JPH05129202A - Thin film semiconductor device and its manufacture and silicon film - Google Patents
Thin film semiconductor device and its manufacture and silicon filmInfo
- Publication number
- JPH05129202A JPH05129202A JP3293328A JP29332891A JPH05129202A JP H05129202 A JPH05129202 A JP H05129202A JP 3293328 A JP3293328 A JP 3293328A JP 29332891 A JP29332891 A JP 29332891A JP H05129202 A JPH05129202 A JP H05129202A
- Authority
- JP
- Japan
- Prior art keywords
- film
- thin film
- silicon
- silicon film
- semiconductor device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Thin Film Transistor (AREA)
- Recrystallisation Techniques (AREA)
- Plasma Technology (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はアクティブマトリックス
液晶ディスプレイ等に応用される薄膜トランジスタや三
次元LSIデバイスなど、絶縁性物質上に作成される薄
膜半導体装置と、その製造方法及びシリコン膜に関する
もので有り、詳しくは製造工程の最高温度が600℃程
度以下の低温プロセスで形成する薄膜半導体装置の製造
方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film semiconductor device formed on an insulating material such as a thin film transistor or a three-dimensional LSI device applied to an active matrix liquid crystal display, a manufacturing method thereof and a silicon film. More specifically, the present invention relates to a method of manufacturing a thin film semiconductor device which is formed by a low temperature process in which the maximum temperature of the manufacturing process is about 600 ° C. or less.
【0002】[0002]
【従来の技術】近年、液晶ディスプレイの大画面化、高
解像度化に伴い、その駆動方式は単純マトリックス方式
からアクティブマトリックス方式へ移行し、大容量の情
報を表示出来るように成りつつ有る。アクティブマトリ
ックス方式は数十万を越える画素を有する液晶ディスプ
レイが可能で有り、各画素毎にスイッチングトランジス
タを形成するもので有る。各種液晶ディスプレイの基板
としては、透過型ディスプレイを可能ならしめる溶融石
英板やガラスなどの透明絶縁基板が使用されている。2. Description of the Related Art In recent years, with the increase in screen size and resolution of liquid crystal displays, the drive system has been changed from a simple matrix system to an active matrix system, and a large amount of information can be displayed. The active matrix system can be used for a liquid crystal display having more than several hundred thousand pixels, and a switching transistor is formed for each pixel. As a substrate for various liquid crystal displays, a transparent insulating substrate such as fused quartz plate or glass that enables a transmissive display is used.
【0003】しかしながら、表示画面の拡大化や低価格
化を進める場合には絶縁基板として安価な通常ガラスを
使用するのが必要不可欠で有る。従って、この経済性を
維持して尚、アクティブマトリックス方式の液晶ディス
プレイを動作させる薄膜トランジスタを安価なガラス基
板上に安定した性能で形成する事が可能な技術が望まれ
ていた。However, in order to enlarge the display screen and reduce the price, it is essential to use inexpensive ordinary glass as an insulating substrate. Therefore, there has been a demand for a technique capable of forming a thin film transistor for operating an active matrix type liquid crystal display on an inexpensive glass substrate with stable performance while maintaining the economical efficiency.
【0004】薄膜トランジスタのチャンネル部半導体層
としては、通常アモルファス・シリコンや多結晶シリコ
ンが用いられているが、駆動回路迄一体化して薄膜トラ
ンジスタで形成しようとする場合には動作速度の速い多
結晶シリコンが有利である。Amorphous silicon or polycrystalline silicon is usually used for the channel semiconductor layer of the thin film transistor. However, when the drive circuit is integrated into a thin film transistor, polycrystalline silicon having a high operating speed is used. It is advantageous.
【0005】従来この様な薄膜トランジスタを作成する
場合、チャンネル部シリコン層を形成した後、ゲート絶
縁層を形成するには基板を酸素(O2)、笑気ガス(N2
O)、水蒸気(H2O)などを含む酸化性雰囲気下に挿
入し、その温度を800℃から1100℃程度の高温と
してチャンネル部シリコン層の一部を酸化し、ゲート絶
縁層を形成する熱酸化法が用いられていた。一方、多結
晶シリコンを用いた薄膜半導体装置を安価な通常ガラス
基板の使用に耐え得る600℃程度以下の工程最高温度
で作成するのに種々の方法が試みられている。例えば、
チャンネル部半導体層を減圧気相化学堆積法(LPCV
D法)で形成した後、ゲート絶縁膜を電子サイクロトロ
ン共鳴プラズマCVD法(ECR−PECVD法)に依
り形成し、更に水素プラズマ照射などの水素化処理を施
す方法。或いはチャンネル部半導体層にアモルファス・
シリコン薄膜を堆積し、その後600℃24時間程度の
熱処理を施し、次に常圧気相化学堆積法(APCVD
法)にてゲート絶縁膜を形成し、水素化処理を行う方法
などが有る。(Japanese J, Appl,P
hys,30L 84 ’91)Conventionally, in the case of forming such a thin film transistor, after forming a silicon layer of a channel portion, a substrate of oxygen (O 2 ) or laughing gas (N 2 ) is used to form a gate insulating layer.
O), water vapor (H 2 O), etc., and the temperature is set to a high temperature of about 800 ° C. to 1100 ° C. to oxidize a part of the channel part silicon layer to form a gate insulating layer. The oxidation method was used. On the other hand, various methods have been attempted to manufacture a thin film semiconductor device using polycrystalline silicon at a maximum process temperature of about 600 ° C. or less that can withstand the use of an inexpensive ordinary glass substrate. For example,
The channel part semiconductor layer is formed by the low pressure chemical vapor deposition method (LPCV).
D method), a gate insulating film is formed by an electron cyclotron resonance plasma CVD method (ECR-PECVD method), and then hydrogenation treatment such as hydrogen plasma irradiation is performed. Alternatively, the channel semiconductor layer may be amorphous.
After depositing a silicon thin film, heat treatment is performed at 600 ° C. for about 24 hours, and then atmospheric pressure chemical vapor deposition (APCVD)
Method), a gate insulating film is formed, and hydrogenation treatment is performed. (Japanese J, Appl, P
hys, 30L 84 '91)
【0006】[0006]
【発明が解決しようとする課題】しかしながら、先に述
べた従来の方法に於いては、数多くの問題が指摘されて
いる。まず第一に熱酸化法に依るSiO2膜の形成で
は、その形成に少なくとも800℃以上の高温熱処理が
伴う為、酸化膜より下部に位置する薄膜層や基板などの
耐熱性が問題となる。例えば大面積液晶ディスプレイの
スイッチング・トランジスタを作成する場合、基板とし
ては非常に高価な溶融石英板以外はこの様な高温に耐え
得ない。又、三次元LSI素子に於いても下層部トラン
ジスタが高温で劣化する為、この熱酸化法は事実上使用
不可能となっている。However, many problems have been pointed out in the above-mentioned conventional methods. First of all, in the formation of a SiO 2 film by the thermal oxidation method, the heat treatment of at least 800 ° C. or higher accompanies the formation thereof, so that the heat resistance of the thin film layer or the substrate located below the oxide film becomes a problem. For example, when making a switching transistor of a large area liquid crystal display, a substrate such as a fused silica plate, which is very expensive, cannot withstand such a high temperature. Further, even in a three-dimensional LSI device, the lower layer transistor is deteriorated at a high temperature, so that this thermal oxidation method cannot be practically used.
【0007】次にチャンネル部半導体層をLPCVD法
で形成し、ゲート絶縁膜をECR−PECVD法に依り
形成し、更に水素プラズマ処理を行う方法に於いては移
動度が4〜5cm2 /V.secと低く、薄膜半導体装置
として未だ不十分で有る。加えて薄膜半導体装置の特性
を向上させる為に行われている水素化処理に依り、薄膜
半導体装置を構成する各種薄膜の一部がエッチングされ
て沢山有る薄膜半導体装置の幾つかが破壊されて仕舞う
と言った問題が有る。又、チャンネル部半導体層にアモ
ルファス・シリコン薄膜を堆積し、その後600℃程度
の熱処理を施し、APCVD法にてゲート絶縁膜を形成
し、更に水素プラズマ照射等の水素化処理を行う方法に
於いては、界面捕獲準位が1012程度と大きく、又デプ
レッション型の半導体装置特性を示すなど、薄膜半導体
装置として未だ不十分で有る。又、先と同様矢張水素化
処理に伴う問題が残り、大面積に均一に且つ安定的に薄
膜半導体装置を作成する事が出来なかった。Next, the channel semiconductor layer is formed by the LPCVD method, the gate insulating film is formed by the ECR-PECVD method, and further the hydrogen plasma treatment is performed, the mobility is 4-5 cm 2 / V. It is as low as sec, which is still insufficient as a thin film semiconductor device. In addition, due to the hydrogenation process that is performed to improve the characteristics of the thin film semiconductor device, some of the various thin films that make up the thin film semiconductor device are etched and some of the many thin film semiconductor devices are destroyed. I have a problem. In addition, a method of depositing an amorphous silicon thin film on the semiconductor layer of the channel part, then performing heat treatment at about 600 ° C., forming a gate insulating film by the APCVD method, and further performing hydrogenation treatment such as hydrogen plasma irradiation. Has a large interface trap level of about 10 12 and exhibits depletion type semiconductor device characteristics, and is still insufficient as a thin film semiconductor device. Further, as in the previous case, the problems associated with the Yahari hydrogenation process remain, and it is not possible to uniformly and stably form a thin film semiconductor device in a large area.
【0008】従って、薄膜半導体装置としては移動度が
大きく、同時に清浄MOS界面を有して界面捕獲準位が
低く、且つデプレッションを呈さぬ物が求められて居
り、しかもこうした薄膜半導体装置を作成する工程で水
素化処理の必要が無く、先述の如き良好な薄膜半導体装
置を大面積に均一且つ安定的に作成する製造方法が求め
られていた。Therefore, there is a demand for a thin film semiconductor device having a high mobility, at the same time having a clean MOS interface and a low interface trap level, and exhibiting no depletion. Moreover, such a thin film semiconductor device is produced. There has been a demand for a manufacturing method that does not require hydrogenation treatment in the process and uniformly and stably produces a good thin film semiconductor device as described above in a large area.
【0009】本発明は上記の事情に鑑みてなされた物
で、その目的とする所はMIS型薄膜半導体装置に於い
て、工程最高温度が600℃程度以下と言う低温工程で
良好な半導体装置特性を有する薄膜半導体装置と、この
様な薄膜半導体装置を大面積に渡り均一且つ安定的に製
造する方法を提供する事に有る。The present invention has been made in view of the above circumstances, and its object is to obtain good semiconductor device characteristics in a low temperature process in which the maximum process temperature is about 600 ° C. or less in a MIS thin film semiconductor device. And a method of manufacturing such a thin film semiconductor device uniformly and stably over a large area.
【0010】[0010]
【課題を解決するための手段】上記目的は、少なくとも
表面が絶縁性物質で有る基板の一方面上にチャンネル部
シリコン膜半導体層を形成し、該半導体層上にゲート絶
縁層、ゲート電極を形成したMIS型電界効果トランジ
スタを構成する薄膜半導体装置に於いて、チャンネル部
シリコン膜半導体層を構成するシリコン膜を堆積した
後、600℃以下の温度で熱処理する工程と、ゲート絶
縁膜をECR−PECVD法で形成する工程を含む様な
製造方法、或いはチャンネル部シリコン膜半導体層を構
成するアモルファス・シリコン膜を堆積した後、ゲート
絶縁層を形成する前に該アモルファス・シリコン膜上に
酸素プラズマを照射し、その後600℃以下の温度で熱
処理する様な工程を含む製造方法に依り達成される。The above object is to form a channel portion silicon film semiconductor layer on one surface of a substrate at least the surface of which is an insulating material, and to form a gate insulating layer and a gate electrode on the semiconductor layer. In the thin film semiconductor device forming the MIS field effect transistor described above, a step of depositing a silicon film forming a channel portion silicon film semiconductor layer and then performing a heat treatment at a temperature of 600 ° C. or lower, and an ECR-PECVD of the gate insulating film. Method including a step of forming by a method, or irradiating oxygen plasma on the amorphous silicon film after forming an amorphous silicon film forming a channel portion silicon film semiconductor layer and before forming a gate insulating layer. And then heat treatment at a temperature of 600 ° C. or lower.
【0011】[0011]
【実施例】(実施例1)以下本発明の実施例を図面を用
いて詳述するが、本発明が以下の実施例に限定されるも
のでは無い。EXAMPLES Example 1 Examples of the present invention will be described in detail below with reference to the drawings, but the present invention is not limited to the following examples.
【0012】図1(a)〜(e)は本実施例1に於ける
自己非整合型スタガード構造のMIS型電界効果トラン
ジスタを構成するシリコン薄膜半導体装置の製造工程を
断面で示した図で有る。1 (a) to 1 (e) are sectional views showing a manufacturing process of a silicon thin film semiconductor device which constitutes a MIS field effect transistor having a self-unaligned staggered structure according to the first embodiment. ..
【0013】本実施例1では、下地基板101として2
35mm□の溶融石英ガラスを用いたが、600℃の工程
最高温度に耐え得る基板又は下地物質で有るならば、そ
の種類や大きさは無論問われない。例えば通常ガラス基
板の他にシリコンウェハーなどの半導体基板及びそれら
を加工したLSI、三次元LSIや、或いはシリコン・
カーバイト、アルミナ、窒化アルミニウムなどのセラミ
ックス基板なども下地基板として可能で有る。In the first embodiment, 2 is used as the base substrate 101.
Although 35 mm square fused silica glass was used, the kind and size of the substrate or base material is not limited as long as it is a substrate or base material that can withstand the maximum process temperature of 600 ° C. For example, in addition to a normal glass substrate, a semiconductor substrate such as a silicon wafer and an LSI obtained by processing them, a three-dimensional LSI, or a silicon substrate.
Ceramic substrates such as carbide, alumina, and aluminum nitride can also be used as the base substrate.
【0014】まずアセトン又はメチル・エチル・ケト
ン,メチル・イソ・ブチル・ケトンやシクロヘキサノン
などの有機溶剤中に下地基板101を浸し、超音波洗浄
を行う。洗浄後窒素中又は減圧下にて乾燥を施し、更に
エタノールによる超音波洗浄を行った後窒素バブリング
されている純水にて水洗を施す。次に下地基板101を
沸騰している濃度60%の硝酸中に5分間浸し、更に窒
素バブリングされている純水中で洗浄した。基板として
金属など酸に依り腐食されたり、変質して仕舞う物質を
用いる場合、この硝酸に依る洗浄は必要とされない。又
この強酸に依る洗浄では酸として硝酸の他に硫酸なども
可能で有る。First, the base substrate 101 is immersed in an organic solvent such as acetone, methyl-ethyl-ketone, methyl-iso-butyl-ketone, or cyclohexanone, and ultrasonic cleaning is performed. After cleaning, the product is dried in nitrogen or under reduced pressure, ultrasonically cleaned with ethanol, and then rinsed with pure water with nitrogen bubbling. Next, the base substrate 101 was immersed in boiling nitric acid having a concentration of 60% for 5 minutes, and further washed in pure water with nitrogen bubbling. When a material such as a metal that is corroded by acid or deteriorates and is used as a substrate is used, the washing with nitric acid is not required. Further, in the washing with this strong acid, sulfuric acid or the like can be used as the acid in addition to nitric acid.
【0015】こうして洗浄された石英基板上に常圧気相
化学堆積法(APCVD法)で下地保護膜となる二酸化
硅素膜(SiO2 膜)102を2000Å堆積した。こ
の下地SiO2 膜102は前述の如き種々多様な物質を
基板として用いる際、後に堆積されるシリコン薄膜の膜
質、及びそれを用いて構成される薄膜トランジスタの性
能を安定化する為に必要で有る。と同時に、例えば基板
101として通常ガラスを用いた場合、ガラス中に含ま
れているナトリウムなどの可動イオンが、又基板101
として各種セラミック板を用いた際には基板中に添加さ
れている焼結助材原料などがトランジスタ部に拡散混入
するのを防ぐ役割をも演じている。又金属板を基板10
1として用いる場合は、絶縁性を確保する為に下地Si
O2 は必要不可欠で有る。又、三次元LSI素子では、
トランジスタ間や配線間の層間絶縁膜に相当している。
下地SiO2 膜102堆積時の基板温度は300℃で、
窒素に依り20%に希釈されたシラン600SCCMを84
0SCCMの酸素と共にAPCVD法で堆積した。この時の
SiO2膜の堆積速度は3.9Å/secで有った。2000 Å of silicon dioxide film (SiO 2 film) 102 as a base protection film was deposited on the thus cleaned quartz substrate by atmospheric pressure chemical vapor deposition (APCVD method). The underlying SiO 2 film 102 is necessary to stabilize the film quality of a silicon thin film to be deposited later and the performance of a thin film transistor using the same when using various substances as described above as a substrate. At the same time, for example, when ordinary glass is used as the substrate 101, mobile ions such as sodium contained in the glass are also generated in the substrate 101.
Also, when various ceramic plates are used, they also play a role of preventing the sintering aid raw material added to the substrate from diffusing into the transistor section. In addition, the metal plate is the substrate 10
When used as 1, the underlying Si layer is used to ensure insulation.
O 2 is essential. Moreover, in the three-dimensional LSI element,
It corresponds to an interlayer insulating film between transistors and between wirings.
The substrate temperature at the time of depositing the underlying SiO 2 film 102 is 300 ° C.
84 silane 600 SCCM diluted to 20% with nitrogen
It was deposited by APCVD with 0 SCCM oxygen. At this time, the deposition rate of the SiO 2 film was 3.9 Å / sec.
【0016】続いてドナー又はアクセプターとなる不純
物を含んだシリコン薄膜103を減圧CVD法にて堆積
した。本実施例1ではn型トランジスタ作成を目指し不
純物としてリンを選んだが、n型ならばリン以外に5
族、6族の元素、P型ならばボロンを始めとして2族、
3族の元素が不純物元素として添加され得る。この不純
物を含んだシリコン薄膜103はいずれソース・ドレイ
ン領域となる部位で、本実施例1の如く不純物をCVD
法で添加する方法の他、まず最初に不純物を含まない真
性シリコン膜を形成して居き、後に気相或いは真性シリ
コン膜に接する固相より不純物を拡散させて添加する方
法や、不純物をイオン化して真性シリコン膜に打ち込む
方法などが有る。これら、真性シリコン膜を形成した後
拡散法やイオン打ち込み法で不純物を添加する手法を用
いると真性シリコン膜の所望の部位のみに不純物を添加
する事が可能となり、これにより例えばトランジスタの
ゲート電極端ととソース端又はドレイン端が自己整合し
たセルフ・アライン・トランジスタが可能となったり、
不純物添加濃度を各部位で変える事に依りシリコン膜中
の電流密度や比抵抗を変えて所望の部位のみに電流を流
す事などが可能となる。Then, a silicon thin film 103 containing impurities serving as a donor or an acceptor was deposited by a low pressure CVD method. In the first embodiment, phosphorus was selected as an impurity for the purpose of producing an n-type transistor.
Group 6 and 6 elements, if P type, boron and other groups 2,
Group 3 elements can be added as impurity elements. The silicon thin film 103 containing the impurities is to be a source / drain region at a site which is to be the source / drain regions.
In addition to the method of adding impurities, first, an intrinsic silicon film containing no impurities is first formed, and then the impurities are diffused and added from the vapor phase or the solid phase in contact with the intrinsic silicon film. Then, there is a method of implanting into the intrinsic silicon film. By using the method of adding impurities by the diffusion method or the ion implantation method after forming the intrinsic silicon film, it becomes possible to add the impurities only to a desired portion of the intrinsic silicon film. A self-aligned transistor whose source end or drain end is self-aligned becomes possible.
By changing the concentration of added impurities in each part, it is possible to change the current density and the specific resistance in the silicon film so that the current can flow only to the desired part.
【0017】本実施例1では不純物としてリンを選んだ
為、ホスフィン(PH3 )とシランを混合したガスを用
いて、不純物を含んだシリコン薄膜103を1500Å
堆積した。Since phosphorus is selected as the impurity in the first embodiment, the silicon thin film 103 containing impurities is 1500 Å using a gas in which phosphine (PH 3 ) and silane are mixed.
Deposited.
【0018】本実施例1では184.5lの容積を有す
る減圧CVD炉内にモノシランを200SCCM、ヘリウム
が99.5%でホスフィンが0.5%のヘリウム・ホス
フィン混合ガスを6SCCM、更にヘリウム100SCCMを流
し、堆積温度600℃、炉内圧力100mtorr で堆積し
た。この時の堆積速度は29.6Å/minで、成膜直
後のシート抵抗値は2,025Ω/□で有った。In Example 1, 200 SCCM of monosilane, 6 SCCM of helium / phosphine mixed gas of 99.5% of helium and 0.5% of phosphine, and 100 SCCM of helium were placed in a low pressure CVD furnace having a volume of 184.5 l. It was flown and deposited at a deposition temperature of 600 ° C. and a furnace pressure of 100 mtorr. At this time, the deposition rate was 29.6 Å / min, and the sheet resistance immediately after film formation was 2,025 Ω / □.
【0019】次に、前記シリコン薄膜上にレジストを形
成し、四弗化炭素(CF4 )と酸素(O2) の混合プラ
ズマに依り、前記薄膜をパターニングし、ソース・ドレ
イン領域103を形成した(図1(a))。続いて沸騰
硝酸中に五分間浸す洗浄で残留レジストなどの不純物を
取り除き、1.67%弗化水素酸に20秒浸してソース
・ドレイン領域103表面上の自然酸化膜を取り除き、
直ちに減圧CVD法でチャンネル部となるシリコン薄膜
を堆積した。Next, a resist is formed on the silicon thin film, and the thin film is patterned by using a mixed plasma of carbon tetrafluoride (CF 4 ) and oxygen (O 2 ) to form the source / drain regions 103. (FIG. 1 (a)). Subsequently, impurities such as residual resist are removed by washing in boiling nitric acid for 5 minutes, and then immersed in 1.67% hydrofluoric acid for 20 seconds to remove the natural oxide film on the surface of the source / drain region 103.
Immediately, a silicon thin film to be a channel portion was deposited by the low pressure CVD method.
【0020】この時減圧CVD反応炉の容積は184.
5lで、基板は反応炉中央付近に水平に置かれる。原料
ガス及びヘリウム・窒素・アルゴン・水素等の希釈ガス
は必要に応じて反応炉下部より炉内に導入され、反応炉
上部から排気される。石英ガラスで作られた反応炉の外
側には3ゾーンに分かれたヒーターが設置されて居り、
それらを独立に調整する事で反応炉内中央部付近に所望
の温度で均熱帯を形成する。この均熱帯は約350mmの
高さで広がり、その範囲内での温度のずれは、例えば6
00℃に設定した時0.2℃以内である。従って挿入基
板間の間隔を10mmとすれば1バッチで35枚の基板の
処理が可能で有る。本実施例1では20mm間隔で17枚
の基板を均熱帯内に設置した。At this time, the volume of the low pressure CVD reactor is 184.
At 5 l, the substrate is placed horizontally near the center of the reactor. The raw material gas and the dilution gas such as helium, nitrogen, argon, hydrogen, etc. are introduced into the furnace from the lower part of the reaction furnace and exhausted from the upper part of the reaction furnace as needed. Outside the reactor made of quartz glass, there are heaters divided into 3 zones,
By adjusting them independently, a soaking zone is formed near the center of the reactor at a desired temperature. This soaking zone spreads at a height of about 350 mm, and the temperature deviation within that range is, for example, 6
When set to 00 ° C, it is within 0.2 ° C. Therefore, if the distance between the inserted substrates is 10 mm, it is possible to process 35 substrates in one batch. In Example 1, 17 substrates were installed in the soaking zone at intervals of 20 mm.
【0021】排気はロータリーポンプとメカニカル・ブ
ースターポンプを直結して行い、反応炉内の圧力は測定
値がガスの種類に依存しない隔膜式圧力計(MKS社バ
ラトロン・マノメーター)に依り測定した。反応炉を5
50℃に保って、ガス導入用のバルブを閉じて両ポンプ
にて真空引きを行った場合、反応炉内圧は0mtorr
で有る為、背景真空度は悪くとも10-4torr程度以
下で有る。Exhaust was carried out by directly connecting a rotary pump and a mechanical booster pump, and the pressure in the reaction furnace was measured by a diaphragm pressure gauge (MKS Co. Baratron Manometer) whose measured value did not depend on the type of gas. 5 reactors
When the temperature was kept at 50 ° C, the gas inlet valve was closed, and both pumps were evacuated, the reactor internal pressure was 0 mtorr.
Therefore, the background vacuum degree is at most about 10 −4 torr.
【0022】ソース・ドレイン領域103が形成され、
該領域表面上の自然酸化膜を取り除かれた基板は、表側
を下向きとして直ちに減圧CVD炉内に挿入された。挿
入時の反応炉内温度は395℃から400℃程度に保た
れている。これはソース・ドレイン領域103上に自然
酸化膜が形成されるのを極力少なくする為で有るから、
挿入時の反応炉内温度は出来る丈低く有るのが望まし
い。例えば挿入時の反応炉内温度を室温とする事も可能
で有るが、この場合堆積温度迄反応炉内温度を昇温する
のに数時間以上費やし、又堆積後室温に戻すのに矢張り
数時間必要となる。基板挿入時に反応炉内には約4SL
M〜10SLMの窒素を流し反応炉内を不活性雰囲気に
保っている。更に反応炉内入り口付近には約6SLM〜
20SLMの窒素で窒素カーテンを形成し、基板挿入時
に空気が反応炉内に流れ込む事を最小限に止めている。
反応炉内に空気中の水分や酸素が入ると、これらは反応
炉内壁のSi層に吸着し、又はSiと反応して反応炉内
に残留し、チャンネル部となるシリコン膜堆積の際、脱
ガスとして現れ、堆積シリコン膜の膜品質を低下させる
原因となる。Source / drain regions 103 are formed,
The substrate from which the native oxide film on the surface of the region was removed was immediately inserted into the low pressure CVD furnace with the front side facing downward. The temperature inside the reaction furnace at the time of insertion is maintained at about 395 ° C to 400 ° C. This is to reduce the formation of a natural oxide film on the source / drain regions 103 as much as possible.
It is desirable that the temperature inside the reaction furnace during insertion be as low as possible. For example, it is possible to set the temperature in the reaction furnace at the time of insertion to room temperature, but in this case it takes several hours or more to raise the temperature in the reaction furnace to the deposition temperature, and the number of arrows to return to room temperature after deposition. It takes time. Approximately 4 SL in the reaction furnace when inserting the substrate
Nitrogen of M to 10 SLM is flowed to maintain the inside of the reaction furnace in an inert atmosphere. In addition, about 6 SLM near the entrance of the reactor
A nitrogen curtain is formed with 20 SLM of nitrogen to minimize the flow of air into the reaction furnace when the substrate is inserted.
When moisture and oxygen in the air enter the reaction furnace, they are adsorbed by the Si layer on the inner wall of the reaction furnace or react with Si and remain in the reaction furnace, and are removed during the deposition of the silicon film that becomes the channel part. It appears as a gas and causes deterioration of the film quality of the deposited silicon film.
【0023】基板挿入後、真空引き、漏洩検査を施し
た。漏洩検査では反応炉に通ずる全バルブを閉じて反応
炉を完全に孤立させて、反応炉内圧力の変化を調べた。
本実施例1では反応炉内温度が400℃で2分間の完全
孤立後、反応炉内圧力は1mtorr以下で有った。漏
洩検査にて異常が無い事を確認した後、反応炉内温度を
挿入温度の400℃から堆積温度まで昇温する。本実施
例1では550℃でチャンネル部となるシリコン薄膜を
堆積した為、昇温するのに一時間費やした。炉内温度が
堆積温度の550℃に達するには35分間程度で済む
が、反応炉壁からの脱ガスを充分放出する為にも、最短
一時間以上、好ましくは数時間の昇温期間が望ましい。
この昇温期間中、二つのポンプは運転状態に有り、少な
くとも純度が99.995%以上の不活性又は還元性ガ
スを流し続ける。これらのガス種は水素・ヘリウム・窒
素・ネオン・アルゴン・キセノン・クリプトン等の純ガ
スの他、これらのガスの混合ガスも可能で有る。本実施
例1では純度99.9999%以上のヘリウムを350
SCCM流し続け、反応炉内圧力は80.7±1.2mtorr
で有った。After inserting the substrate, a vacuum was drawn and a leak test was performed. In the leakage inspection, all the valves leading to the reactor were closed to completely isolate the reactor, and changes in the reactor pressure were examined.
In Example 1, after the reactor was completely isolated at 400 ° C. for 2 minutes, the reactor pressure was 1 mtorr or less. After confirming that there is no abnormality in the leakage inspection, the temperature inside the reaction furnace is raised from the insertion temperature of 400 ° C. to the deposition temperature. In Example 1, since the silicon thin film to be the channel portion was deposited at 550 ° C., it took 1 hour to raise the temperature. It takes about 35 minutes for the temperature in the furnace to reach the deposition temperature of 550 ° C., but in order to sufficiently release the degas from the reaction furnace wall, the temperature rising period of at least 1 hour or more, preferably several hours is desirable. ..
During this temperature rising period, the two pumps are in an operating state and continue to flow an inert or reducing gas having a purity of at least 99.995%. These gases can be pure gases such as hydrogen, helium, nitrogen, neon, argon, xenon, and krypton, and mixed gases of these gases are also possible. In the first embodiment, helium having a purity of 99.9999% or more is used as 350
Continue to flow SCCM, the reactor pressure is 80.7 ± 1.2 mtorr
It was.
【0024】堆積温度到達後、原料ガスで有る所定量の
シラン又はシランと希釈ガスの混合ガスを反応炉内に導
入し、シリコン薄膜104を堆積する。希釈ガスとして
は、先の昇温期間に流したガスと同種の組み合わせが可
能で有るが、望ましくは各ガスの純度はそれぞれが9
9.999%以上が良い。本実施例1では希釈ガスを用
いず、純度99.999%以上のシランを100SCCM流
してシリコン薄膜104を堆積した。この時、反応炉内
の圧力は反応炉とメカニカル・ブースターポンプの間に
設置されたコンダクタンスバルヴの開閉度を調整して、
398.6±1.9mtorr に保った。本実施例1ではチ
ャンネル部となるシリコン薄膜104は21.2Å/m
inの堆積速度で248Åの膜厚に堆積した(図1
(b))。After reaching the deposition temperature, a predetermined amount of silane, which is a raw material gas, or a mixed gas of silane and a diluent gas is introduced into the reaction furnace to deposit the silicon thin film 104. As the dilution gas, the same kind of combination as the gas flowed in the previous temperature rising period can be used, but it is desirable that the purity of each gas is 9
9.999% or more is good. In this Example 1, a silicon thin film 104 was deposited by using 100 SCCM of silane having a purity of 99.999% or more without using a diluent gas. At this time, the pressure inside the reaction furnace is adjusted by adjusting the opening / closing degree of the conductance valve installed between the reaction furnace and the mechanical booster pump.
It was maintained at 398.6 ± 1.9 mtorr. In the first embodiment, the silicon thin film 104 serving as the channel portion is 21.2Å / m.
It was deposited to a film thickness of 248 Å at a deposition rate of in (Fig. 1
(B)).
【0025】本実施例1ではシリコン薄膜の堆積をLP
CVD法で行い、原料ガスもモノシランを用いたが、こ
れ以外にもプラズマCVD法やAPCVD法やスパッタ
ー法などで堆積する事も可能で有る。又原料ガスもモノ
シランに限らず、ジシランやトリシランなどの高次シラ
ンやジクロールシランなども可能で有る。又、無論上記
種々のCVD法と上記種々の原料の組み合わせに依って
シリコン薄膜を堆積する事も可能で有る。In the first embodiment, the silicon thin film is deposited by LP.
Although the CVD method was used and monosilane was used as the source gas, it is also possible to deposit by plasma CVD method, APCVD method, sputtering method or the like. In addition, the source gas is not limited to monosilane, but higher order silanes such as disilane and trisilane, and dichlorosilane can also be used. Of course, it is also possible to deposit a silicon thin film by a combination of the above various CVD methods and the above various raw materials.
【0026】次にこうして得られた基板に熱処理を施し
て、シリコン薄膜104の結晶化を進め、結晶粒の増大
を行った。熱処理炉は縦型炉で通常400℃に保持され
て居り、純度99.999%以上の窒素ガスを20SL
M流し続けて、熱処理炉内部を不活性雰囲気に保持して
いる。室温と温度平衡に達している基板は17分間掛け
て400℃の縦型熱処理炉に挿入した。挿入後30分間
400℃に保ち、基板の位置に依らず炉内が総て400
℃の均一温度に達した後、熱処理炉の温度を600℃に
昇温する。この400℃でまず30分間保持する事に依
り基板の位置にかかわらず、どこでも同じ熱履歴を得る
事が出来、シリコン薄膜の結晶化を均一に行う事が可能
となる。熱処理炉には常に20SLMの窒素が流れ続
け、熱処理炉の容積は約176lで有るため、この40
0℃に於ける予備加熱に依り熱処理炉内部は完全に窒素
雰囲気に置換される。400℃から600℃への昇温は
約1時間掛けて行われ、600℃で温度平衡に達した
後、7時間以上の熱処理に依り、シリコン薄膜の結晶化
は進められる。本実施例1では600℃に達した後23
時間の熱処理を施した。Then, the substrate thus obtained was subjected to heat treatment to promote crystallization of the silicon thin film 104 and increase the number of crystal grains. The heat treatment furnace is a vertical furnace, which is normally kept at 400 ° C and contains 20 SL of nitrogen gas having a purity of 99.999% or more.
The flow of M is continued and the inside of the heat treatment furnace is maintained in an inert atmosphere. The substrate that had reached temperature equilibrium with room temperature was placed in a vertical heat treatment furnace at 400 ° C. for 17 minutes. Keep the temperature at 400 ° C for 30 minutes after insertion, and keep the temperature in the furnace at 400 ° C regardless of the position of the substrate.
After reaching the uniform temperature of ° C, the temperature of the heat treatment furnace is raised to 600 ° C. By keeping the temperature at 400 ° C. for 30 minutes, the same thermal history can be obtained anywhere regardless of the position of the substrate, and the crystallization of the silicon thin film can be performed uniformly. Since 20 SLM of nitrogen continues to flow into the heat treatment furnace and the volume of the heat treatment furnace is about 176 l, this 40
By preheating at 0 ° C., the inside of the heat treatment furnace is completely replaced with a nitrogen atmosphere. The temperature rise from 400 ° C. to 600 ° C. is performed for about 1 hour, and after reaching the temperature equilibrium at 600 ° C., crystallization of the silicon thin film proceeds by heat treatment for 7 hours or more. In Example 1, after reaching 600 ° C., 23
Heat treatment was applied for an hour.
【0027】こうして得られたシリコン薄膜は、レジス
トでパターニングされた後、四弗化炭素(CF4)と酸
素(O2)の混合プラズマに依りエッチングされ、チャ
ンネル部シリコン薄膜105を形成した。(図1
(C))本実施例1で形成したシリコン薄膜はCF4と
O2の比が50SCCM対100SCCMで有る15Paの真空
プラズマ放電で、その出力が700Wの時のエッチング
では2.1Å/secのエッチング速度を有していた。The silicon thin film thus obtained was patterned with a resist and then etched by a mixed plasma of carbon tetrafluoride (CF 4 ) and oxygen (O 2 ) to form a channel portion silicon thin film 105. (Fig. 1
(C)) The silicon thin film formed in this Example 1 was subjected to vacuum plasma discharge of 15 Pa with the ratio of CF 4 and O 2 being 50 SCCM to 100 SCCM, and the etching was 2.1 Å / sec when the output was 700 W. Had speed.
【0028】次にこの基板を沸騰している濃度60%の
硝酸にて洗浄し、更に1.67%弗化水素酸水溶液に2
0秒間浸してソース・ドレイン領域103とチャンネル
部シリコン薄膜105上の自然酸化膜を取り除いて清浄
なシリコン表面が出現した後、直ちに電子サイクロトロ
ン共鳴プラズマCVD装置(ECR−PECVD装置)
にてゲート絶縁膜となるSiO2 膜106を堆積した。
(図1(d))本実施例1で用いたECR−PECVD
装置の概要を図2に示す。ゲート絶縁膜堆積に際して
は、2.45GHZのマイクロ波が導波管201を通じ
て反応室202に導かれ、ガス導入管203より導入さ
れる100SCCMの酸素をまずプラズマ化する。この時、
マイクロ波の出力は2250Wで有り、反応室202の
外側に設置された外部コイル204に依り反応室202
内の酸素プラズマに875Gaussの磁場を掛けてプ
ラズマ中の電子にECR条件を満足せしめている。この
酸素プラズマは前記発散磁場に依って反応室外に引き出
され、プラズマに対して垂直に置かれた基板205を1
0秒間照射する。基板205の背面にはヒーター206
が有り、基板全体を100℃に保っていた。この時反応
室内の圧力は1.85mtorrで有った。酸素プラズ
マ引き出し口の直後には別のガス導入管207が設けら
れて居り、10秒間で酸素プラズマが十分安定化した
後、このガス導入管207より純度99.999%以上
のシラン60SCCMを酸素プラズマ中に混入させる。こう
して得られた酸素シラン混合プラズマを30秒間基板に
照射してゲート絶縁層となるSiO2 膜106を150
0Å堆積した(図1(d))。この時反応室の圧力は
2.35mtorrで有った。Next, this substrate was washed with boiling nitric acid having a concentration of 60%, and further washed with a 1.67% hydrofluoric acid aqueous solution.
Immersion for 0 seconds to remove the native oxide film on the source / drain region 103 and the channel portion silicon thin film 105 to expose a clean silicon surface, and immediately thereafter, electron cyclotron resonance plasma CVD device (ECR-PECVD device)
Then, a SiO 2 film 106 to be a gate insulating film was deposited.
(FIG. 1D) ECR-PECVD used in this Example 1.
The outline of the apparatus is shown in FIG. At the time of depositing the gate insulating film, a microwave of 2.45 GHZ is introduced into the reaction chamber 202 through the waveguide 201, and 100 SCCM of oxygen introduced from the gas introduction pipe 203 is first turned into plasma. At this time,
The microwave output is 2250 W, and the external coil 204 installed outside the reaction chamber 202 allows the reaction chamber 202 to
By applying a magnetic field of 875 Gauss to the oxygen plasma inside, the electrons in the plasma satisfy the ECR condition. This oxygen plasma is drawn out of the reaction chamber by the divergent magnetic field, and the substrate 205 placed perpendicular to the plasma is removed.
Irradiate for 0 seconds. A heater 206 is provided on the back surface of the substrate 205.
And the entire substrate was kept at 100 ° C. At this time, the pressure in the reaction chamber was 1.85 mtorr. Immediately after the oxygen plasma outlet, another gas introduction pipe 207 is provided. After the oxygen plasma is sufficiently stabilized for 10 seconds, the silane 60 SCCM having a purity of 99.999% or more is supplied from the gas introduction pipe 207 to the oxygen plasma. Mix in. The substrate thus obtained is irradiated with the oxygen-silane mixed plasma thus obtained for 30 seconds so that the SiO 2 film 106 serving as a gate insulating layer is formed into 150
0Å was deposited (Fig. 1 (d)). At this time, the pressure in the reaction chamber was 2.35 mtorr.
【0029】次にクロムをスパッター法で1500Å堆
積し、パターニングに依り、ゲート電極107を形成し
た。この時シート抵抗値は1.356±0.047Ω/
□で有った。本実施例1ではゲート電極材料としてクロ
ムを用いたが、無論これ以外の導電性物質も可能で有る
し、又その形成方法もスパッター法に限らず蒸着法やC
VD法なども可能で有る。続いてAPCVD法で層間絶
縁膜108となるSiO2膜を5000Å堆積した。こ
の堆積は本実施例1で下地SiO2膜102を堆積した
条件と全く同一で唯一堆積時間のみを変えて行った。層
間絶縁膜形成後、コンタクトホールを開け、ソース・ド
レイン取り出し電極109をスパッター法などで形成
し、トランジスタが完成する(図1(e))。本実施例
1ではソース・ドレイン取り出し電極材料としてアルミ
ニウムを用いスパッター法で8000Åの膜厚に堆積し
て、ソース・ドレイン取り出し電極を形成した。この時
堆積アルミニウム膜のシート抵抗は42.48±2.0
2mΩ/□で有った。Next, chromium was deposited by a sputtering method to a thickness of 1500 Å, and the gate electrode 107 was formed by patterning. At this time, the sheet resistance value is 1.356 ± 0.047Ω /
It was □. Although chromium is used as the gate electrode material in the first embodiment, it is needless to say that other conductive materials can be used, and the forming method is not limited to the sputtering method, and the vapor deposition method or C
The VD method or the like is also possible. Subsequently, an SiO 2 film to be the interlayer insulating film 108 was deposited by 5000 Å by the APCVD method. This deposition was performed under exactly the same conditions as the deposition of the underlying SiO 2 film 102 in Example 1, but was changed only at the deposition time. After forming the interlayer insulating film, contact holes are opened, and source / drain extraction electrodes 109 are formed by a sputtering method or the like to complete the transistor (FIG. 1E). In Example 1, aluminum was used as a source / drain extraction electrode material and deposited to a film thickness of 8000 Å by a sputtering method to form a source / drain extraction electrode. At this time, the sheet resistance of the deposited aluminum film is 42.48 ± 2.0.
It was 2 mΩ / □.
【0030】この様にして試作した薄膜トランジスタ
(TFT)の特性の一例Vgs−Ids曲線を図3の3
−aに示した。ここでソース・ドレイン電流Idsはソ
ース・ドレイン間電圧Vds=4V、温度25℃で測定
した。トランジスタサイズはチャンネル部の長さL=1
0μm、幅W=10μmで有った。Vds=4V、Vg
s=10Vでトランジスタをオンさせた時のオン電流は
235mm□の基板の中央と四角の5ヶのトランジスタを
測定した所、ION=4.65±0.39μAと良好なト
ランジスタ特性を有する薄膜半導体装置が得られた。
又、トランジスタの飽和電流領域より求めた電界効果移
動μoと捕獲密度Nt(J.Levinson et
al. J.Appl.Phys 53.1193.1
982)はそれぞれμo=25.85±0.96cm2 /
v.sec、Nt=(6.81±0.15)×10111
/cm2 で有った。図3の3−bには比較の為に従来技術
の一例に依って作成した薄膜半導体装置のトランジスタ
特性を図示した。即ち、チャンネル部シリコン薄膜を減
圧CVD法にて600℃で堆積し、24時間の熱処理を
施さぬ他は総て本実施例1の本発明と同一の工程で薄膜
半導体装置を作成したもので有る。この時、減圧CVD
法でチャンネル部シリコン薄膜を堆積する装置は本実施
例1の本発明で用いた装置と同一で有り、原料ガスのモ
ノシランは12.5SCCM流し、反応炉内圧力は9.0m
torr、堆積速度は11.75Å/minで256Å
の膜厚に堆積した。この従来技術の一例のTFTのオン
電流はIds=0.91±0.12μAで電界効果移動
度はμo=4.75±0.20cm2/v.sec、捕獲
密度Nt=(5.18±0.13)×10111/cm2 で
有った。この他に、チャンネル部シリコン薄膜を同様に
減圧CVD法にて600℃モノシラン流量12.5SCCM
にて堆積し、本実施例1の本発明と同一の工程でゲート
絶縁膜を堆積した後、ECR−PECVD装置にて水素
プラズマ処理を施し、それ以外は本実施例1の本発明と
同一工程で薄膜半導体装置を作成した。これも水素化処
理を行う従来技術の一例で有る。水素化処理は図2に示
したECR−PECVD装置にてゲート絶縁膜堆積後、
真空引きを行い、更にヒーター206により基板205
の温度を300℃に1時間掛けて昇温した後に行った。
純度99.9999%以上の水素ガス125SCCMはガス
導入管203より反応室202に導かれ、水素プラズマ
を立てた。マイクロ波出力は2000Wで、反応室の圧
力は2.63mtorrで有った。水素プラズマ照射は
30分間行った。こうして作成した薄膜半導体装置のT
FT特性を測定した所、オン電流Ids=0.96±
0.13μA、電界効果移動度μo=4.68±0.2
2cm2 /v.sec、捕獲密度Nt=(5.12±0.
13)×10111/cm2 で有った。即ち、水素プラズマ
処理の有無にかかわらずチャンネル部シリコン膜を60
0℃にて減圧CVD法で堆積する従来技術に比べると、
本発明では例えば電界効果移動度を5倍程度に高めると
のトランジスタ特性の大幅な向上をもたらす。An example of the characteristics of the thin film transistor (TFT) prototyped in this way is shown in FIG. 3 as Vgs-Ids curve.
-A. Here, the source-drain current Ids was measured at a source-drain voltage Vds = 4V and a temperature of 25 ° C. Transistor size is channel length L = 1
The width was 0 μm and the width W was 10 μm. Vds = 4V, Vg
The on-current when the transistor was turned on at s = 10V was 235 mm □ on the center of the substrate and five square transistors were measured, and ION = 4.65 ± 0.39 μA. A thin film semiconductor with good transistor characteristics. The device is obtained.
In addition, the field effect transfer μo and the trap density Nt (J. Levinson et.
al. J. Appl. Phys 53 . 1193.1
982) is μo = 25.85 ± 0.96 cm 2 /
v. sec, Nt = (6.81 ± 0.15) × 10 11 1
It was / cm 2 . For comparison, 3-b in FIG. 3 shows the transistor characteristics of a thin film semiconductor device manufactured according to an example of the related art. That is, a thin film semiconductor device was manufactured by the same steps as those of the present invention of Example 1 except that a channel silicon thin film was deposited at 600 ° C. by a low pressure CVD method and no heat treatment was performed for 24 hours. .. At this time, low pressure CVD
The apparatus for depositing the silicon thin film in the channel portion by the method is the same as the apparatus used in the present invention of the first embodiment, the source gas monosilane is made to flow at 12.5 SCCM, and the pressure in the reaction furnace is 9.0 m.
torr, deposition rate is 11.75Å / min and 256Å
Deposited to a film thickness of. The on-current of the TFT of this prior art example is Ids = 0.91 ± 0.12 μA and the field-effect mobility is μo = 4.75 ± 0.20 cm 2 / v. sec, trap density Nt = (5.18 ± 0.13) × 10 11 1 / cm 2 . In addition to this, the silicon thin film in the channel part is similarly subjected to the low pressure CVD method at 600 ° C. and the monosilane flow rate is 12.5 SCCM.
And the gate insulating film is deposited in the same step as the present invention of the first embodiment, and then hydrogen plasma treatment is performed by an ECR-PECVD apparatus. Otherwise, the same step as the present invention of the first embodiment. A thin film semiconductor device was created. This is also an example of a conventional technique for performing hydrotreatment. The hydrogenation process is performed by depositing the gate insulating film with the ECR-PECVD apparatus shown in FIG.
The substrate 205 is evacuated and further heated by the heater 206.
The temperature was raised to 300 ° C. over 1 hour and the temperature was raised.
125 SCCM of hydrogen gas having a purity of 99.9999% or more was introduced into the reaction chamber 202 through the gas introduction pipe 203 to establish hydrogen plasma. The microwave power was 2000 W and the pressure in the reaction chamber was 2.63 mtorr. Hydrogen plasma irradiation was performed for 30 minutes. The T of the thin film semiconductor device thus created
When the FT characteristic was measured, the on-current Ids = 0.96 ±
0.13 μA, electric field effect mobility μo = 4.68 ± 0.2
2 cm 2 / v. sec, capture density Nt = (5.12 ± 0.
13) × 10 11 1 / cm 2 . That is, the silicon film in the channel portion is formed with or without hydrogen plasma treatment.
Compared to the conventional technique of depositing by low pressure CVD at 0 ° C.,
The present invention brings about a great improvement in transistor characteristics, for example, by increasing the field effect mobility to about 5 times.
【0031】次に従来技術の別な一例と本発明との比較
を行う。即ち従来技術の別な一例として、チャンネル部
シリコン薄膜の形成は本実施例1の本発明と同様に行う
ものの、ゲート絶縁膜をAPCVD法で堆積する従来技
術及びゲート絶縁膜をAPCVD法で堆積した後、水素
プラズマ処理を行う従来技術に対する本発明の多大なる
優位性を見る。従来技術で有るゲート絶縁膜をAPCV
D法で堆積して薄膜半導体装置を作成する工程では、ゲ
ート絶縁膜をAPCVD法で1500Åに堆積した以
外、本実施例1の本発明と同一の工程で薄膜半導体装置
を作成した。APCVD法では基板温度を300℃に保
ち、窒素中に20%シランを含んだ窒素、シラン混合ガ
スを300SCCM、酸素を420SCCM流し、約140SL
Mの希釈用窒素をこれらの原料ガスと共に流してSiO
2膜を堆積した。堆積速度は1.85Å/secで有っ
た。この様にして作成した従来技術による薄膜半導体装
置のトランジスタ特性を図3の3−Cに示した。このト
ランジスタのオン電流はION=1.49±0.05μ
A、電界効果移動度μo=24.60±0.72cm2/
v・sec、捕獲密度Nt=(9.20±0.15)×
10111/cm2 で有った。この従来技術と本発明を比較
すると、本発明は捕獲準位を大幅に低減し、ゲート電圧
Ov付近で急激に立ち上がる極めて優良な薄膜半導体装
置を作成した事が明瞭となる。APCVD法でゲート絶
縁膜を堆積する従来技術では、移動度丈は本発明並に高
める事が出来たが、その実、ソース・ドレイン電流の最
小値が−11v付近に有り捕獲密度も高い為、立ち上が
りの傾斜もゆるやかで薄膜半導体装置として実用的では
なかった。一方更に別なる従来技術の一例を図3の3−
dに示す。ここではチャンネル部シリコン薄膜の形成は
本実施例1の本発明と同様に行うものの、ゲート絶縁膜
はAPCVD法で堆積し、その後水素プラズマ処理を施
す技術で有る。ゲート絶縁膜を前述と同一の条件で堆積
し、その後直ちにECR−PECVD装置により前述と
同一の条件で水素プラズマ照射を施した他は本実施例1
の本発明と同一の工程を経て薄膜半導体装置を作成し
た。こうして得られたTFTの特性を図3の3−dに示
した。オン電流はIds=2.91±0.30μA、電
界効果移動度μo=24.51±0.67cm2 /v・s
ec、捕獲密度Nt=(7.94±0.15)×1011
1/cm2 で有った。このプラズマ処理を用いた従来技術
に比較しても本発明はあらゆるパラメーターで良好な特
性を示している事が分かる。又水素プラズマ処理を施し
た従来技術で作成したトランジスタでは測定した5つの
トランジスタの内1つが+2V程度しきい値電圧Vth
がずれており、前述の各パラメーターの平均値と標準偏
差の値にこのトランジスタの値を含ませていない。即ち
水素プラズマ処理を用いた従来技術では水素プラズマ処
理を行わない従来技術に対してトランジスタ特性は改善
されるが、大面積に均一に同質なトランジスタを作成す
る事は困難で有った。加えて水素プラズマ処理を施した
試料はロット間の変動が大きく、安定的な生産が困難で
有る。とりわけ、しきい値電圧のずれとソース・ドレイ
ン電流が最小となるゲート電圧値の変動がロット間で非
常に大きい。これに対して本発明に依り、ばらつきの原
因となる水素化処理を排除して尚、従来よりも優良なト
ランジスタを大面積上に均一に作成し得た事が分かる。Next, another example of the prior art will be compared with the present invention. That is, as another example of the prior art, the formation of the channel portion silicon thin film is performed in the same manner as in the present invention of the first embodiment, but the conventional technique of depositing the gate insulating film by the APCVD method and the gate insulating film by the APCVD method. Later, we see a great advantage of the present invention over the prior art of performing hydrogen plasma treatment. The conventional gate insulating film is APCV
In the step of depositing the thin film semiconductor device by the D method, the thin film semiconductor device was produced by the same process as that of the present invention of the first embodiment except that the gate insulating film was deposited to 1500 Å by the APCVD method. In the APCVD method, the substrate temperature is kept at 300 ° C., nitrogen containing 20% silane in nitrogen, silane mixed gas of 300 SCCM, and oxygen of 420 SCCM are flowed, and about 140 SL.
Nitrogen for dilution of M is caused to flow along with these source gases to form SiO.
Two films were deposited. The deposition rate was 1.85Å / sec. The transistor characteristics of the thin film semiconductor device according to the conventional technique thus produced are shown in 3-C of FIG. The on-current of this transistor is ION = 1.49 ± 0.05μ
A, electric field effect mobility μo = 24.60 ± 0.72 cm 2 /
v · sec, capture density Nt = (9.20 ± 0.15) ×
It was 10 11 1 / cm 2 . Comparing the present invention with this prior art, it becomes clear that the present invention has produced a very good thin film semiconductor device in which the trap level is significantly reduced and which rises sharply near the gate voltage Ov. In the conventional technique of depositing the gate insulating film by the APCVD method, the mobility can be increased as much as the present invention, but in fact, the minimum value of the source / drain current is around -11v and the trap density is high, so The inclination of was not so practical as a thin film semiconductor device. On the other hand, an example of another conventional technique is shown in FIG.
Shown in d. Here, the formation of the channel portion silicon thin film is performed in the same manner as in the present invention of the first embodiment, but the gate insulating film is deposited by the APCVD method, and then hydrogen plasma treatment is performed. Example 1 except that a gate insulating film was deposited under the same conditions as described above, and immediately thereafter, hydrogen plasma irradiation was performed under the same conditions as described above using an ECR-PECVD apparatus.
A thin film semiconductor device was manufactured through the same steps as those of the present invention. The characteristics of the TFT thus obtained are shown in 3-d of FIG. On-state current is Ids = 2.91 ± 0.30 μA, field-effect mobility μo = 24.51 ± 0.67 cm 2 / v · s
ec, capture density Nt = (7.94 ± 0.15) × 10 11
It was 1 / cm 2 . It can be seen that the present invention exhibits excellent characteristics in all parameters even when compared with the conventional technique using this plasma treatment. Further, in the transistor manufactured by the conventional technique which has been subjected to the hydrogen plasma treatment, one of the measured five transistors has a threshold voltage Vth of about + 2V.
The values of this transistor are not included in the average value and standard deviation value of each parameter described above. That is, the conventional technique using the hydrogen plasma treatment improves the transistor characteristics as compared with the conventional technique in which the hydrogen plasma treatment is not performed, but it has been difficult to form a uniform transistor in a large area. In addition, samples subjected to hydrogen plasma treatment have large lot-to-lot variations, making stable production difficult. In particular, the deviation of the threshold voltage and the fluctuation of the gate voltage value that minimizes the source / drain current are extremely large between lots. On the other hand, according to the present invention, it can be seen that the excellent hydrogenation process can be uniformly formed on a large area by eliminating the hydrogenation process that causes the variation.
【0032】(実施例2)チャンネル部となるシリコン
薄膜(図1.104)の堆積時間を変えてシリコン薄膜
104の堆積膜厚を変えた他は総て実施例1の本発明と
同じ工程に依り薄膜半導体装置を作成した。本実施例2
ではシリコン薄膜104を190Å、280Å、515
Å、1000Å、1100Å、1645Åと六種の異な
った膜厚とし、それぞれ薄膜半導体装置を作成した。こ
うして得られた薄膜半導体装置のオン電流とオフ電流の
比をチャンネル部シリコン膜の膜厚に対して図示した結
果が図4で有る。この図から分かる様にチャンネル部シ
リコン膜半導体層の膜厚が500Å以下となる薄膜半導
体装置ではオン・オフ比が急激に改善されて7桁以上を
示す良好な特性が得られた。(Embodiment 2) The same steps as those of the present invention of Embodiment 1 are carried out except that the deposition time of the silicon thin film (FIG. 1.104) to be the channel portion is changed to change the deposited film thickness of the silicon thin film 104. Accordingly, a thin film semiconductor device was created. Example 2
Then the silicon thin film 104 is 190Å, 280Å, 515
Thin film semiconductor devices were prepared with 6 different film thicknesses, Å, 1000 Å, 1100 Å, and 1645 Å. FIG. 4 shows the result of the ratio of the on-current and the off-current of the thin film semiconductor device thus obtained plotted against the film thickness of the channel portion silicon film. As can be seen from this figure, in the thin film semiconductor device in which the film thickness of the silicon film semiconductor layer of the channel portion is 500 Å or less, the on / off ratio was drastically improved and good characteristics of 7 digits or more were obtained.
【0033】(実施例3)ソース領域或いはドレイン領
域の少なくともどちらか一方の領域がゲート絶縁膜を介
してゲート電極と重なり合っていない構造を有する薄膜
半導体装置(オフ・セット型薄膜半導体装置)を実施例
1の本発明と同一の製造方法にて作成した。本実施例3
ではオフ・セット型薄膜半導体装置として図5(a)に
示すスタガード型薄膜半導体装置をアラインメントを高
精度に行う事に依り作成したが、オフ・セット型薄膜半
導体装置としては無論これ以外の構造の物も可能で有
る。例えば図5(b)に示すようにソース・ドレイン領
域503を真性シリコン薄膜にゲート電極504をマス
クとして不純物イオンを打ち込んで作成する方法や図5
(c)に示すゲート電極505が下側に有る逆スタガー
ド型薄膜半導体装置でソース・ドレイン領域507をマ
スク材506を用いて作成した物なども可能で有る。(Embodiment 3) A thin film semiconductor device (off-set type thin film semiconductor device) having a structure in which at least one of a source region and a drain region does not overlap with a gate electrode via a gate insulating film is implemented. It was prepared by the same manufacturing method as in the present invention of Example 1. Example 3
Then, the staggered thin film semiconductor device shown in FIG. 5A was created as an off-set thin film semiconductor device by performing alignment with high accuracy. Things are also possible. For example, as shown in FIG. 5B, a method of forming source / drain regions 503 by implanting impurity ions in an intrinsic silicon thin film using the gate electrode 504 as a mask, and FIG.
It is also possible to use an inverted staggered type thin film semiconductor device having the gate electrode 505 shown in (c) on the lower side and forming the source / drain regions 507 by using the mask material 506.
【0034】本実施例3では下地基板として直径75mm
の溶融石英ガラスを用いた他は実施例1の本発明と同じ
製造方法でオフ・セット型薄膜半導体装置を作成した。
即ち、まず基板洗浄を施し、下地SiO2 膜をAPCV
D法などで堆積した後、リン添加されたシリコン膜をL
PCVD法で堆積し、更にパターニングする事に依りソ
ース・ドレイン領域501を形成した。ここで後にチャ
ンネル長Lとなるソース・ドレイン領域間距離は10.
5μmで有った。次に実施例1の本発明と同様にしてチ
ャンネル部となるシリコン薄膜を21.2Å/minの
堆積速度で248Åの膜厚に堆積した。但し、実施例1
の本発明では基板の表側を下向きとして基板を反応炉に
挿入したが、本実施例3では235mm□のダミー石英板
上に直径75mmの基板を表側を上向きに乗せて、反応炉
に挿入した。以下実施例1の本発明と全く同じ製造方法
で熱処理を施し、ゲート絶縁層を堆積し、更にゲート電
極502を形成した。このゲート電極502の幅は1
0.0μmで、ソース・ドレイン間距離10.5μmの
中心とゲート電極幅10.0μmの中心が一致するよう
に高精度アラインメントを行った。この結果、チャンネ
ル領域に於けるゲート電極端位置とソース領域端との距
離(オフセット距離)はそれぞれ0.25μmとなる。
その後実施例1の本発明と同様の製造方法で層間絶縁膜
を堆積し、コンタクト・ホール開口後アルミニウムを用
いて配線し、薄膜半導体装置が完成した。In the third embodiment, the diameter of the base substrate is 75 mm.
An off-set type thin film semiconductor device was produced by the same manufacturing method as that of the present invention of Example 1 except that the fused silica glass of Example 1 was used.
That is, the substrate is first cleaned and the underlying SiO 2 film is removed by APCV.
After depositing by the D method or the like, the silicon film to which phosphorus is added is
The source / drain regions 501 were formed by depositing by the PCVD method and further patterning. Here, the distance between the source and drain regions, which becomes the channel length L later, is 10.
It was 5 μm. Next, in the same manner as in the present invention of Example 1, a silicon thin film to be a channel portion was deposited at a deposition rate of 21.2Å / min to a film thickness of 248Å. However, Example 1
In the present invention, the substrate was inserted into the reaction furnace with the front side of the substrate facing downward, but in the third embodiment, a substrate having a diameter of 75 mm was placed on the 235 mm square dummy quartz plate with the front side facing upward, and was inserted into the reaction furnace. Then, heat treatment was performed by the same manufacturing method as that of the present invention in Example 1, a gate insulating layer was deposited, and a gate electrode 502 was further formed. The width of this gate electrode 502 is 1
High precision alignment was performed so that the center of the source-drain distance of 10.5 μm and the center of the gate electrode width of 10.0 μm were aligned at 0.0 μm. As a result, the distance (offset distance) between the gate electrode end position and the source region end in the channel region is 0.25 μm.
After that, an interlayer insulating film was deposited by the same manufacturing method as that of the present invention in Example 1, and after forming contact holes, wiring was performed using aluminum, and a thin film semiconductor device was completed.
【0035】この様にして作成した薄膜半導体装置のト
ランジスタ特性の一例Vgs−Ids曲線を図6の6−
aに示した。図6の3−aは実施例1の本発明で試作し
た自己非整合型スタガード構造薄膜半導体装置のトラン
ジスタ特性で有る。図からも明確に分かる様に本実施例
3の本発明ではゲート電圧が負の時に生じるリーク電流
を大幅に低下させる事が可能で有る。実際本実施例3の
本発明に於いてはゲート電圧が−2.5V以下ではソー
ス・ドレイン電流を0.1pA程度に押さえている。図
6の6−bは実施例1の従来技術に依りオフセット型薄
膜半導体装置を作成した時に得られるトランジスタ特性
を比較の為に示している。即ち、チャンネル部シリコン
薄膜は600℃の減圧CVD法で堆積され、ソース・ド
レイン間距離10.5μmの中心とゲート電極幅10.
0μmの中心を高精度アラインメントで位置合わせしオ
フセット型薄膜半導体装置を作成した時に得られるトラ
ンジスタ特性で有る。これ故図6の6−bは従来技術の
自己非整合型スタガード構造薄膜半導体装置のトランジ
スタ特性図6の3−bと直接比較し得る。従来技術に依
るオフ・セット型薄膜半導体装置に於いてもリーク電流
を0.1pA程度以下に低く保つ事は可能で有るが、従
来技術に於いてオフセット型薄膜半導体装置を作成する
とオン電流や移動度などトランジスタの正特性も低下し
て仕舞い、実用的では無かった。例えば従来技術に依る
オフセット型薄膜半導体装置のオン電流はIds=0.
090±0.01μAと自己非整合型薄膜半導体装置に
比べてオン電流は一桁以上低下して仕舞う。又この時の
移動度もμo=3.33±0.15cm2 /v・secと
同様に約3割劣化している。この理由に依り、従来技術
に依るオフセット型薄膜半導体装置の製造はその価値が
無かった。これに対し、本実施例3の本発明は図6の6
−aに示されている通り、リーク電流は低く押さえ、且
つオン電流も高く維持している。本実施例3の本発明で
はオン電流としてIds=3.71±0.43μAが得
られ、自己非整合型薄膜半導体装置のオン電流に比べて
も殆ど遜色は見られない。又本実施例3の本発明では移
動度もμo=22.00±0.95cm2/v・secと
良好な値を示した。An example of the transistor characteristics of the thin film semiconductor device thus prepared is shown in FIG.
shown in a. Reference numeral 3-a in FIG. 6 shows the transistor characteristics of the self-unaligned staggered structure thin film semiconductor device manufactured by the present invention as the first embodiment. As can be clearly seen from the figure, in the present invention of the third embodiment, it is possible to greatly reduce the leak current generated when the gate voltage is negative. In fact, in the present invention of the third embodiment, the source / drain current is suppressed to about 0.1 pA when the gate voltage is −2.5 V or less. 6-b of FIG. 6 shows, for comparison, transistor characteristics obtained when an offset type thin film semiconductor device is manufactured according to the conventional technique of the first embodiment. That is, the channel portion silicon thin film is deposited by the low pressure CVD method at 600 ° C., the center of the source-drain distance of 10.5 μm and the gate electrode width 10.
This is a transistor characteristic obtained when the center of 0 μm is aligned with high precision alignment to produce an offset type thin film semiconductor device. Therefore, 6-b of FIG. 6 can be directly compared with the transistor characteristic diagram 3-b of the prior art self-unaligned staggered thin film semiconductor device. Even in the off-set type thin film semiconductor device according to the conventional technique, it is possible to keep the leak current as low as about 0.1 pA or less, but when the offset type thin film semiconductor device is produced by the conventional technique, the on-current and the movement are reduced. However, the positive characteristics of the transistor, such as frequency, have also deteriorated and it has been put out of practical use. For example, the on-current of the offset type thin film semiconductor device according to the related art is Ids = 0.
The on-current is 090 ± 0.01 μA, which is one digit or more lower than that of the self-unaligned thin film semiconductor device. In addition, the mobility at this time is also degraded by about 30% similarly to μo = 3.33 ± 0.15 cm 2 / v · sec. For this reason, the manufacturing of offset type thin film semiconductor devices according to the prior art was not worth it. On the other hand, the present invention of the third embodiment is 6 in FIG.
As indicated by −a, the leak current is kept low and the on-current is also kept high. In the present invention of the third embodiment, Ids = 3.71 ± 0.43 μA is obtained as the on-current, which is almost comparable to the on-current of the self-unmatched thin film semiconductor device. Further, in the present invention of Example 3, the mobility also shows a good value of μo = 22.00 ± 0.95 cm 2 / v · sec.
【0036】(実施例4)実施例3では高精度アライン
メントを行う事に依りオフセット型薄膜半導体装置を作
成したが、無論これ以外にも本発明は有効で有る。図5
(b)では真性シリコン膜を堆積し、ゲート電極をパタ
ーニングした後、不純物イオンを添加する事でオフセッ
ト型薄膜半導体装置を作成した。この方法について詳述
する。(Embodiment 4) In Embodiment 3, an offset type thin film semiconductor device was produced by performing high precision alignment. Of course, the present invention is effective other than this. Figure 5
In (b), an offset type thin film semiconductor device was prepared by depositing an intrinsic silicon film, patterning the gate electrode, and then adding impurity ions. This method will be described in detail.
【0037】図7(a)〜(d)は本実施例4に於ける
オフセット型スタガード構造のMIS型電界効果トラン
ジスタを構成するシリコン薄膜半導体装置の構造工程を
断面で示した図で有る。まず実施例1と同様基板701
を洗浄した後、下地保護膜702としてSiO2 膜を2
000Å程度堆積する。続いて第一のシリコン膜を30
0Å程度以上堆積し、パターニングを行う事でパッドと
なるシリコン膜703を形成する。この第一のシリコン
膜として本実施例では実施例1でチャンネル部シリコン
膜を堆積したLPCVD装置を用いて堆積温度600℃
シラン流量12.5SCCMで1250Åに堆積したが、こ
れ以外にも同じLPCVD装置を用いて堆積温度550
℃程度でシリコン膜を堆積する事も、原料ガスとしてジ
シラン(Si2H6)を用いて堆積温度450℃程度で堆
積する事も、PECVD法にて250℃程度でシリコン
膜を堆積する事も可能で有る。工程最高温度600℃を
越えぬ膜形成温度で有るならば、如何なる方法であって
も構わない。次に第二のシリコン膜704を堆積する
が、この第二のシリコン膜の膜厚が300Å程度以上有
り、不純物注入後のソース・ドレイン領域の抵抗値がト
ランジスタを動作させた時のチャンネル領域の抵抗値に
比べて充分低ければ、第一のシリコン膜又はパッドとな
るシリコン膜703は必要とされない。本実施例4では
第二のシリコン膜704を実施例1の本発明でチャンネ
ル部となるシリコン薄膜と同じ方法で堆積した。即ちL
PCVD法にてモノシランを原料ガスとし、堆積温度5
50℃、シラン流量100SCCM堆積速度21.2Å/m
inで250Åの膜厚に堆積した。しかし、第二のシリ
コン膜形成方法は第一のシリコン膜と同様、工程最高温
度600℃を越えぬ膜形成温度で有るならば、如何なる
方法でも可能で有る。例えば、第二のシリコン膜も堆積
温度600℃、シラン流量12.5SCCM、反応炉内圧力
9.0mtorrで堆積しても構わぬし、又、原料ガスにジ
シランやトリシランなどの高次シランを用いて更に低温
で膜形成する事も可能で有る。この様に何らかの方法で
第二のシリコン膜704を形成し(図7(b))、パタ
ーニングを行った後、実施例1の本発明と同様の方法で
ゲート絶縁層705を形成した。即ち、ECR−PEC
VD法でSiO2 膜を1500Å堆積した。ゲート絶縁
層705の形成手段としては第二のシリコン膜704が
多結晶シリコン膜である場合、APCVD法で形成する
事も出来る。次にゲート電極となる金属膜などを形成す
る。本実施例4ではゲート電極材料として燐を高濃度に
添加したシリコン膜を用いた。ここではLPCVD法で
堆積温度600℃、モノシラン200SCCM、ヘリウムが
99.5%でホスフィンが0.5%のヘリウム・ホスフ
ィン混合ガスを6SCCM更にヘリウム100SCCMを流し、
炉内圧力100mtorr で3000Åの膜厚に堆積した。
成膜直後のシート抵抗値は744Ω/□で有った。引き
続いてレジストを塗布し、レジストのパターニングを行
った後、CF4とO2の混合プラズマに依り燐添加シリコ
ン膜のパターニングを行った。CF4とO2の比がそれぞ
れ200SCCMと200SCCMで入射波出力700Wでパタ
ーニングを行った。この時の燐添加シリコン膜のエッチ
ング速度は15.4Å/secで5分57秒間エッチン
グを行い、ゲート電極706を作成した。燐添加シリコ
ン膜の膜厚は3000Åで有ったので、このプラズマエ
ッチングに依り、ゲート電極幅はレジスト707に比べ
て左右それぞれ2500Å程度細められている(図7
(c))。次にゲート電極706作成に用いたレジスト
707を剥離せずに残したまま、不純物イオンを添加す
る。本実施例4では不純物として燐を選びn型薄膜半導
体装置を目指したが、無論他元素もその目的に応じて可
能で有る。本実施例4では質量分析装置が付いていない
イオン打ち込み装置を用いて不純物イオン添加を施し
た。原料ガスとして水素中に希釈された濃度5%のホス
フィンを用い、加速電圧110kVで3×10151/cm
2 の濃度に打ち込んだ。この様にして、第一のシリコン
膜と第二のシリコン膜の一部はソース・ドレイン領域7
08となり、又ゲート電極作成に用いたレジスト707
は膜厚がおよそ2μm程度有るため、この下に位置する
第二のシリコン膜はイオン添加されず、チャンネル部7
09を構成するに至る(図7(c))。又、この方法に
依り、オフセット型薄膜半導体装置が作成される。次に
ゲート電極作成用レジスト707を剥離した後、該基板
に600℃で7時間以上の熱処理を施し、添加不純物イ
オンの活性化及び、チャンネル部シリコン膜709の結
晶性が不充分な場合の結晶化を促進する。本実施例4で
は実施例1の本発明で行った熱処理と同様窒素雰囲気下
600℃にて23時間の熱処理を施した。続いて層間絶
縁膜としてSiO2 710をAPCVD法などで500
0Å堆積し、更に質量分析装置の付いていないイオン打
ち込み装置にて、水素を加速電圧80kVで5×1015
1/cm2 打ち込んだ後、コンタクト・ホールを開口し、
アルミニウムなどで配線711をし、オフセット型薄膜
半導体装置が完成する。FIGS. 7A to 7D are sectional views showing the structural steps of the silicon thin film semiconductor device which constitutes the MIS field effect transistor of the offset staggered structure according to the fourth embodiment. First, a substrate 701 similar to that of the first embodiment
After cleaning the SiO 2 film, a SiO 2 film is used as a base protective film 702.
Accumulate about 000Å. Then, the first silicon film is applied to 30
A silicon film 703 to be a pad is formed by depositing about 0Å or more and patterning. In this embodiment, as the first silicon film, the LPCVD apparatus in which the channel portion silicon film is deposited in Embodiment 1 is used and the deposition temperature is 600 ° C.
The silane flow rate was 12.5 SCCM and the deposition was carried out at 1250 Å.
The silicon film may be deposited at about ℃, disilane (Si 2 H 6 ) may be used as a source gas at a deposition temperature of about 450 ℃, or the silicon film may be deposited by PECVD at about 250 ℃. It is possible. Any method may be used as long as the film forming temperature does not exceed the process maximum temperature of 600 ° C. Next, a second silicon film 704 is deposited. The thickness of the second silicon film is about 300 Å or more, and the resistance value of the source / drain region after the impurity implantation is in the channel region when the transistor is operated. If the resistance value is sufficiently lower than the resistance value, the first silicon film or the silicon film 703 to be the pad is not required. In the fourth embodiment, the second silicon film 704 is deposited by the same method as that of the silicon thin film which becomes the channel portion in the present invention of the first embodiment. That is L
The deposition temperature is 5 by using monosilane as a source gas by the PCVD method.
50 ℃, Silane flow rate 100SCCM Deposition rate 21.2Å / m
It was deposited to a film thickness of 250Å in. However, as with the first silicon film, the second silicon film forming method may be any method as long as the film forming temperature does not exceed the process maximum temperature of 600 ° C. For example, the second silicon film may be deposited at a deposition temperature of 600 ° C., a silane flow rate of 12.5 SCCM, and a reactor pressure of 9.0 mtorr, or a high-order silane such as disilane or trisilane may be used as a source gas. It is also possible to form a film at a lower temperature. In this way, the second silicon film 704 was formed by some method (FIG. 7B), and after patterning, the gate insulating layer 705 was formed by the same method as in the present invention of Example 1. That is, ECR-PEC
An SiO 2 film was deposited by the VD method at 1500 Å. As a method for forming the gate insulating layer 705, when the second silicon film 704 is a polycrystalline silicon film, it can be formed by the APCVD method. Next, a metal film or the like to be the gate electrode is formed. In Example 4, a silicon film to which phosphorus was added at a high concentration was used as a gate electrode material. Here, a deposition temperature of 600 ° C., monosilane of 200 SCCM, helium of 99.5% and phosphine of 0.5% helium / phosphine mixed gas of 6 SCCM and helium of 100 SCCM are flown by the LPCVD method.
At a furnace pressure of 100 mtorr, a film having a thickness of 3000 Å was deposited.
The sheet resistance value immediately after film formation was 744 Ω / □. Subsequently, a resist was applied, the resist was patterned, and then the phosphorus-added silicon film was patterned by a mixed plasma of CF 4 and O 2 . Patterning was performed at an incident wave output of 700 W with CF 4 and O 2 ratios of 200 SCCM and 200 SCCM, respectively. At this time, the phosphorus-added silicon film was etched at a rate of 15.4 Å / sec for 5 minutes 57 seconds to form a gate electrode 706. Since the film thickness of the phosphorus-added silicon film was 3000 Å, the width of the gate electrode was narrowed by 2,500 Å in each of the left and right sides as compared with the resist 707 by this plasma etching (FIG. 7).
(C)). Next, impurity ions are added while the resist 707 used for forming the gate electrode 706 is left without being peeled off. In the fourth embodiment, phosphorus was selected as an impurity to aim at an n-type thin film semiconductor device, but other elements can of course be used according to the purpose. In the present Example 4, impurity ion addition was performed using an ion implanter without a mass spectrometer. Phosphine with a concentration of 5% diluted in hydrogen was used as a source gas, and 3 × 10 15 1 / cm 2 at an acceleration voltage of 110 kV.
Driven to a concentration of 2 . In this manner, the first silicon film and a part of the second silicon film are partially removed from the source / drain region 7.
08, and the resist 707 used for forming the gate electrode
Has a film thickness of about 2 μm, the second silicon film located thereunder is not ion-added and the channel portion 7
09 (Fig. 7 (c)). Further, according to this method, an offset type thin film semiconductor device is produced. Next, after removing the resist 707 for forming the gate electrode, the substrate is subjected to heat treatment at 600 ° C. for 7 hours or more to activate the additive impurity ions and crystallize when the crystallinity of the channel portion silicon film 709 is insufficient. Promote the transformation. In this Example 4, heat treatment was performed for 23 hours at 600 ° C. in a nitrogen atmosphere, similar to the heat treatment performed in the present invention in Example 1. Then, SiO 2 710 is deposited as an interlayer insulating film by an APCVD method or the like to 500
Hydrogen was accumulated at 0 Å and ion-implantation equipment without mass spectrometer was used to accelerate hydrogen at 5 × 10 15 at an accelerating voltage of 80 kV.
After driving in 1 / cm 2 , open a contact hole,
The wiring 711 is formed of aluminum or the like, and the offset type thin film semiconductor device is completed.
【0038】こうして作成したオフセット型薄膜半導体
装置のトランジスタ特性を測定した所、L=W=10μ
m、Vds=4Vでオン電流は3.4μA、ソース・ド
レイン電流の最小値はVgs=−3.5Vの時0.09
pA、又Vgs=−10Vで定義したオフ電流は0.2
8pAと、トランジスタ・オフ時のリーク電流を低く押
さえ、且つ良好なオン電流を得る事が出来た。When the transistor characteristics of the offset type thin film semiconductor device thus produced were measured, L = W = 10 μ
m, Vds = 4V, ON current is 3.4 μA, and minimum source / drain current is 0.09 when Vgs = −3.5V.
The off current defined by pA and Vgs = -10V is 0.2.
The leakage current at the time of turning off the transistor was 8 pA, which was low, and a good on-current could be obtained.
【0039】実施例3及び実施例4で述べた様にオフセ
ット型薄膜半導体装置でソース領域・ドレイン領域が形
成された後、熱処理を加える事でオン電流は高く、リー
ク電流の小さい薄膜半導体装置を作成可能で有るが、本
発明が実施例3及び実施例4で詳述したオフセット型薄
膜半導体装置の製造方法だけに限定される物では決して
無い。例えば実施例4でオフセット型薄膜半導体装置を
作成する方法としてゲート電極幅よりも広い幅を持つレ
ジストを打ち込みのマスクとしたが、他にも様々な方法
が有る。例えば金属をゲート電極として用い、この表面
及び側面を酸化してゲート電極を細めた後に不純物イオ
ンを打ち込む事などでもオフセット型薄膜半導体装置を
作成出来る。又、図5(c)に示したように逆スタガー
ド構造に於いてもマスク材506の幅をゲート電極50
5よりも広げる事などでオフセット型薄膜半導体装置と
なる。本発明はこれらあらゆる製造方法で作成されたオ
フセット型薄膜半導体装置に有効で有る。As described in the third and fourth embodiments, after the source region / drain region is formed in the offset type thin film semiconductor device, a heat treatment is applied to obtain a thin film semiconductor device having a high on-current and a small leak current. Although it can be produced, the present invention is by no means limited to the method of manufacturing the offset type thin film semiconductor device described in detail in the third and fourth embodiments. For example, in Example 4, as a method of forming the offset thin film semiconductor device, a resist having a width wider than the width of the gate electrode was used as the implantation mask, but there are various other methods. For example, an offset thin film semiconductor device can be produced by using a metal as a gate electrode, oxidizing the surface and side surfaces of the gate electrode to narrow the gate electrode, and then implanting impurity ions. Further, as shown in FIG. 5C, even in the inverted staggered structure, the width of the mask material 506 is set to the width of the gate electrode 50.
An offset type thin film semiconductor device can be obtained by expanding the width from 5 or more. The present invention is effective for offset type thin film semiconductor devices produced by any of these manufacturing methods.
【0040】(実施例5)図8(a)〜(f)はMIS
型電界効果トランジスタを形成するシリコン薄膜半導体
装置の製造工程を断面で示した図で有る。(Embodiment 5) FIGS. 8A to 8F are MISs.
FIG. 3 is a cross-sectional view showing a manufacturing process of a silicon thin film semiconductor device for forming a field effect transistor.
【0041】本実施例5では絶縁性基板801として2
35mm□の石英ガラスを用いたが、600℃の温度に耐
え得る基板又は下地物質で有るならば、その種類や大き
さは無論問われない。例えばシリコン・ウェハー上に形
成された三次元LSIなども下地基板として可能で有
る。まず有機洗浄及び酸洗浄した石英ガラス基板801
上面に下地SiO2膜802を常圧化学気相堆積法(A
PCVD法)で堆積した。下地SiO2 膜802の形成
は基板温度300℃、シラン流量120SCCM、酸素84
0SCCM、窒素約140SLMで堆積した。この時の堆積
速度は3.9Å/secで、堆積時間は8分33秒で有
った。次にドナー又はアクセプターとなる不純物を含ん
だシリコン薄膜803を減圧気相化学堆積法(LPCV
D法)にて堆積した(図8(a))。本実施例5では不
純物としてリンを選び、フォスフィン(PH3)0.0
3SCCM、シラン(SiH4)200SCCMを原料ガスとし
て堆積温度600℃で1500Å堆積した。この時の堆
積速度は30Å/minで成膜直後のシート抵抗値は1
951Ω/□で有った。次に前記シリコン薄膜803上
にレジストを形成し、四弗化炭素(CF4)、酸素
(O2)、窒素(N2)等の混合プラズマでパターニング
を行い、ソース・ドレイン領域804を形成した。続い
て該領域804表面上の汚物・自然酸化膜を取り除いた
後、直ちにアモルファス・シリコン薄膜805を減圧C
VD法で堆積した。(図8(b))本実施例5に於ける
減圧CVD装置は184.5lで反応室は石英ガラスに
依り作成されている。反応室の外側には3ゾーンに分か
れたヒーターが設置されており、それら3つのヒーター
を独立に調整する事で反応室内中央部付近に所望の温度
で等温領域を形成する。基板はこの等温領域内に水平に
設置して、アモルファス・シリコン薄膜805を堆積し
た。アモルファス・シリコン薄膜805は原料ガスとし
てジシラン(Si2H6)100SCCMを用い、希釈ガスと
してヘリウム(He)100SCCMを使用した。堆積温度
は450℃であった。本実施例5のアモルファス・シリ
コン薄膜805を堆積する為に用いた減圧CVD炉の排
気はメカニカル・ブースター・ポンプとロータリー・ポ
ンプを直結して行っている。メカニカル・ブースター・
ポンプと反応炉の間にはコンダクタンス・バルブが取り
付けて有り、このバルブの開閉量を調整する事で、反応
室内の圧力を所望の値に調整・維持可能となる。本実施
例5ではアモルファス・シリコン薄膜805を堆積中、
反応室内の圧力を306mtorr に保った。堆積速度は1
8.07Å/minで、307Åの膜厚にアモルファス
・シリコン薄膜805を堆積した。次にこの様にして作
成されたアモルファス・シリコン薄膜805上にレジス
トを形成し、四弗化炭素、酸素、窒素等の混合プラズマ
でパターニングを行い、いずれチャンネル部となる位置
に丈アモルファス・シリコン薄膜806を残した。In the fifth embodiment, two insulating substrates 801 are used.
35 mm square quartz glass was used, but of course the type and size are not limited as long as it is a substrate or base material that can withstand a temperature of 600 ° C. For example, a three-dimensional LSI formed on a silicon wafer is also possible as the base substrate. First, a quartz glass substrate 801 that has been subjected to organic cleaning and acid cleaning
A base SiO 2 film 802 is formed on the upper surface by atmospheric pressure chemical vapor deposition (A
PCVD method). The base SiO 2 film 802 is formed by a substrate temperature of 300 ° C., a silane flow rate of 120 SCCM, and oxygen of 84.
It was deposited at 0 SCCM and about 140 SLM nitrogen. At this time, the deposition rate was 3.9 Å / sec, and the deposition time was 8 minutes 33 seconds. Then, a silicon thin film 803 containing impurities serving as a donor or an acceptor is formed by a low pressure chemical vapor deposition method (LPCV).
It was deposited by the D method) (FIG. 8A). In the fifth embodiment, phosphorus is selected as an impurity, and phosphine (PH 3 ) 0.0
3 SCCM and 200 SCCM of silane (SiH 4 ) were used as source gases, and 1500 Å was deposited at a deposition temperature of 600 ° C. At this time, the deposition rate was 30Å / min, and the sheet resistance immediately after film formation was 1
It was 951Ω / □. Next, a resist is formed on the silicon thin film 803, and patterning is performed with a mixed plasma of carbon tetrafluoride (CF 4 ), oxygen (O 2 ), nitrogen (N 2 ) and the like to form source / drain regions 804. .. Then, after removing the dirt and natural oxide film on the surface of the region 804, the amorphous silicon thin film 805 is immediately depressurized C
It was deposited by the VD method. (FIG. 8 (b)) The low pressure CVD apparatus in the fifth embodiment is 184.5 l, and the reaction chamber is made of quartz glass. A heater divided into three zones is installed outside the reaction chamber, and by adjusting these three heaters independently, an isothermal region at a desired temperature is formed near the central portion of the reaction chamber. The substrate was placed horizontally within this isothermal region and an amorphous silicon thin film 805 was deposited. The amorphous silicon thin film 805 used disilane (Si 2 H 6 ) 100 SCCM as a source gas and helium (He) 100 SCCM as a diluent gas. The deposition temperature was 450 ° C. The exhaust of the low pressure CVD furnace used for depositing the amorphous silicon thin film 805 of the fifth embodiment is performed by directly connecting a mechanical booster pump and a rotary pump. Mechanical booster
A conductance valve is installed between the pump and the reaction furnace, and the pressure inside the reaction chamber can be adjusted and maintained at a desired value by adjusting the opening / closing amount of this valve. In Example 5, while depositing the amorphous silicon thin film 805,
The pressure in the reaction chamber was kept at 306 mtorr. Deposition rate is 1
An amorphous silicon thin film 805 was deposited to a film thickness of 307Å at 8.07Å / min. Next, a resist is formed on the thus formed amorphous silicon thin film 805, and patterning is performed with a mixed plasma of carbon tetrafluoride, oxygen, nitrogen, etc., and a strong amorphous silicon thin film is formed at a position which will eventually become a channel portion. Leaving 806.
【0042】次に、この基板を沸騰している濃度60%
の硝酸にて洗浄し、更に1.67%弗化水素酸水溶液に
20秒間浸してソース・ドレイン領域804といずれチ
ャンネル部となる位置に残されたアモルファス・シリコ
ン薄膜806上の自然酸化膜を取り除いて清浄なシリコ
ン膜が出現した後、直ちに電子サイクロトロン共鳴プラ
ズマCVD装置(ECR−PECVD装置)にて酸素プ
ラズマ807を照射した。(図8(c))本実施例5で
用いたECRーPECVD装置の概要を図2に示す。酸
素プラズマは2.45GHzのマイクロ波を導波間20
1を通じて反応室202に導き、100SCCMの酸素をガ
ス導入管203から導入して酸素プラズマを立てた。こ
の時反応室内の圧力は1.84mtorrで、マイクロ波の
出力は2500Wで有った。反応室の外側には外部コイ
ル204が設けられて居り、酸素プラズマに875Ga
ussの磁場を掛けてプラズマ中の電子にECR条件を
満足せしめている。基板205はプラズマに対して垂直
に置かれ、ヒーター206に依り基板温度が300℃と
なる様保たれている。この条件で酸素プラズマ807を
8分20秒間照射して、いずれチャンネル部となる位置
に残されたアモルファス・シリコン薄膜806の酸化を
行い、ゲート絶縁層の一部位となるSiO2膜808を
得た。この時、ゲート絶縁層の一部位となるSiO2 膜
808の下部には、いずれチャンネル部となるアモルフ
ァスシリコン薄膜809が残留している。(図8
(d)) 更に真空を破る事なく連続してゲート絶縁層となるSi
O2膜810を堆積した。このSiO2膜810はマイク
ロ波出力が2250W、シラン流量60SCCM、酸素流量
100SCCM、基板温度300℃で、18.75秒間堆積
した。堆積中に於ける反応室内圧力は2.62mtorrで
有った。こうして形成した多層膜を多波長分散型偏光解
析法(多波長分光エリプソメトリー:ソープラ社MOS
S−ES4G)を用いて、いずれチャンネル部となる残
留しているアモルファス・シリコン膜809の膜厚と、
アモルファス・シリコン膜を酸化して形成したSiO2
膜808の膜厚、及びECR−PECVD法で堆積した
SiO2膜810の膜厚を測定した所、アモルファス・
シリコン薄膜809が205Å、SiO2膜808が1
20Å、SiO2膜810が1500Åで有った。又こ
の時、波長が632.8nmに於けるSiO2膜の屈折
率は、SiO2膜808が1.42、SiO2膜810が
1.40で有った。Next, this substrate is boiled at a concentration of 60%.
The substrate is washed with nitric acid as described above and further immersed in a 1.67% hydrofluoric acid aqueous solution for 20 seconds to remove the natural oxide film on the source / drain region 804 and the amorphous silicon thin film 806 left at a position where it will become a channel part. Immediately after the appearance of a clean silicon film, oxygen plasma 807 was irradiated by an electron cyclotron resonance plasma CVD apparatus (ECR-PECVD apparatus). (FIG. 8 (c)) The outline of the ECR-PECVD apparatus used in this Example 5 is shown in FIG. Oxygen plasma uses microwave of 2.45 GHz between waveguides 20
1 was introduced into the reaction chamber 202, and 100 SCCM of oxygen was introduced from the gas introduction pipe 203 to establish oxygen plasma. At this time, the pressure in the reaction chamber was 1.84 mtorr, and the microwave output was 2500 W. An external coil 204 is provided outside the reaction chamber, and the oxygen plasma is 875 Ga.
By applying a magnetic field of uss, the electrons in the plasma satisfy the ECR condition. The substrate 205 is placed perpendicular to the plasma, and the heater 206 keeps the substrate temperature at 300 ° C. Under this condition, the oxygen plasma 807 was irradiated for 8 minutes and 20 seconds to oxidize the amorphous silicon thin film 806 left at the position where the channel portion will eventually be obtained, and the SiO 2 film 808 which will be a part of the gate insulating layer was obtained. .. At this time, the amorphous silicon thin film 809, which will eventually become the channel portion, remains below the SiO 2 film 808, which is a part of the gate insulating layer. (Fig. 8
(D)) Si that becomes a gate insulating layer continuously without breaking the vacuum.
An O 2 film 810 was deposited. This SiO 2 film 810 was deposited for 18.75 seconds at a microwave output of 2250 W, a silane flow rate of 60 SCCM, an oxygen flow rate of 100 SCCM, and a substrate temperature of 300 ° C. The pressure in the reaction chamber during the deposition was 2.62 mtorr. The multi-layer film thus formed is subjected to multi-wavelength dispersion ellipsometry (multi-wavelength spectroscopic ellipsometry: MOS of Sopra Co.).
S-ES4G), and the remaining film thickness of the amorphous silicon film 809 which will eventually become the channel part,
SiO 2 formed by oxidizing an amorphous silicon film
When the film thickness of the film 808 and the film thickness of the SiO 2 film 810 deposited by the ECR-PECVD method were measured, the result was amorphous.
Silicon thin film 809 is 205Å, SiO 2 film 808 is 1
20Å, SiO 2 film 810 was 1500Å. At this time, the refractive index of the SiO 2 film at a wavelength of 632.8 nm was 1.42 for the SiO 2 film 808 and 1.40 for the SiO 2 film 810.
【0043】次にこうして得られた基板を600℃に保
持された電熱炉に挿入し、48時間の熱処理を施した。
この時電熱炉には純度99.999%以上の窒素ガスを
20l/min流し続け、不活性雰囲気を保持し続け
た。この不活性雰囲気600℃の熱処理に依り、チャン
ネル部に残留していたアモルファス・シリコン薄膜は結
晶化し、チャンネル部を構成するシリコン薄膜811へ
と改変される。(図8(e))続いてこの基板を再びE
CR−PECVD装置に入れ、該装置を用いて熱処理が
施された基板に水素プラズマを照射した。この時、基板
温度は300℃、マイクロ波出力2000Wで水素を1
00SCCM流して水素プラズマを立てた。この状態で反応
室内の圧力は1.97mtorr で有った。水素プラズマ照
射は45分間行った。Next, the substrate thus obtained was inserted into an electric heating furnace maintained at 600 ° C. and heat-treated for 48 hours.
At this time, nitrogen gas having a purity of 99.999% or more was continuously flowed in the electric heating furnace at 20 l / min to keep an inert atmosphere. By this heat treatment at 600 ° C. in the inert atmosphere, the amorphous silicon thin film remaining in the channel portion is crystallized and converted into the silicon thin film 811 forming the channel portion. (FIG. 8 (e)) Then, this substrate is again E
The substrate was placed in a CR-PECVD apparatus, and the substrate heat-treated using the apparatus was irradiated with hydrogen plasma. At this time, the substrate temperature is 300 ° C., the microwave output is 2000 W, and hydrogen is 1
Hydrogen plasma was established by flowing 00 SCCM. In this state, the pressure inside the reaction chamber was 1.97 mtorr. Hydrogen plasma irradiation was performed for 45 minutes.
【0044】次にクロムをスパッター法で1500Å堆
積し、パターニングに依りゲート電極812を形成し
た。この時シート抵抗値は1.36Ω/□で有った。そ
の後、ゲート絶縁膜にコンタクトホールを開け、ソース
・ドレイン取り出し電極813をスパッター法などで形
成し、パターニングを行う事でトランジスタは完成す
る。(図8(f))本実施例5ではソース・ドレイン取
り出し電極材料として、膜厚8000Åのアルミニウム
を用いた。この時のアルミニウムのシート抵抗値は42
mΩ/□で有った。Next, chromium was deposited by a sputtering method at 1500 Å, and a gate electrode 812 was formed by patterning. At this time, the sheet resistance value was 1.36 Ω / □. After that, a contact hole is formed in the gate insulating film, a source / drain extraction electrode 813 is formed by a sputtering method or the like, and patterning is performed, whereby the transistor is completed. (FIG. 8 (f)) In the fifth embodiment, aluminum having a film thickness of 8000Å was used as the source / drain extraction electrode material. The sheet resistance of aluminum at this time is 42
It was mΩ / □.
【0045】この様にして試作した薄膜トランジスタ
(TFT)の特性の一例Vgs−Ids曲線を図9の9
−aに示した。ここでIdsはソース・ドレイン電圧、
Vds=4V、温度25℃で測定した。トランジスタ・
サイズはチャンネル部の長さL=10μm、幅W=10
0μmで有った。Vds=4V,Vgs=10Vでトラ
ンジスタをオンさせた時のオン電流はIds=34.5
μAと良好なトランジスタ特性を有する薄膜半導体装置
が得られた。又、このトランジスタの飽和電流領域より
求めた電界効果移動度は12.52cm2 /v・secで
有った。図9の9−bには比較の為に従来技術に依って
作成した薄膜半導体装置のトランジスタ特性を図示し
た。即ち、従来技術では、チャンネル部シリコン薄膜を
減圧CVD法にて600℃で堆積し、酸素プラズマ照射
を施さぬ他は総て本実施例5と同一の工程で薄膜半導体
装置を作成したもので有る。この時、減圧CVD法でチ
ャンネル部シリコン薄膜を堆積する装置は本実施例5で
アモルファス・シリコン薄膜を堆積した装置と同一で有
り、原料ガスのモノシランは24SCCM流し、反応炉内圧
力は13.8mtorr、堆積速度は19.00Å/min
で252Åの膜厚に堆積した。この従来のTFTのオン
電流はIds=4.6μAで電界効果移動度は4.40
cm/v・secで有った。この他に、チャンネル部シリ
コン薄膜を同様に減圧CVD法で600℃にて堆積した
後、ゲート絶縁膜堆積前に酸素プラズマ照射を施し、そ
れ以外の工程は総て本実施例5と同一の工程で薄膜半導
体装置を作成し、TFT特性を測定した所、TFT特性
は酸素プラズマ照射の有無でほとんど変化せず、酸素プ
ラズマ照射を施したTFTのVgs−Ids曲線は図9
の9−bと一致した。この時TFTのオン電流はIds
=4.7μAで、電界効果移動度は4.44cm2 /v・
secで有った。即ち、チャンネル部シリコン薄膜を6
00℃にて減圧CVD法で堆積する従来技術では、酸素
プラズマ照射の効果は非常に小さい。図9の9−cには
別の従来技術に依り作成された薄膜半導体装置のTFT
特性を図示した。この従来技術では、本実施例5で酸素
プラズマ照射を施さぬ他は総て本実施例と同一の工程で
薄膜半導体装置を作成した物で有る。即ち、チャンネル
部シリコン層として、まずアモルファス・シリコン薄膜
を堆積し、その後600℃の熱処理をおこなうものの、
ゲート絶縁層形成前に酸素プラズマ照射を施さなかった
工程で有る。この従来技術に依り、作成されたTFTは
−10Vのデプレッションを呈しており、立ち上がり特
性も良くない。この薄膜半導体装置のオン電流はVds
=4V、Vgs=10Vで12.1μAで有り、電界効
果移動度は9.94cm2/v・secで有った。An example of the characteristics of the thin film transistor (TFT) prototyped in this way is shown by the Vgs-Ids curve in FIG.
-A. Where Ids is the source-drain voltage,
It was measured at Vds = 4V and a temperature of 25 ° C. Transistor
The size of the channel part is L = 10 μm, width W = 10
It was 0 μm. The on-current when the transistor is turned on at Vds = 4V and Vgs = 10V is Ids = 34.5.
A thin film semiconductor device having good transistor characteristics of μA was obtained. Further, the field effect mobility obtained from the saturation current region of this transistor was 12.52 cm 2 / v · sec. For comparison, 9-b of FIG. 9 shows the transistor characteristics of the thin film semiconductor device manufactured by the conventional technique. That is, in the prior art, a thin film semiconductor device was produced in all the same steps as in Example 5 except that the channel portion silicon thin film was deposited at 600 ° C. by the low pressure CVD method and the oxygen plasma irradiation was not performed. .. At this time, the apparatus for depositing the channel silicon thin film by the low pressure CVD method is the same as the apparatus for depositing the amorphous silicon thin film in the fifth embodiment, the raw material gas monosilane is made to flow at 24 SCCM, and the pressure in the reaction furnace is 13.8 mtorr. , Deposition rate is 19.00 Å / min
Deposited to a film thickness of 252Å. The on current of this conventional TFT is Ids = 4.6 μA and the field effect mobility is 4.40.
It was cm / v · sec. In addition to this, after the channel portion silicon thin film is similarly deposited at 600 ° C. by the low pressure CVD method, oxygen plasma irradiation is performed before the gate insulating film deposition, and all other steps are the same as those in the fifth embodiment. When a thin film semiconductor device was prepared with, and the TFT characteristics were measured, the TFT characteristics hardly changed with and without the oxygen plasma irradiation, and the Vgs-Ids curve of the TFT subjected to the oxygen plasma irradiation is shown in FIG.
9-b. At this time, the ON current of the TFT is Ids
= 4.7 μA, field effect mobility is 4.44 cm 2 / v
It was sec. That is, the channel silicon thin film is
The effect of oxygen plasma irradiation is very small in the conventional technique of depositing by low pressure CVD at 00 ° C. 9-c of FIG. 9 shows a TFT of a thin film semiconductor device manufactured by another conventional technique.
The characteristics are illustrated. In this conventional technique, a thin film semiconductor device is manufactured by the same steps as those in the present embodiment except that the oxygen plasma irradiation is not performed in the fifth embodiment. That is, although an amorphous silicon thin film is first deposited as a channel silicon layer and then a heat treatment at 600 ° C. is performed,
This is a step in which oxygen plasma irradiation was not performed before forming the gate insulating layer. The TFT produced by this conventional technique exhibits a depletion of -10 V and the rising characteristics are not good. The on-current of this thin film semiconductor device is Vds
= 4 V, Vgs = 10 V, 12.1 μA, and field-effect mobility was 9.94 cm 2 / v · sec.
【0046】こうした結果から本実施例5が示した通
り、いずれチャンネル部となるアモルファス・シリコン
薄膜に酸素プラズマを照射し、その後熱処理を施してチ
ャンネル部シリコン薄膜の結晶化を進めた時のみ、薄膜
半導体装置のトランジスタ特性が大幅に向上する事が分
かる。これはまずアモルファス・シリコン薄膜の表面が
酸素プラズマで酸化される為、清浄なMIS界面が形成
され、その後、結晶化が進められた為で有る。これによ
り従来技術で作成した薄膜半導体装置に比べ、本発明の
実施例が著しく良好な半導体特性を有する理由が分か
る。From these results, as shown in the fifth embodiment, only when the amorphous silicon thin film to become the channel part is irradiated with oxygen plasma and then heat treatment is performed to crystallize the channel part silicon thin film, the thin film is formed. It can be seen that the transistor characteristics of the semiconductor device are significantly improved. This is because the surface of the amorphous silicon thin film was first oxidized by oxygen plasma, so that a clean MIS interface was formed and then crystallization proceeded. From this, it is understood that the embodiment of the present invention has remarkably good semiconductor characteristics as compared with the thin film semiconductor device manufactured by the conventional technique.
【0047】(実施例6)絶縁性物質上にシリコン膜及
び酸化硅素膜を形成した後、ドナー又はアクセプターと
なる不純物をシリコン膜に添加して、シリコン膜に依る
導電層を作成した。Example 6 After forming a silicon film and a silicon oxide film on an insulating material, impurities serving as donors or acceptors were added to the silicon film to form a conductive layer based on the silicon film.
【0048】本実施例6では基板として直径75mmの溶
融石英基板を用いた。しかし、無論600℃程度の熱処
理に耐え得る基板であるならば何で有っても構わない。
例えば加工されたシリコン基板なども可能で有る。まず
有機洗浄及び酸洗浄した基板上面に下地SiO2膜をA
PCVD法で堆積した。下地SiO2膜の形成は基板温
度300℃、シラン流量120SCCM、酸素840SCCM、
窒素約140SLMで堆積した。この時の堆積速度は3.
9Å/secで堆積時間は12分49秒で有った。次に
実施例1にてチャンネル部シリコン膜を堆積するのに用
いたLPCVD装置を用いて実施例1と同様な方法でシ
リコン膜を堆積した。即ち堆積温度550℃、シラン流
量100SCCM、反応室内圧力を400mtorrにて1
1分20秒間シリコン膜を堆積した。こうして得られた
シリコン膜の膜厚は252Åで有った。In Example 6, a fused silica substrate having a diameter of 75 mm was used as the substrate. However, of course, any substrate may be used as long as it can withstand a heat treatment at about 600 ° C.
For example, a processed silicon substrate or the like is also possible. First, a base SiO 2 film is formed on the upper surface of the substrate that has been organically and acid-cleaned.
It was deposited by the PCVD method. The formation of the underlying SiO 2 film is performed at a substrate temperature of 300 ° C., a silane flow rate of 120 SCCM, oxygen of 840 SCCM,
It was deposited with about 140 SLM of nitrogen. The deposition rate at this time is 3.
At 9Å / sec, the deposition time was 12 minutes 49 seconds. Next, a silicon film was deposited in the same manner as in Example 1 by using the LPCVD apparatus used to deposit the channel portion silicon film in Example 1. That is, the deposition temperature was 550 ° C., the silane flow rate was 100 SCCM, and the reaction chamber pressure was 400 mtorr.
A silicon film was deposited for 1 minute and 20 seconds. The thickness of the silicon film thus obtained was 252Å.
【0049】次にこうして得られた基板に熱処理を施し
て、シリコン膜の結晶性を高めた。この熱処理方法は実
施例1でシリコン膜104の結晶性を高める為に施した
熱処理と同一で有る。即ち、窒素雰囲気下600℃で2
3時間の熱処理を行った。熱処理終了後、このシリコン
膜はレジストでパターニングされ、さらにCF4とO2の
混合プラズマに依りエッチングされ、シリコン膜の配線
パターンが作成された。Next, the substrate thus obtained was subjected to heat treatment to enhance the crystallinity of the silicon film. This heat treatment method is the same as the heat treatment performed to enhance the crystallinity of the silicon film 104 in the first embodiment. That is, 2 at 600 ° C. in a nitrogen atmosphere
Heat treatment was performed for 3 hours. After the heat treatment was completed, this silicon film was patterned with a resist and further etched by a mixed plasma of CF 4 and O 2 to form a wiring pattern of the silicon film.
【0050】続いてこの基板を濃度60%の沸騰硝酸に
て洗浄し、更に1.67%弗化水素酸水溶液に20秒間
浸して、シリコン膜上の自然酸化膜を取り除き、清浄シ
リコン表面を出現させた後、直ちにECRーPECVD
装置にて酸化硅素膜を1500Åの厚さに堆積した。こ
こで酸化硅素膜の堆積は実施例1の本発明にてゲート絶
縁膜を形成する方法と全く同一の方法で行った。次にイ
オン打ち込み装置を用いてドナー又はアクセプターとな
る不純物をシリコン膜で作成した配線に添加した。本実
施例6では不純物として燐を選びn型導電層の作成を目
指したが、無論他元素もその目的に応じて可能で有る。
本実施例6ではバケットタイプの質量非分離型のイオン
注入装置を用いて不純物イオンの添加を施した。原料ガ
スとして水素中に希釈された濃度5%のホスフィンを用
い、加速電圧110KVで3×10151/cm2 の濃度に
酸化硅素膜を通じて打ち込んだ。次にこの基板を窒素雰
囲気下で300℃に保たれている炉に挿入して熱処理を
施した。熱処理時間は丁度一時間で有った。300℃、
一時間の熱処理終了後、酸化硅素膜にコンタクトホール
を開穴し、アルミニウムで取り出し電極を作成した。こ
うして作成された不純物添加シリコン膜配線の抵抗を測
定した所、シート抵抗値として、95%の信頼係数で
(71±15)kΩ/□が測定された。一般に数百Åの
膜厚しか持たぬ薄膜に不純物イオンを添加して、300
℃程度の低温で添加イオンを活性化して導電層を得る事
は不可能と信じられていた。しかるに、本発明では熱処
理を施されたシリコン膜の膜質を、シリコン膜上をEC
R−PECVD法で堆積した酸化硅素膜で被覆する事に
依り、シリコン膜表面の捕獲密度を低減させる等のシリ
コン膜質改善に成功した為、電子散乱密度を低下させ、
薄膜導電層の作成が初めて可能となった。この事を従来
技術に依るシリコン膜と比較し、本発明の優位性を明ら
かにする。Subsequently, this substrate was washed with boiling nitric acid having a concentration of 60%, and further immersed in a 1.67% hydrofluoric acid aqueous solution for 20 seconds to remove the natural oxide film on the silicon film, and a clean silicon surface was exposed. And then ECR-PECVD immediately
A silicon oxide film was deposited with a device to a thickness of 1500Å. Here, the deposition of the silicon oxide film was performed by the same method as the method of forming the gate insulating film in the present invention of Example 1. Next, using an ion implanter, impurities serving as donors or acceptors were added to the wiring formed of the silicon film. In the sixth embodiment, phosphorus was selected as an impurity to form the n-type conductive layer, but other elements can of course be used according to the purpose.
In the sixth embodiment, impurity ions are added by using a bucket type non-separation type ion implanter. Using phosphine having a concentration of 5% diluted in hydrogen as a raw material gas, a phosphine having a concentration of 3 × 10 15 1 / cm 2 was implanted at an accelerating voltage of 110 KV through a silicon oxide film. Next, this substrate was placed in a furnace maintained at 300 ° C. in a nitrogen atmosphere and subjected to heat treatment. The heat treatment time was just one hour. 300 ° C,
After completion of the heat treatment for 1 hour, a contact hole was opened in the silicon oxide film, and an extraction electrode was made of aluminum. When the resistance of the impurity-added silicon film wiring thus formed was measured, the sheet resistance value was (71 ± 15) kΩ / □ with a 95% reliability coefficient. Generally, impurity ions are added to a thin film with a thickness of several hundred Å
It was believed that it was impossible to activate the added ions at a low temperature of about ℃ to obtain a conductive layer. However, in the present invention, the film quality of the heat-treated silicon film is
By covering with a silicon oxide film deposited by the R-PECVD method, and succeeded in improving the quality of the silicon film such as reducing the trap density of the surface of the silicon film, the electron scattering density was lowered,
For the first time, it became possible to create a thin film conductive layer. By comparing this with the silicon film according to the conventional technique, the superiority of the present invention is clarified.
【0051】まず第一にシリコン膜をLPCVD法にて
600℃で堆積した後、ECRーPECVD法で酸化硅
素膜を形成した従来技術のシリコン膜に不純物を添加
し、300℃の低温活性化でシリコン膜導電層の作成を
試みた。ここではシリコン膜を600℃で、モノシラン
を12.50SCCM流し、反応室内圧力を9.2mtor
rで263Åの膜厚に堆積した他は、本実施例6の本発
明と全く同一の工程で不純物添加シリコン膜配線を作成
した。こうして得られた従来技術のシリコン膜のシート
抵抗は基板内5ヶ所を測定して総て1GΩ/□以上で事
実上電流は全く流れなかった。First, after depositing a silicon film at 600 ° C. by the LPCVD method, impurities are added to the silicon film of the prior art on which a silicon oxide film is formed by the ECR-PECVD method, and activation is performed at a low temperature of 300 ° C. An attempt was made to create a silicon film conductive layer. Here, the silicon film is made to flow at 600 ° C., the monosilane is made to flow at 12.50 SCCM, and the pressure in the reaction chamber is set to 9.2 mtor.
Impurity-added silicon film wiring was formed by the same process as in the present invention of Example 6 except that the film was deposited to a film thickness of 263Å by r. The sheet resistance of the silicon film of the prior art obtained in this manner was 1 GΩ / □ or more when measured at 5 points in the substrate, and virtually no current flowed.
【0052】第二にシリコン膜は本実施例6の本発明と
全く同様に600℃の熱処理を施して作成し、その後A
PCVD法で酸化硅素膜を形成した従来技術のシリコン
膜に不純物を添加し、300℃の低温活性化でシリコン
膜導電層の作成を試みた。ここで酸化硅素膜はAPCV
D法で基板温度を300℃に保ち、窒素中に20%シラ
ンを含んだ窒素・シラン混合ガスを300SCCM、酸素を
420SCCM流し、約140SLMの希釈用窒素をこれらの
原料ガスと共に流して、1500Åの膜厚に堆積した。
これ以外は総て、本実施例6の本発明と全く同一の工程
で不純物添加シリコン膜配線を作成した。こうして得ら
れた従来技術のシリコン膜のシート抵抗値は95%の信
頼係数で(175±56)kΩ/□で有った。その後こ
の基板を再度ECR−PECVD装置に装着し、水素プ
ラズマ処理を施した。水素プラズマ処理は基板温度30
0℃で水素を125SCCM流し、マイクロ波出力2000
Wで30分間行った。水素プラズマ処理後、基板内5ヶ
所の抵抗値を測定した所、2ヶ所のシート抵抗は1GΩ
/□で以上で有り、残りの3ヶ所の平均値は158kΩ
/□で標準偏差値は68kΩ/□で有った。Secondly, the silicon film is formed by heat treatment at 600 ° C. in exactly the same manner as in the present invention of the sixth embodiment, and then A
An impurity was added to a conventional silicon film having a silicon oxide film formed by the PCVD method, and an attempt was made to form a silicon film conductive layer by activating at 300 ° C. at a low temperature. Here, the silicon oxide film is APCV
The substrate temperature was kept at 300 ° C by the method D, 300 SCCM of nitrogen / silane mixed gas containing 20% silane in nitrogen and 420 SCCM of oxygen were flowed, and about 140 SLM of diluting nitrogen was flowed together with these source gases, and 1500 Å Deposited to a film thickness.
Except for this, the impurity-added silicon film wiring was formed in the same steps as in the present invention of Example 6 in all cases. The sheet resistance of the conventional silicon film thus obtained was (175 ± 56) kΩ / □ with a 95% reliability coefficient. Then, this substrate was mounted on the ECR-PECVD apparatus again and subjected to hydrogen plasma treatment. Substrate temperature 30 for hydrogen plasma treatment
Flowing hydrogen 125SCCM at 0 ℃, microwave output 2000
W for 30 minutes. After the hydrogen plasma treatment, the resistance value at 5 points in the substrate was measured and the sheet resistance at 2 points was 1 GΩ.
It is above with / □, and the average value of the remaining 3 places is 158 kΩ
The standard deviation value was 68 kΩ / □.
【0053】この様に600℃以下で熱処理されたシリ
コン膜上をECRーPECVD装置で形成された酸化硅
素膜で被覆する事に依り、高膜質なシリコン膜が得られ
る事が分かる。この為、実施例1で示した様に本発明の
シリコン膜を薄膜半導体装置のチャンネル部に用い、E
CRーPECVD装置で形成された酸化硅素膜をゲート
絶縁層に用いると特性の良い薄膜半導体装置が得られ、
又本実施例6で示した様に本発明のシリコン膜に不純物
イオンを添加すると、低温で低抵抗のシリコン膜導電層
を得る事が可能となる。従って本発明のシリコン膜は単
に薄膜半導体装置に有効のみならず、電荷結合装置(C
CD)のゲート電極や配線など、あらゆる電子装置に使
用される非単結晶シリコン膜に取って極めて有効に利用
し得る。It can be seen that a high-quality silicon film can be obtained by covering the silicon film thus heat-treated at 600 ° C. or lower with the silicon oxide film formed by the ECR-PECVD apparatus. Therefore, as shown in Example 1, the silicon film of the present invention is used for the channel portion of the thin film semiconductor device, and E
When a silicon oxide film formed by a CR-PECVD device is used as a gate insulating layer, a thin film semiconductor device with excellent characteristics can be obtained.
Further, as shown in the sixth embodiment, when impurity ions are added to the silicon film of the present invention, it becomes possible to obtain a silicon film conductive layer having a low resistance at a low temperature. Therefore, the silicon film of the present invention is not only effective for a thin film semiconductor device but also for a charge coupled device (C
It can be used very effectively as a non-single-crystal silicon film used for various electronic devices such as a gate electrode of CD) and wiring.
【0054】(実施例7)実施例6の本発明でバケット
型質量非分離型のイオン注入装置を用いて不純物イオン
をシリコン膜に添加した工程を、質量分離型イオン注入
装置に変えて質量数31の燐の一価イオンを打ち込む事
に変更した他は、総て実施例6の本発明と全く同一工程
で、不純物添加シリコン膜導電層の作成を試みた。本実
施例7では燐イオンを90KVで3×10151/cm2 打ち
込んだ。こうして得られた不純物添加シリコン膜の抵抗
を測定した所、基板内5ヶ所で総て1GΩ/□で実質的
には全く電流は流れなかった。これは実施例6の本発明
では、不純物の添加を質量非分離型のイオン注入装置を
用い、原料ガスとして水素・ホスフィン混合ガスを使用
した為、シリコン膜に燐元素添加時には必然的に水素イ
オンの添加が同時に行われ、イオン添加の際生じた欠陥
が水素イオンで修復される為、本発明の良質なシリコン
膜に限って、低温で低抵抗シリコン導電層が作成された
ので有る。(Embodiment 7) The step of adding impurity ions to a silicon film by using the bucket type mass non-separation type ion implantation apparatus of the present invention in Example 6 is changed to the mass separation type ion implantation apparatus, and the mass number is changed. An attempt was made to form an impurity-doped silicon film conductive layer in exactly the same steps as in the present invention of Example 6, except that the implantation of monovalent phosphorus ions of 31 was performed. In Example 7, phosphorus ions were implanted at 90 KV at 3 × 10 15 1 / cm 2 . When the resistance of the impurity-added silicon film thus obtained was measured, it was found that at all 5 locations in the substrate, it was 1 GΩ / □, and substantially no current flowed. This is because, in the present invention of Example 6, impurities are added by using a mass non-separation type ion implanter and a hydrogen / phosphine mixed gas is used as a source gas, so that hydrogen ions are inevitably added when a phosphorus element is added to a silicon film. Is simultaneously performed, and defects generated at the time of ion addition are repaired by hydrogen ions. Therefore, a low-resistance silicon conductive layer is formed at a low temperature only in the high-quality silicon film of the present invention.
【0055】(実施例8)図10(a)〜(d)は本実
施例8に於けるセルフ・アライン型スタガード構造のM
IS型電界効果トランジスタを構成するシリコン薄膜半
導体装置の製造工程を断面で示した図で有る。まず実施
例1と同様基板1001を洗浄した後、下地保護膜10
02としてSiO2 膜を2000Å程度堆積する。続い
て第一のシリコン膜を1500Å程度堆積し、パターニ
ングを行う事でパッドとなるシリコン膜1003を形成
する(図10(a))。この第一のシリコン膜として本
実施例8では実施例1でチャンネル部シリコン膜を堆積
したLPCVD装置を用いて堆積温度600℃シラン流
量12.5SCCMで1500Åに堆積したが、これ以外に
も同じLPCVD装置を用いて堆積温度550℃程度で
シリコン膜を堆積する事も、原料ガスとしてジシラン
(Si2H6)を用いて堆積温度450℃程度で堆積する
事も、PECVD法にて250℃程度でシリコン膜を堆
積する事も可能で有る。工程最高温度600℃を越えぬ
膜形成温度で有るならば、如何なる方法であっても構わ
ない。次に第二のシリコン膜1004を堆積するが、こ
の第二のシリコン膜の膜厚が300Å程度以上有り、不
純物注入後のソース・ドレイン領域の抵抗値がトランジ
スタを動作させた時のチャンネル領域の抵抗値に比べて
充分低ければ、第一のシリコン膜又はパッドとなるシリ
コン膜1003は必要とされない。本実施例8では第二
のシリコン膜1004を実施例1の本発明でチャンネル
部となるシリコン薄膜と同じ方法で堆積した。即ちLP
CVD法にてモノシランを原料ガスとし、堆積温度55
0℃、シラン流量100SCCM堆積速度21.2Å/mi
nで250Åの膜厚に堆積した。その後実施例1の本発
明でシリコン膜の結晶性を高める為に行ったのと全く同
一の熱処理を施した。即ち窒素雰囲気下600℃で23
時間の熱処理を行った。(図10(b))。次に第二の
シリコン膜のパターニングを行った後、実施例1の本発
明と同様の方法でゲート絶縁層1005を形成した。即
ち、ECR−PECVD法でSiO2 膜を1500Å堆
積した。次にゲート電極となる金属膜などを形成する。
本実施例8ではゲート電極材料として、2000Åの膜
厚を有するクロム膜を用いた。クロム膜は基板温度18
0℃でスパッター法に依り形成された。成膜直後のクロ
ムのシート抵抗値は994mΩ/□で有った。引き続い
てAPCVD法でクロム上に300℃の基板温度でSi
O2 膜を3000Å堆積した。その後レジストでパター
ニングを行い、ゲート電極1006とSiO2 膜に依る
保護キャップ層1007を形成し、不純物イオンを添加
した。本実施例8では不純物として燐を選びn型薄膜半
導体装置の作成を目指したが、無論他元素もその目的に
応じて可能で有る。本実施例8では質量分析装置が付い
ていないイオン打ち込み装置を用いて不純物イオン添加
を施した。原料ガスとして水素中に希釈された濃度5%
のホスフィンを用い、加速電圧110kVで5×1015
1/cm2 の濃度に打ち込んだ。この様にして、第一のシ
リコン膜と第二のシリコン膜の一部はソース・ドレイン
領域1008となり、又SiO2 膜に依る保護キャップ
層1007が有るため、この下に位置する第二のシリコ
ン膜はイオン添加されず、チャンネル部1009を構成
するに至る(図10(c))。次に該基板を窒素雰囲気
下350℃で2時間の熱処理を施し、添加不純物イオン
の活性化を行った。その後層間絶縁膜としてSiO2 膜
1010を5000Å堆積し、続いてコンタクト・ホー
ルを開穴し、アルミニウムなどで配線1011をし、セ
ルフ・アライン型薄膜半導体装置が完成する(図10
(d))。(Embodiment 8) FIGS. 10A to 10D show an M of the self-aligned staggered structure according to the eighth embodiment.
It is the figure which showed the manufacturing process of the silicon thin film semiconductor device which comprises an IS type field effect transistor by the cross section. First, after washing the substrate 1001 as in Example 1, the base protective film 10
As 02, a SiO 2 film is deposited to about 2000 Å. Then, a first silicon film is deposited on the order of 1500 Å and patterned to form a silicon film 1003 to be a pad (FIG. 10A). In Example 8, as the first silicon film, the LPCVD apparatus in which the channel portion silicon film was deposited in Example 1 was used to deposit 1500 ° C. at a deposition temperature of 600 ° C. and a silane flow rate of 12.5 SCCM. It is possible to deposit a silicon film at a deposition temperature of about 550 ° C. by using an apparatus, or to deposit disilane (Si 2 H 6 ) as a source gas at a deposition temperature of about 450 ° C. It is also possible to deposit a silicon film. Any method may be used as long as the film forming temperature does not exceed the process maximum temperature of 600 ° C. Next, a second silicon film 1004 is deposited. The second silicon film has a film thickness of about 300 Å or more, and the resistance value of the source / drain region after the impurity implantation is in the channel region when the transistor is operated. If the resistance value is sufficiently lower than the resistance value, the first silicon film or the silicon film 1003 to be the pad is not required. In the eighth embodiment, the second silicon film 1004 is deposited by the same method as that of the silicon thin film which becomes the channel portion in the present invention of the first embodiment. That is, LP
The deposition temperature is 55 with monosilane as the source gas by the CVD method.
0 ℃, Silane flow rate 100SCCM Deposition rate 21.2Å / mi
n was deposited to a film thickness of 250Å. After that, the same heat treatment as that performed to enhance the crystallinity of the silicon film in the present invention of Example 1 was performed. That is, 23 at 600 ° C under nitrogen atmosphere
Heat treatment was performed for an hour. (FIG.10 (b)). Next, after patterning the second silicon film, a gate insulating layer 1005 was formed by the same method as in the present invention of Example 1. That is, a 1500 Å SiO 2 film was deposited by the ECR-PECVD method. Next, a metal film or the like to be the gate electrode is formed.
In Example 8, a chromium film having a thickness of 2000 Å was used as the gate electrode material. Chromium film has a substrate temperature of 18
It was formed by a sputtering method at 0 ° C. The sheet resistance value of chromium immediately after film formation was 994 mΩ / □. Subsequently, by APCVD method, Si is deposited on chromium at a substrate temperature of 300 ° C.
An O 2 film was deposited at 3000 Å. After that, patterning was performed with a resist to form a protective cap layer 1007 consisting of the gate electrode 1006 and the SiO 2 film, and impurity ions were added. In Example 8, phosphorus was selected as an impurity to aim at the production of an n-type thin film semiconductor device, but it goes without saying that other elements are possible depending on the purpose. In the present Example 8, impurity ion addition was performed using an ion implanter without a mass spectrometer. 5% concentration diluted in hydrogen as source gas
Phosphine of 5 × 10 15 at an acceleration voltage of 110 kV
Implanted to a density of 1 / cm 2 . In this way, the first silicon film and a part of the second silicon film become the source / drain regions 1008, and the protective cap layer 1007 made of the SiO 2 film is present. The film is not ion-added and reaches the channel part 1009 (FIG. 10C). Next, the substrate was heat-treated in a nitrogen atmosphere at 350 ° C. for 2 hours to activate the added impurity ions. Thereafter, a SiO 2 film 1010 is deposited as an interlayer insulating film at a thickness of 5000 Å, a contact hole is subsequently opened, and wiring 1011 is made of aluminum or the like to complete a self-aligned thin film semiconductor device (FIG. 10).
(D)).
【0056】こうして作成したセルフ・アライン型薄膜
半導体装置のトランジスタ特性を測定した所、L=W=
10μm、Vds=4V、Vgs=10Vでオン電流は
4.89μA、ソース・ドレイン電流の最小値はVgs
=−3.5Vの時0.21pA、又Vgs=−10Vで
定義したオフ電流は2.65pA、電界効果移動度μo
=26.1cm2 /v・secと極めて良好なセルフ・ア
ライン型薄膜半導体装置が出来上がった。When the transistor characteristics of the self-aligned thin film semiconductor device thus prepared were measured, L = W =
10 μm, Vds = 4 V, Vgs = 10 V, ON current is 4.89 μA, minimum source / drain current is Vgs
= -3.5 V, 0.21 pA, and Vgs = -10 V, the off-current defined is 2.65 pA, and the field effect mobility μo.
= 26.1 cm 2 / v · sec, which is a very good self-aligned thin film semiconductor device.
【0057】比較の為にチャンネル部シリコン膜をLP
CVD法で600℃で作成した他は本実施例8の本発明
と全く同一の工程でセルフ・アライン型薄膜半導体装置
を作成した。しかしながら実施例6で詳述した様に、従
来のシリコン膜では薄膜部の添加不純物元素の活性化が
なされず、薄膜部の不純物添加シリコン膜の抵抗が高過
ぎ、それ故トランジスタのオン電流は47.9pAと非
実用的となった。これに対し、本実施例8の本発明では
特性変動の主因となる水素化プラズマ処理を排除し、且
つ低温工程で窮めて良好なセルフ・アライン型薄膜半導
体装置の作成に成功した。これは実施例2で示した如く
チャンネル部シリコン膜半導体層の膜厚を500Å以下
の薄膜化をして、基本的な半導体特性を向上せしめても
尚実施例6の本発明に依る薄膜導伝性シリコン膜の作成
に依り、薄膜部のソース・ドレイン領域の形成が低温で
容易になされた賜物で有る。即ち、ドナー又はアクセプ
ターとなる不純物の活性化は従来膜厚が1000Å程度
以上有るシリコン膜に550℃程度以上の熱処理を加え
ねば達成し得なかった。この為、セルフ・アライン型薄
膜半導体装置ではチャンネル部の膜厚も必然的に100
0Å程度以上となり、特性も悪かった。その上、ゲート
絶縁層とゲート電極が出来上がった後、添加不純物イオ
ン活性化の目的で550℃程度以上の熱処理が施される
為、ゲート絶縁膜の膜質劣化が生じ、水素化処理が必要
不可欠で有った。又、ゲート電極として金属材の使用が
困難であった為、ゲート線の抵抗が高かったり、ゲート
電極とゲート線を別々に作成する必要が有った。ところ
が本発明に依り、金属材料をゲート電極として使用出
来、同時にばらつきの主因で有る水素処理を排除し、よ
り簡昜な製造方法で高特性の薄膜半導体装置を安定的に
製造し得る事に成功した。For comparison, the channel silicon film is LP
A self-aligned thin film semiconductor device was manufactured by the same steps as those of the present invention of Example 8 except that the film was manufactured by the CVD method at 600 ° C. However, as described in detail in Example 6, the conventional silicon film does not activate the doped impurity element in the thin film portion, and the resistance of the doped silicon film in the thin film portion is too high. Therefore, the on-current of the transistor is 47. It became unpractical as 0.9 pA. On the other hand, in the present invention of Example 8, the hydrogenated plasma treatment, which is the main cause of the characteristic variation, was eliminated, and a good self-aligned thin film semiconductor device was successfully created because it was difficult in the low temperature process. This is because even if the silicon film semiconductor layer of the channel portion is thinned to 500 Å or less as shown in Embodiment 2 to improve the basic semiconductor characteristics, the thin film conduction according to the present invention of Embodiment 6 is still achieved. This is a result of the formation of the source / drain regions of the thin film portion at low temperature by the formation of the conductive silicon film. That is, activation of impurities serving as donors or acceptors cannot be achieved unless a heat treatment at about 550 ° C. or more is applied to a silicon film having a film thickness of about 1000 Å or more. Therefore, in the self-aligned thin film semiconductor device, the film thickness of the channel portion is necessarily 100.
It was about 0Å or more, and the characteristics were poor. In addition, after the gate insulating layer and the gate electrode are completed, heat treatment at about 550 ° C. or more is performed for the purpose of activating the additive impurity ions, so that the film quality of the gate insulating film deteriorates and hydrogenation treatment is indispensable. There was Further, since it was difficult to use a metal material as the gate electrode, the resistance of the gate line was high, and it was necessary to separately form the gate electrode and the gate line. However, according to the present invention, a metal material can be used as a gate electrode, and at the same time, hydrogen treatment, which is a main cause of variations, can be eliminated, and a thin film semiconductor device with high characteristics can be stably manufactured by a simpler manufacturing method. did.
【0058】[0058]
【発明の効果】以上述べて来た様に、本発明に依れば、
表面が絶縁性物質で有る基板上にシリコン膜を堆積し、
該シリコン膜を600℃程度の熱処理を施した後、EC
R−PECVD法に依る酸化硅素膜を堆積する事でシリ
コン膜の膜質を高め得る。例えばこれに依り、表面が絶
縁性物質で有る基板上へ薄膜半導体装置の形成に於い
て、チャンネル部シリコン膜を堆積した後、600℃以
下の温度で熱処理する工程と、ゲート絶縁膜をECR−
PECVD法で形成する工程を含む薄膜半導体装置の製
造方法、或いはチャンネル部シリコン膜半導体層を構成
するアモルファス・シリコン膜を堆積した後、ゲート絶
縁層を形成する前に該アモルファス・シリコン膜上に酸
素プラズマを照射し、その後、600℃以下の温度で熱
処理する様な工程を含む製造方法等に依りトランジスタ
特性を大幅に改善し、こうした優良なトランジスタ特性
を有する薄膜半導体装置を大面積に均一に簡便な手法に
て形成する事が可能となり、LSIの多層化や薄膜トラ
ンジスタを用いたアクティブマトリックス液晶ディスプ
レイの高性能化や低価格化を実現すると言う多大な効果
を有する。As described above, according to the present invention,
Deposit a silicon film on a substrate whose surface is an insulating material,
After subjecting the silicon film to a heat treatment at about 600 ° C., EC
The film quality of the silicon film can be improved by depositing a silicon oxide film by the R-PECVD method. For example, according to this, in forming a thin film semiconductor device on a substrate whose surface is an insulating material, a step of depositing a channel portion silicon film and then performing a heat treatment at a temperature of 600 ° C. or lower, and a gate insulating film ECR-
A method for manufacturing a thin film semiconductor device including a step of forming by a PECVD method, or after depositing an amorphous silicon film constituting a channel portion silicon film semiconductor layer and before forming a gate insulating layer, oxygen is formed on the amorphous silicon film. Transistor characteristics are drastically improved by a manufacturing method that includes a step of irradiating plasma and then heat treatment at a temperature of 600 ° C. or less, and a thin film semiconductor device having such excellent transistor characteristics can be uniformly formed over a large area. It can be formed by various methods, and has a great effect that multi-layering of LSI and high performance and cost reduction of an active matrix liquid crystal display using a thin film transistor are realized.
【図1】 本発明の一実施例を示すシリコン薄膜半導体
装置製造の各工程に於ける素子断面図。FIG. 1 is a sectional view of an element in each step of manufacturing a silicon thin film semiconductor device showing an embodiment of the present invention.
【図2】 本発明の実施例で用いた電子サイクロトロン
共鳴プラズマCVD装置の概要を示す図。FIG. 2 is a diagram showing an outline of an electron cyclotron resonance plasma CVD apparatus used in an example of the present invention.
【図3】 本発明の効果を示す図。FIG. 3 is a diagram showing an effect of the present invention.
【図4】 本発明の効果を示す図。FIG. 4 is a diagram showing the effect of the present invention.
【図5】 本発明の一実施例を示すシリコン薄膜半導体
装置の素子断面図。FIG. 5 is an element sectional view of a silicon thin film semiconductor device showing an embodiment of the present invention.
【図6】 本発明の効果を示す図。FIG. 6 is a diagram showing an effect of the present invention.
【図7】 本発明の一実施例を示すシリコン薄膜半導体
装置製造の各工程に於ける素子断面図。FIG. 7 is an element cross-sectional view in each step of manufacturing a silicon thin film semiconductor device showing an embodiment of the present invention.
【図8】 本発明の一実施例を示すシリコン薄膜半導体
装置製造の各工程に於ける素子断面図。FIG. 8 is a sectional view of an element in each step of manufacturing a silicon thin film semiconductor device showing an embodiment of the present invention.
【図9】 本発明の効果を示す図。FIG. 9 is a diagram showing the effect of the present invention.
【図10】 本発明の一実施例を示すシリコン薄膜半導
体装置製造の各工程に於ける素子断面図。FIG. 10 is an element cross-sectional view in each step of manufacturing a silicon thin film semiconductor device showing an embodiment of the present invention.
101…下地基板 102…下地保護膜 103…ソース・ドレイン領域 104…シリコン薄膜 105…チャンネル部シリコン薄膜 106…ゲート絶縁膜 107…ゲート電極 108…層間絶縁膜 109…ソース・ドレイン取り出し電極 201…導波管 202…反応室 203…ガス導入管 204…外部コイル 205…基板 206…ヒータ 207…ガス導入管 501…ソース・ドレイン領域 502…ゲート電極 503…ソース・ドレイン領域 504…ゲート電極 505…ゲート電極 506…マスク材 507…ソース・ドレイン領域 701…基板 702…下地保護膜 703…パッドとなるシリコン膜 704…第二のシリコン膜 705…ゲート絶縁層 706…ゲート電極 707…レジスト 708…ソース・ドレイン領域 709…チャンネル部シリコン膜 710…層間絶縁膜 711…配線 801…絶縁基板 802…下地SiO2膜 803…不純物を含んだシリコン薄膜 804…ソース・ドレイン領域 805…アモルファス・シリコン薄膜 806…いずれチャンネル部になる位置に丈残されたア
モルファス・シリコン薄膜 807…酸素プラズマ 808…アモルファス・シリコン薄膜を酸化して形成し
たSiO2膜 809…いずれチャンネル部となる残留しているアモル
ファス・シリコン薄膜 810…ECR−PECVD法で堆積したSiO2膜 811…チャンネル部を構成するシリコン薄膜 812…ゲート電極 813…ソース・ドレイン取り出し電極 1001…基板 1002…下地保護膜 1003…パッドとなるシリコン膜 1004…第二のシリコン膜 1005…ゲート絶縁層 1006…ゲート電極 1007…保護キャップ層 1008…ソース・ドレイン領域 1009…チャンネル部シリコン膜 1010…層間絶縁膜 1011…配線101 ... Base substrate 102 ... Base protection film 103 ... Source / drain region 104 ... Silicon thin film 105 ... Channel part silicon thin film 106 ... Gate insulating film 107 ... Gate electrode 108 ... Interlayer insulating film 109 ... Source / drain extraction electrode 201 ... Waveguide Tube 202 ... Reaction chamber 203 ... Gas introduction tube 204 ... External coil 205 ... Substrate 206 ... Heater 207 ... Gas introduction tube 501 ... Source / drain region 502 ... Gate electrode 503 ... Source / drain region 504 ... Gate electrode 505 ... Gate electrode 506 Mask material 507 Source / drain region 701 Substrate 702 Base protection film 703 Pad silicon film 704 Second silicon film 705 Gate insulating layer 706 Gate electrode 707 Resist 708 Source / drain region 709 ... cha Silicon film 710 ... Interlayer insulating film 711 ... Wiring 801 ... Insulating substrate 802 ... Base SiO 2 film 803 ... Silicon thin film containing impurities 804 ... Source / drain region 805 ... Amorphous silicon thin film 806 ... in the SiO 2 film 809 ... one channel unit to become remaining to have amorphous silicon thin film 810 ... ECR-PECVD method formed by oxidizing an amorphous silicon thin film 807 ... oxygen plasma 808 ... amorphous silicon thin film left length in SiO 2 film 811 ... silicon thin film constituting the channel portion 812 ... the gate electrode 813 ... source-drain extraction electrodes 1001 ... substrate 1002 ... protective underlayer 1003 ... silicon film 1004 serving as the pad ... second silicon film 1005 deposited ... Over gate insulating layer 1006 ... gate electrode 1007 ... protective cap layer 1008 ... source and drain regions 1009 ... channel portion silicon film 1010 ... interlayer insulating film 1011 ... wire
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/31 C 8518−4M 21/324 Z 8617−4M 21/336 29/784 H05H 1/18 9014−2G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location H01L 21/31 C 8518-4M 21/324 Z 8617-4M 21/336 29/784 H05H 1/18 9014-2G
Claims (9)
一方面上にチャンネル部シリコン膜半導体層を形成し、
該半導体層上にゲート絶縁層、ゲート電極を形成したM
IS型電界効果トランジスタを構成する薄膜半導体装置
に於いて、 絶縁性物質上にチャンネル部シリコン膜半導体層を構成
するシリコン膜を堆積する工程と、 前記シリコン膜が形成された基板を600℃以下の温度
で熱処理する工程と、チャンネル部シリコン膜半導体層
上に形成されるゲート絶縁層を電子サイクロトロン共鳴
プラズマCVD法に依り形成する工程を含む事を特徴と
する薄膜半導体装置の製造方法。1. A channel portion silicon film semiconductor layer is formed on one surface of a substrate having at least a surface made of an insulating material,
M in which a gate insulating layer and a gate electrode are formed on the semiconductor layer
In a thin film semiconductor device forming an IS field effect transistor, a step of depositing a silicon film forming a channel portion silicon film semiconductor layer on an insulating material, and a substrate on which the silicon film is formed at 600 ° C. or lower. A method of manufacturing a thin film semiconductor device, comprising: a step of heat treatment at a temperature; and a step of forming a gate insulating layer formed on a channel portion silicon film semiconductor layer by an electron cyclotron resonance plasma CVD method.
500Å以下である請求項1記載の薄膜半導体装置及び
その製造方法。2. The thin film semiconductor device according to claim 1, wherein the channel portion silicon film semiconductor layer has a film thickness of 500 Å or less, and a manufacturing method thereof.
一方面上に形成されたチャンネル領域とソース領域及び
ドレイン領域とゲート絶縁層を介して該チャンネル領域
に対向する様に形成されたゲート電極から成るMIS型
電界効果トランジスタにて、ソース領域或いはドレイン
領域の少なくともどちらか一方の領域がゲート絶縁膜を
介してゲート電極と重なり合っていない構造を有する薄
膜半導体装置に於いて、 チャンネル部シリコン膜半導体層を構成するシリコン膜
を堆積する工程と、ソース領域及びドレイン領域を形成
する工程と、 前記チャンネル領域及びソース領域・ドレイン領域が形
成された基板を600℃以下の温度で熱処理する工程を
含む事を特徴とする薄膜半導体装置の製造方法。3. A gate electrode formed on one surface of a substrate, at least the surface of which is made of an insulating material, so as to face the channel region, the source region, the drain region, and the gate insulating layer with the gate region interposed therebetween. In a thin film semiconductor device having a structure in which at least one of a source region and a drain region does not overlap with a gate electrode through a gate insulating film in a MIS field effect transistor comprising It includes a step of depositing a silicon film forming a layer, a step of forming a source region and a drain region, and a step of heat-treating the substrate on which the channel region and the source region / drain region are formed at a temperature of 600 ° C. or lower. A method for manufacturing a thin film semiconductor device, comprising:
一方面上にチャンネル部シリコン膜半導体層を形成し、
該半導体層上にゲート絶縁膜、ゲート電極を形成したM
IS型電界効果トランジスタを構成する薄膜半導体装置
に於いて、 絶縁性物質上にチャンネル部シリコン膜半導体層を構成
するアモルファス・シリコン膜を堆積した後、該アモル
ファス・シリコン膜上にゲート絶縁層を形成する前に、
該アモルファス・シリコン膜上に酸素プラズマを照射す
る工程と、 前記酸素プラズマ照射された基板を600℃以下の温度
で熱処理する工程を含む事を特徴とする薄膜半導体装置
の製造方法。4. A channel portion silicon film semiconductor layer is formed on one surface of a substrate, at least the surface of which is an insulating material,
M in which a gate insulating film and a gate electrode are formed on the semiconductor layer
In a thin film semiconductor device forming an IS type field effect transistor, an amorphous silicon film forming a channel portion silicon film semiconductor layer is deposited on an insulating material, and then a gate insulating layer is formed on the amorphous silicon film. Before
A method of manufacturing a thin film semiconductor device, comprising: a step of irradiating the amorphous silicon film with oxygen plasma; and a step of heat-treating the substrate irradiated with oxygen plasma at a temperature of 600 ° C. or lower.
に形成されたシリコン膜に於いて、該シリコン膜は60
0℃以下の熱処理を施されて居り、かつ該シリコン膜の
一部は電子サイクロトロン共鳴プラズマCVD法に依り
形成された酸化硅素膜で被覆されている事を特徴とする
シリコン膜。5. A silicon film formed on a substrate, at least the surface of which is an insulating material, wherein the silicon film is 60
A silicon film, which has been subjected to a heat treatment at 0 ° C. or less, and a part of the silicon film is covered with a silicon oxide film formed by an electron cyclotron resonance plasma CVD method.
アクセプターとなる不純物を含んでいることを特徴とす
るシリコン膜。 (1)シリコン膜を堆積する工程と、前記シリコン膜が
形成された基板を600℃以下の温度で熱処理する工
程。 (2)上記工程を経た後、酸化硅素膜を形成する工程。 (3)上記工程を経た後、ドナー又はアクセプターとな
る不純物を、該不純物元素の水素化物と水素の混合物を
原料ガスとして、バケットタイプの質量非分離型のイオ
ン注入装置を用いて、前記シリコン膜に打ち込む工程。6. A silicon film containing impurities serving as a donor or an acceptor, characterized by including the following steps. (1) A step of depositing a silicon film and a step of heat-treating the substrate having the silicon film formed thereon at a temperature of 600 ° C. or lower. (2) A step of forming a silicon oxide film after the above steps. (3) After passing through the above steps, using the bucket type mass non-separation type ion implantation apparatus, using the mixture of the hydride of the impurity element and hydrogen as the source gas, the impurity serving as the donor or the acceptor is used to form the silicon film. Step to drive into.
ズマCVD法に依り形成する事を特徴とする請求項6記
載のシリコン膜。7. The silicon film according to claim 6, wherein the silicon oxide film is formed by an electron cyclotron resonance plasma CVD method.
一方面上にチャンネル部シリコン膜半導体層を形成し、
該半導体層上にゲート絶縁層、ゲート電極を形成したM
IS型電界効果トランジスタを構成する薄膜半導体装置
に於いて、下記工程を含む事を特徴とした薄膜半導体装
置の製造方法。 (1)絶縁性物質上にシリコン膜を堆積する工程と、前
記シリコン膜が形成された基板を600℃以下の温度で
熱処理する工程。 (2)上記工程を経た後、ゲート絶縁層を形成する工
程。 (3)上記工程を経た後、後にチャンネル領域と化す部
位を覆うようにゲート電極を該ゲート絶縁膜上に形成す
る工程。 (4)上記工程を経た後、ゲート電極をマスクとしてド
ナー又はアクセプターとなる不純物を、該不純物元素の
水素化物と水素の混合物を原料ガスとして、バケットタ
イプの質量非分離型のイオン注入装置を用いて打ち込む
事に依り、ソース領域及びドレイン領域を形成する工
程。8. A channel portion silicon film semiconductor layer is formed on one surface of a substrate having at least a surface made of an insulating material,
M in which a gate insulating layer and a gate electrode are formed on the semiconductor layer
A method of manufacturing a thin film semiconductor device comprising the following steps in a thin film semiconductor device constituting an IS type field effect transistor. (1) A step of depositing a silicon film on an insulating material, and a step of heat-treating the substrate having the silicon film formed thereon at a temperature of 600 ° C. or lower. (2) A step of forming a gate insulating layer after the above steps. (3) A step of forming a gate electrode on the gate insulating film so as to cover a portion which will later become a channel region after the above steps. (4) After the above steps, a bucket type mass non-separation type ion implanter is used with impurities serving as donors or acceptors using the gate electrode as a mask, and a mixture of hydride of the impurity element and hydrogen as a source gas. Forming a source region and a drain region by implanting.
ラズマCVD法に依り形成する事を特徴とする請求項8
記載の薄膜半導体装置の製造方法。9. The gate insulating layer is formed by an electron cyclotron resonance plasma CVD method.
A method for manufacturing a thin film semiconductor device according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29332891A JP3486421B2 (en) | 1990-11-16 | 1991-11-08 | Method for manufacturing thin film semiconductor device |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31047790 | 1990-11-16 | ||
JP7640691 | 1991-04-09 | ||
JP3-76406 | 1991-09-13 | ||
JP3-235098 | 1991-09-13 | ||
JP2-310477 | 1991-09-13 | ||
JP23509891 | 1991-09-13 | ||
JP29332891A JP3486421B2 (en) | 1990-11-16 | 1991-11-08 | Method for manufacturing thin film semiconductor device |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10065890A Division JPH10223911A (en) | 1990-11-16 | 1998-03-16 | Thin film semiconductor device |
JP10065891A Division JPH10223912A (en) | 1990-11-16 | 1998-03-16 | Manufacture of thin film semiconductor device |
JP06589498A Division JP3510973B2 (en) | 1990-11-16 | 1998-03-16 | Method for manufacturing thin film semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05129202A true JPH05129202A (en) | 1993-05-25 |
JP3486421B2 JP3486421B2 (en) | 2004-01-13 |
Family
ID=27465937
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29332891A Expired - Lifetime JP3486421B2 (en) | 1990-11-16 | 1991-11-08 | Method for manufacturing thin film semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3486421B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11293470A (en) * | 1998-04-10 | 1999-10-26 | Tokyo Electron Ltd | Film forming method of silicon oxidized film and device therefor |
JP2007250715A (en) * | 2006-03-15 | 2007-09-27 | Konica Minolta Holdings Inc | Process for fabricating semiconductor device |
JP2008075182A (en) * | 2007-11-09 | 2008-04-03 | Tokyo Electron Ltd | Method for depositing silicon oxide film, and system therefor |
JP2008277839A (en) * | 2008-05-26 | 2008-11-13 | Seiko Epson Corp | Method of manufacturing semiconductor device, and semiconductor manufacturing apparatus |
US7745828B2 (en) | 2007-01-11 | 2010-06-29 | Samsung Electronics Co., Ltd. | Organic light emitting device and manufacturing method thereof |
US8921205B2 (en) | 2002-08-14 | 2014-12-30 | Asm America, Inc. | Deposition of amorphous silicon-containing films |
JP2017168470A (en) * | 2016-02-29 | 2017-09-21 | 富士電機株式会社 | Semiconductor device and method of manufacturing semiconductor device |
-
1991
- 1991-11-08 JP JP29332891A patent/JP3486421B2/en not_active Expired - Lifetime
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11293470A (en) * | 1998-04-10 | 1999-10-26 | Tokyo Electron Ltd | Film forming method of silicon oxidized film and device therefor |
US8921205B2 (en) | 2002-08-14 | 2014-12-30 | Asm America, Inc. | Deposition of amorphous silicon-containing films |
JP2007250715A (en) * | 2006-03-15 | 2007-09-27 | Konica Minolta Holdings Inc | Process for fabricating semiconductor device |
US7745828B2 (en) | 2007-01-11 | 2010-06-29 | Samsung Electronics Co., Ltd. | Organic light emitting device and manufacturing method thereof |
JP2008075182A (en) * | 2007-11-09 | 2008-04-03 | Tokyo Electron Ltd | Method for depositing silicon oxide film, and system therefor |
JP2008277839A (en) * | 2008-05-26 | 2008-11-13 | Seiko Epson Corp | Method of manufacturing semiconductor device, and semiconductor manufacturing apparatus |
JP2017168470A (en) * | 2016-02-29 | 2017-09-21 | 富士電機株式会社 | Semiconductor device and method of manufacturing semiconductor device |
US10176981B2 (en) | 2016-02-29 | 2019-01-08 | Fuji Electric Co., Ltd. | Semiconductor device and semiconductor device manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP3486421B2 (en) | 2004-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5637512A (en) | Method for fabricating a thin film semiconductor device | |
US6570184B2 (en) | Thin film transistor and method for manufacturing the same | |
JP3486421B2 (en) | Method for manufacturing thin film semiconductor device | |
JPH04218928A (en) | Thin film semiconductor device and manufacture thereof, and method for depositing silicon thin film | |
JP3510973B2 (en) | Method for manufacturing thin film semiconductor device | |
JP3443909B2 (en) | Semiconductor film forming method, semiconductor device manufacturing method, and semiconductor device | |
JPH08125197A (en) | Method and system for fabricating semiconductor device | |
JPH10223911A (en) | Thin film semiconductor device | |
JP3730185B2 (en) | Thin film transistor manufacturing method | |
JPH08204208A (en) | Production of crystalline silicon semiconductor device | |
JP2002009088A (en) | Thin film semiconductor device and method of manufacturing the same, and silicon film | |
JP2759411B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH10223912A (en) | Manufacture of thin film semiconductor device | |
JPH0969631A (en) | Semiconductor device, its manufacture, its manufacturing device, and liquid crystal display | |
JP3038898B2 (en) | Method for manufacturing thin film semiconductor device | |
JP2002280390A (en) | Manufacturing method of thin-film semiconductor device | |
JP2002280389A (en) | Manufacturing method of thin-film semiconductor device | |
JP4023367B2 (en) | Semiconductor film forming method and semiconductor film manufacturing method | |
JP3203772B2 (en) | Semiconductor film forming method and thin film semiconductor device manufacturing method | |
JP2003178990A (en) | Substrate heat treatment method, method of manufacturing semiconductor device, chemical vapor deposition method and display | |
JP3055555B2 (en) | Method for manufacturing thin film semiconductor device | |
KR100253722B1 (en) | A thin film semiconductor device | |
JP3530540B2 (en) | Method for manufacturing thin film semiconductor device | |
JP3284414B2 (en) | Method for manufacturing thin film semiconductor device | |
Pangal et al. | Integrated amorphous and polycrystalline silicon thin-film transistors in a single silicon layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081024 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091024 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101024 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101024 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111024 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121024 Year of fee payment: 9 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121024 Year of fee payment: 9 |