate a lowers the susceptor 2, and
- Open the pulp G, and transport it to the reserve 1i1Y under low pressure by the conveying mechanism.f-) Close the pulp G.

運び込まれたP8O、8102膜の形成されたP形多結
ムシリコン基板a4はこの予−室Y2の中で冷却する。
The transported P-type polycrystalline silicon substrate a4 on which the P8O and 8102 films are formed is cooled in this pre-chamber Y2.

冷却した前記シリコン基板a4を、y −トパルプG4
を開いてリン拡散装置Cの中に搬送機構により運び込む
、運び込まれた前記シリコン基板a、は、PSG膜形膜
形成装置間様矢印のごとく上下可能なサセプター、の上
に置かれ、所定の位置まで上げられる。f)パルプG4
は閉じである。そしてこの装置Cの中にガス匂、例えば
N2+0□を導入し圧力10 Torrのもとで、RF
電源によるRFコイルにより800℃に加熱して、前記
シリコン基板a5内部にP2O5[中のリンを0.8μ
拡散させP−N接合を形成する。その後、シリコン基板
a5を冷却した彼、r−)パルプG5を開き同様に搬送
機構により、エツチング装置りに運び入れてRF電極S
4上に置き拡散の終了したPSGおよびSlO□膜のエ
ツチングをこの装置内で行なう。即ちこの装置りにエツ
チングガスg4、例えばCF4+H2を導入し、圧力0
.4 TorrにおいてRF電源によシデラズiを発生
させ、810□およびPSG膜のエツチングを行なう、
エツチング終了後前記シリコン基板a4をr−)パルブ
G4を開いて水素プラズマ処理装置Eに搬送機構により
運び込み、矢印のごとく上下可能であり且つ前記シリコ
ン基板a7を加熱可能なサセグタ15に置く、水素プラ
ズマ処理は、水素ガスg。
The cooled silicon substrate a4 is processed into y-topulp G4.
The carried silicon substrate a, which is opened and carried into the phosphorus diffusion apparatus C by a transport mechanism, is placed on a susceptor that can be moved up and down as shown by the arrow in the PSG film forming apparatus, and is placed at a predetermined position. It can be raised to f) Pulp G4
is closed. Then, a gas odor, for example, N2+0□, is introduced into this apparatus C, and under a pressure of 10 Torr, RF
It is heated to 800°C by an RF coil powered by a power supply, and 0.8μ of phosphorus in P2O5 is added to the inside of the silicon substrate a5.
Diffusion to form a PN junction. Thereafter, after cooling the silicon substrate a5, the r-) pulp G5 is opened and transported to the etching device using the same transport mechanism, and the RF electrode S
Etching of the PSG and SlO□ films placed on the substrate 4 and after completion of diffusion is performed in this apparatus. That is, an etching gas G4, for example, CF4+H2, is introduced into this equipment, and the pressure is reduced to 0.
.. Generate sideraz i using an RF power supply at 4 Torr to etch the 810□ and PSG films.
After the etching is completed, the silicon substrate a4 is opened in the r-) pulse G4, carried to the hydrogen plasma processing apparatus E by a transport mechanism, and placed on a sussegrator 15 which can be moved up and down as shown by the arrow and which can heat the silicon substrate a7. The treatment is hydrogen gas g.

を導入し、圧力1. OTorr s基板温1i:30
0cのもとでRF電源によりH2fラズマを発生させ、
且つ陰極である単結晶シリコンbKバイアスを例えば1
00V印加させながらプラズマ処理を行なう。プラズマ
処理終了後そのシリコン基板a7を冷却し、f−)パル
プG、を開き予備室Y。
was introduced, and the pressure was increased to 1. OTorr s Substrate temperature 1i: 30
Generate H2f lasma by RF power supply under 0c,
In addition, the monocrystalline silicon bK bias, which is the cathode, is set to 1, for example.
Plasma processing is performed while applying 00V. After the plasma treatment is completed, the silicon substrate a7 is cooled, and f-) the pulp G is opened and placed in the preliminary chamber Y.

るまで連続的に行ない、全て終了した後、カモ、トc2
を予備室Y、から取り出し、次の工程である電極形成を
行ない太陽電池は完成である。
Do this continuously until the
is taken out from the preliminary chamber Y, and the next step, electrode formation, is carried out to complete the solar cell.

ところで、一連の工程を基板を大気にふれさせることな
く行なわせるためには、基板を装置から装置へ移動させ
る機構が重畳となるが、第2図はその搬送機構の一例を
示し九ものである。
By the way, in order to carry out a series of steps without exposing the substrate to the atmosphere, the mechanisms for moving the substrate from one device to another must be superimposed, and Figure 2 shows an example of such a transfer mechanism. .

1m、Ibはf−)パルプであり、8aはPSG膜形成
装置、8bはリン拡散装置である。基板3を保持する基
板ホルダ4は、ベルト駆動装置jl a e 9 bが
矢印のように回転してベルト6が移動することにより、
ガイド2の上を矢印のように移動する。また前記ホルダ
4はシャフト7によって矢印のように1800回転する
ことができ方向転換が可能であるうえ、上下にも移動で
きる構造となっている。また搬送室5には真空ポンダを
設けることが可能である。この搬送機構を使用した場合
の簡単な1例をあげると、第1図にあるPSG膜形成装
置Bがらリン拡散装@Cへ移動させる場合、この搬送機
構は予備室Y2内に設けられている。PEG g形成終
了後% PSG膜形成装置8mから基板を運び出すため
にデートパルプ1aを開く。この時基板ホルダ4は前記
装置8aを向いている。ベルト駆動装置9a。
1m, Ib is f-) pulp, 8a is a PSG film forming device, and 8b is a phosphorus diffusion device. The substrate holder 4 holding the substrate 3 is moved by the movement of the belt 6 by the rotation of the belt drive device as shown by the arrow.
Move on guide 2 in the direction of the arrow. Further, the holder 4 can be rotated by the shaft 7 by 1800 rotations as shown by the arrow, and can change direction as well as move up and down. Moreover, it is possible to provide a vacuum pumper in the transfer chamber 5. To give a simple example of using this transport mechanism, when moving the PSG film forming apparatus B shown in Fig. 1 to the phosphorus diffusion apparatus @C, this transport mechanism is provided in the preliminary chamber Y2. . After the completion of PEG g formation, the date pulp 1a is opened to carry out the substrate from the PSG film forming apparatus 8m. At this time, the substrate holder 4 is facing the device 8a. Belt drive device 9a.

9bによりベルト6が左方向へ移動すると同時に前記ホ
ルダ4もガイド2の上を左方向へ移動し前記装@ 8 
a内に入9込み基板位置でストップし基板を保持する。
9b moves the belt 6 to the left, and at the same time, the holder 4 also moves to the left on the guide 2, and the mounting @ 8
9.Enter inside a and stop at the board position to hold the board.

その後前記ホルダ4を右方向に移動させ所定の位置まで
移動するとストップする。この後グー)パルプ1aを閉
じる。
Thereafter, the holder 4 is moved rightward to a predetermined position and then stopped. After this, close the pulp 1a.

次に基板ホルダ4はシャフト20回転により180°方
向転換してリン拡散装置8bに向いた位置でスト、デす
る。ここでデートパルプ1bを開き同様にベルト駆動装
置9m、9bによってベルト6を右方向に移動させるこ
とにより、基板ホルダ4もガイド2の上を右方向に移動
し、リン拡散装置8bの基板の所定位置でスト、ゾする
。基板を所定位置に置いた後、前記ホルダ4は左方向搬
送室5に戻る。最後にr−)パルプIbを閉じて、PS
G膜形成装置からリン拡散装置への大気をやぶらない移
動が終了する。
Next, the substrate holder 4 is rotated 180° by 20 rotations of the shaft and is moved to a position facing the phosphorus diffusion device 8b. Here, by opening the date pulp 1b and similarly moving the belt 6 to the right by the belt drive devices 9m and 9b, the substrate holder 4 is also moved to the right on the guide 2, and the substrate of the phosphorus diffusion device 8b is moved to the right. I strike and tremble at the position. After placing the substrate in a predetermined position, the holder 4 returns to the leftward transfer chamber 5. Finally r-) Close pulp Ib and PS
The transfer from the G film forming device to the phosphorus diffusion device without disturbing the atmosphere is completed.

上記したとおり、搬送機構の1例を示したが、このよう
な機構を備えることにより、本実施例のl連の工程を大
気にふれさせることなく行なうことができる。
As described above, one example of the conveyance mechanism has been shown, but by providing such a mechanism, the series of steps of this embodiment can be performed without exposure to the atmosphere.

基板ホルダ4による多結晶シリコン基板3の受は渡しは
具体的には例えば第3図のように行われる。即ち、多結
晶シリコン基板3は石英製のっぽ付きの固定台10に固
定された状態にあり、基板ホルダ4はコの字形になって
いて、これを第3図(b)に示すように固定台10のつ
ばの下に挿入して固定台9と共に基板3を持ち上げて運
ぶようにすればよい。
Specifically, the polycrystalline silicon substrate 3 is received and transferred by the substrate holder 4 as shown in FIG. 3, for example. That is, the polycrystalline silicon substrate 3 is in a state of being fixed to a fixing base 10 made of quartz with a lip, and the substrate holder 4 is U-shaped, as shown in FIG. 3(b). What is necessary is to insert it under the collar of the board 10 and lift and carry the board 3 together with the fixing base 9.

上記実施例における特徴は、多結晶シリコンのエツチン
グから水素プラズマ処理までの一連の工程を、基板を大
気にふれさせる仁となく連続的に行なえるために大幅な
時間短縮となり、さらに大気にふれさせることがないた
めに、一連の工程を常にクリーンな状態で行なうことが
できることから、工程の信頼性、再現性の向上を計るこ
とができるところにある。さらに本発明の効果を詳述す
ると、工、チングをプラズマ中で行なうために工、チン
グむらがほとんどなくなり、また工、チングに使用する
ガスや液体のエツチング液も少なくてすむ、不純物を含
む膜を形成させるための減圧CVDによるPSG膜形成
においては、常圧CVD Icない均質な膜形成が可能
であり、また不純物濃度の制御が容易である、を九PC
G膜形成が低温且つ短時藺゛で行なえるためコストダウ
ンに大きく寄与することができる。さらに多結晶シリコ
ンに存在する欠陥や局在準位は、水素プラズマ処理する
ことにより粒界の未結合手や不純物勢が水素化されて、
等倹約に減少し多結晶シリコン太陽電池の特性が向上す
る。
The feature of the above embodiment is that the series of steps from polycrystalline silicon etching to hydrogen plasma treatment can be carried out continuously without exposing the substrate to the atmosphere, resulting in a significant time reduction, and further exposing the substrate to the atmosphere. Since this process can always be performed in a clean state, the reliability and reproducibility of the process can be improved. Further details of the effects of the present invention are that since the etching and etching are performed in plasma, there is almost no unevenness in etching and etching, and the amount of gas and liquid etching solution used for etching and etching can be reduced. In forming a PSG film by low pressure CVD, it is possible to form a homogeneous film that is not possible with normal pressure CVD, and the impurity concentration can be easily controlled.
Since the G film can be formed at low temperature and in a short period of time, it can greatly contribute to cost reduction. Furthermore, defects and localized levels existing in polycrystalline silicon are hydrogenated by dangling bonds and impurity groups at grain boundaries by hydrogen plasma treatment.
The properties of polycrystalline silicon solar cells are improved by reducing the parsimony.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例の製造装置を概略的に示した
図、 第2図はその搬送機構の1例を示した図、第3図(a)
 、 (b)ti同じく基板の受は渡しの様子を説明す
るための図である。 A・・・工、チング装置、B・・・PEG膜形成装置、
C・・・リン拡散装置、D・・・工、チング装置、E・
・・水素グラズマ処理装置、a1+ azp Iksm
 *4e jL5+a6* a7+ 16・・・多結晶
シリコン基板、b・・・単結晶シリコン!1411 +
 62 ””カセット%G1p G2+ G5*G4.
 G5t G6. G、−グートノ1ルプ% g1+ 
g21 g31g41g5・・・ガス、8,184・・
RF電極、12+ 83+I5・・・サセプタ、Yl、
 Y2. Y、・・・予備室、RF・・・RF電源、J
a、Ib・・・f−)パルプ、2・・・ガイド、3・・
・基板、4・・・基板ホルダ、5・・・搬送室、6・・
・ベルト、1・・・シャツ)、Jim・・・PSG 膜
形成装置、8b・・・リン拡散装置、9m、9b・・・
ベルト駆動装置。
FIG. 1 is a diagram schematically showing a manufacturing apparatus according to an embodiment of the present invention, FIG. 2 is a diagram showing an example of its conveyance mechanism, and FIG. 3(a)
, (b)ti is a diagram for explaining how the board is transferred. A...Engineer, coating device, B...PEG film forming device,
C... Phosphorus diffusion device, D... Engineering, Ching device, E.
・Hydrogen glazma processing equipment, a1+ azp Iksm
*4e jL5+a6* a7+ 16...Polycrystalline silicon substrate, b...Single crystal silicon! 1411 +
62 ””Cassette %G1p G2+ G5*G4.
G5t G6. G, - Gutonol 1% g1+
g21 g31g41g5...Gas, 8,184...
RF electrode, 12+ 83+I5...susceptor, Yl,
Y2. Y...Preliminary room, RF...RF power supply, J
a, Ib...f-) Pulp, 2... Guide, 3...
・Substrate, 4...Substrate holder, 5...Transfer chamber, 6...
・Belt, 1...shirt), Jim...PSG film forming device, 8b...phosphorus diffusion device, 9m, 9b...
Belt drive.

Claims (1)

【特許請求の範囲】[Claims] 低圧下において多結晶シリコン基板をプラズマ中でエツ
チングする工程、エツチングされた多結晶シリコン基板
に減圧CVDあるいはプラズマCVDにより不純物を含
んだ絶縁膜を形成する工程、形成された絶縁膜から前記
シリコン基板へ不純物を拡散させてP−N接合を形成す
る工程、および水素プラズマ中で前記シリコン基板を熱
処理する工程を、前記シリコン基板を大気にふれさせる
ことなく連続的に行なうことを特徴とする太陽電池の製
造方法。
A step of etching a polycrystalline silicon substrate in plasma under low pressure, a step of forming an insulating film containing impurities on the etched polycrystalline silicon substrate by low pressure CVD or plasma CVD, and a step of transferring the formed insulating film to the silicon substrate. A solar cell characterized in that a step of diffusing impurities to form a P-N junction and a step of heat-treating the silicon substrate in hydrogen plasma are performed continuously without exposing the silicon substrate to the atmosphere. Production method.
JP56200287A 1981-12-12 1981-12-12 Manufacture of polycrystalline silicon solar battery Pending JPS58101478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56200287A JPS58101478A (en) 1981-12-12 1981-12-12 Manufacture of polycrystalline silicon solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56200287A JPS58101478A (en) 1981-12-12 1981-12-12 Manufacture of polycrystalline silicon solar battery

Publications (1)

Publication Number Publication Date
JPS58101478A true JPS58101478A (en) 1983-06-16

Family

ID=16421798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56200287A Pending JPS58101478A (en) 1981-12-12 1981-12-12 Manufacture of polycrystalline silicon solar battery

Country Status (1)

Country Link
JP (1) JPS58101478A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2594102A1 (en) * 1986-02-12 1987-08-14 Stein Heurtey AUTOMATED FLEXIBLE FAST THERMOCHEMICAL PROCESSING FACILITY
US4693777A (en) * 1984-11-30 1987-09-15 Kabushiki Kaisha Toshiba Apparatus for producing semiconductor devices

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4693777A (en) * 1984-11-30 1987-09-15 Kabushiki Kaisha Toshiba Apparatus for producing semiconductor devices
FR2594102A1 (en) * 1986-02-12 1987-08-14 Stein Heurtey AUTOMATED FLEXIBLE FAST THERMOCHEMICAL PROCESSING FACILITY
US4790750A (en) * 1986-02-12 1988-12-13 Stein Heurtey Automated flexible installation for a rapid thermochemical treatment

Similar Documents

Publication Publication Date Title
JP2755369B2 (en) Gas phase doping of semiconductor materials under reduced pressure in a radiantly heated cold wall reactor
US8039051B2 (en) Method and apparatus for hydrogenation of thin film silicon on glass
JP4439602B2 (en) Manufacturing method of semiconductor device
KR19980036973A (en) Method of manufacturing polycrystalline thin film using microwave
JPS58101478A (en) Manufacture of polycrystalline silicon solar battery
JP3510973B2 (en) Method for manufacturing thin film semiconductor device
JPH0443642A (en) Formation of gate insulating film
JPH0322527A (en) Manufacture of semiconductor device
JPH10270434A (en) Semiconductor wafer cleaning method for oxide film forming method
JPH05129202A (en) Thin film semiconductor device and its manufacture and silicon film
JP2840802B2 (en) Method and apparatus for manufacturing semiconductor material
KR100221352B1 (en) Method of forming poly-crystal silicon and apparatus for forming thereof
JP3730185B2 (en) Thin film transistor manufacturing method
JPH10223911A (en) Thin film semiconductor device
JPS63116435A (en) Manufacture of mos semiconductor device
JP2000243802A (en) Manufacture and equipment of semiconductor device
JPH03136320A (en) Manufacture of semiconductor device
JPH1041513A (en) Method and device for manufacture of semiconductor element
JPS60241268A (en) Manufacture of thin film transistor
JPH0376021B2 (en)
JPH03173131A (en) Manufacture of semiconductor device
JP2002009088A (en) Thin film semiconductor device and method of manufacturing the same, and silicon film
JP2934665B2 (en) Method for manufacturing semiconductor device
JPH04291729A (en) Manufacture of semiconductor device
JPH01102924A (en) Heat treatment of semiconductor substrate