JPS58101461A - Gate turn-off thyristor - Google Patents

Gate turn-off thyristor

Info

Publication number
JPS58101461A
JPS58101461A JP20052481A JP20052481A JPS58101461A JP S58101461 A JPS58101461 A JP S58101461A JP 20052481 A JP20052481 A JP 20052481A JP 20052481 A JP20052481 A JP 20052481A JP S58101461 A JPS58101461 A JP S58101461A
Authority
JP
Japan
Prior art keywords
semiconductor region
gate
electrode
layer
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20052481A
Other languages
Japanese (ja)
Inventor
Futoshi Tokuno
徳能 太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP20052481A priority Critical patent/JPS58101461A/en
Publication of JPS58101461A publication Critical patent/JPS58101461A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • H01L29/744Gate-turn-off devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • H01L29/7428Thyristor-type devices, e.g. having four-zone regenerative action having an amplifying gate structure, e.g. cascade (Darlington) configuration

Abstract

PURPOSE:To improve the gate sensitivity at the turning OFF time without decrease of the turning OFF gain by containing a transistor which amplifies the gate current. CONSTITUTION:An auxiliary transistor II is formed as prescribed around main SCR partsIa,Ib. Electrodes G and K are forwardly biased therebetween at the firing time, and when the sheet resistance R of the PB layer is increased, a gate current flows mainly in the path of the G, an electrode 21, a PB, nE1, electrode 22, PB, nE2, an electrode 1 and the K, the transistor II is driven, and the main SCRsIa,Ib are fired by the amplified (hFE) gate current. Accordingly, the gate current may be 1/hFE of the conventional one. The electrodes G and K are reversely biased therebetween at the arc extinguishing time, carrier is exhausted in the path of the PB, the electrode 22, the external diode D and the G, thereby firing theIa,Ib, and since no current flows from the PB to the nE1, the II is interrupted due to the exhaust of the carrier in the path of the PB and the electrode 21. Since the II may have extremely small capacity as compared with theIa,Ib, the gate current which interrupts the II may be slight. In this manner, the gate sensitivity at the firing time can be remarkably improved without almost altering the turn-OFF gain.

Description

【発明の詳細な説明】 この発明はクーンオン時のゲート電流増幅用のトランジ
スタを内蔵したゲートターンオフサイリスフ(以下「G
TOJという。)に関するものである。
[Detailed Description of the Invention] This invention provides a gate turn-off transistor (hereinafter referred to as "G
It's called TOJ. ).

#I1図は従来のGooの構造を示す模式断面図で、n
Eはn形エミッタ噴域、pBはp形ベース領域、nBは
n形ベース領域、八はp形エミッタ領域、nB は低抵
抗n形ペース領域で以下それぞれn111層、pB層、
nB盾e pE141 %” 154 ト呼フ。+11
1! カソード電極、(2)はゲートllam、(3)
はアノード電極、Jlは91層−nB層間の接合、J、
はn1層−pmtm閾の接合、J3はpB層・n1層間
の接合、Gは外部ゲート端子、Kは外部カソード端子、
ムは外部アノード電子である。なお、図中中心より右側
の矢印はターンオン時、中心より左側の矢印はターンオ
フ時の正孔および電子の流れを示し、実線が正孔、破線
が電子に相当する。
Figure #I1 is a schematic cross-sectional view showing the structure of the conventional Goo.
E is an n-type emitter jet region, pB is a p-type base region, nB is an n-type base region, 8 is a p-type emitter region, nB is a low resistance n-type space region, and the following are the n111 layer, the pB layer, and the pB layer, respectively.
nB shield e pE141%” 154 Tokof.+11
1! Cathode electrode, (2) gate llam, (3)
is the anode electrode, Jl is the junction between the 91st layer and the nB layer, J,
is the junction between the n1 layer and the pmtm threshold, J3 is the junction between the pB layer and the n1 layer, G is the external gate terminal, K is the external cathode terminal,
The electron beam is the external anode electron. Note that the arrows to the right of the center in the figure indicate the flow of holes and electrons during turn-on, and the arrows to the left of the center indicate the flow of holes and electrons during turn-off, with solid lines corresponding to holes and broken lines corresponding to electrons.

さて、このGTOにおいて、ターンオン時にはゲートG
−カソードに間を順バイアスすることによって、ゲート
電流を外部ゲート端子G−ゲート電極[2) −pB層
−接合J5− n1層−カソード電極(11−外部カソ
ード電子にの経路に流し、これによって、電子が0g層
からh層へ注入され、更にnB+層−p]i1層に達し
て、pE層からn1層への正孔の注入を生ぜしめる。こ
の正孔はpB層−nz層に達して、nx層からpB層へ
の電子の注入を促進する。
Now, in this GTO, at turn-on, the gate G
- by forward biasing the cathode between the external gate terminal G - the gate electrode [2] - the pB layer - the junction J5 - the n1 layer - the cathode electrode (11 - the external cathode), thereby allowing the gate current to pass through the path to the external cathode electrons , electrons are injected from the 0g layer to the h layer, and further reach the nB+ layer-p]i1 layer, causing hole injection from the pE layer to the n1 layer.This hole reaches the pB layer-nz layer. This promotes injection of electrons from the nx layer to the pb layer.

このようにしτGTOはターンオンする。In this way, τGTO is turned on.

次に、ターンオフ時にはゲートG・カソードX間を逆バ
イアスすることによって、pB層にあるキャリヤを直接
ゲート電極(2)へ排出して、81層からの電子の注入
を停止させる。このようにしてGTOはターンオフする
Next, at turn-off, by applying a reverse bias between the gate G and the cathode X, carriers in the pB layer are directly discharged to the gate electrode (2), and injection of electrons from the 81st layer is stopped. In this way, the GTO is turned off.

GTOは上述のようにゲート信号のみでターンオン、オ
ーンオ7がり能であるので、一般のサイリスクの場合の
ようなターンオフのための転流回路が不要となり、この
点では装置の小形軽量化、低騒音化に有利である。とこ
ろが大電力G70のターンオフゲインは3層5根度で、
従って、主電流のび3〜V5以上のゲート逆電流を必要
とし通常のサイリスクの場合に比して非常に大きなゲー
ト回路が必要になる。GTOの有利性はこのゲート回路
の大形化と、前述の転流回路の不要性とを勘案して、装
置全体としていずれの方が小形化が達成できるかにかか
つている。
As mentioned above, the GTO can be turned on and turned off with only a gate signal, so there is no need for a commutation circuit for turn-off as in the case of general Cyrisk, which makes the device smaller, lighter, and less noisy. It is advantageous for However, the turn-off gain of the high power G70 is 3 layers and 5 degrees,
Therefore, a gate reverse current of 3 to 5 V or more is required for the main current, and a much larger gate circuit is required than in the case of normal thyrisk. The advantage of the GTO depends on whether the overall device can be made more compact, taking into account the larger size of the gate circuit and the necessity of the above-mentioned commutation circuit.

GTOのターンオ7期間中はオン状IIIJ域とオフ状
ml111域とが共存しており、オフ状態領域はゲート
電極(2)に近い部分から遠い部分へと拡大する。
During the turn-off period of the GTO, the on-state IIIJ region and the off-state ml111 region coexist, and the off-state region expands from a portion close to the gate electrode (2) to a portion far away.

すなわち、通電鎖酸がしぼられると同時に、アノード・
カソード関電圧が上昇する。このような過程ではホット
スポットを生じ易く、これを避けるにはゲート・カソー
ド関のインピーダンスをできるだけ小さくする必要があ
る。従って、GTOのゲート領域とカソード領域との対
向長は通常のサイリスタのそれに比して非常に長(され
ている。このことはターンオン時のゲート感度が小さい
ことを意味しており、サイリスク全面を均一に点弧させ
るのには通常のサイリスタの場合の数倍〜数十倍のゲー
ト順電流を必要とする。
In other words, at the same time as the energizing chain acid is squeezed, the anode
The cathode voltage increases. Such a process tends to generate hot spots, and to avoid this it is necessary to reduce the impedance between the gate and cathode as much as possible. Therefore, the opposing length of the gate region and cathode region of GTO is much longer than that of a normal thyristor. This means that the gate sensitivity at turn-on is small, and the entire thyristor is Uniform ignition requires a gate forward current several to several tens of times higher than that of a normal thyristor.

従って、GTOの有利性を生かすための重要なポイント
はゲート逆電流およびゲート順電流をいかに小さくする
かということにある。しかし、一般に、ターンオン時の
ゲート感度を上げると、ターンオフゲインが低下する傾
向にあり、両者をともに大きくすることは容易でなかっ
た。
Therefore, an important point to take advantage of the advantages of GTO is how to reduce the gate reverse current and gate forward current. However, generally speaking, increasing the gate sensitivity during turn-on tends to reduce the turn-off gain, and it has not been easy to increase both of them.

この発明はゲート電流を増幅するトランジスタを内蔵さ
せることによって、ターンオフゲインを低下させること
なく、ターンオン時のゲート感度を上げることのできる
GTOを提供することを目的としている。
An object of the present invention is to provide a GTO that can increase gate sensitivity at turn-on without reducing turn-off gain by incorporating a transistor that amplifies gate current.

第2図はこの発明の一実施例の構造を示す模式断面図で
、Ia、Ibは主サイリスタ部分、■はトランジスタ部
分を示す。mailはトランジスタ部分(以下「補助ト
ランジスタ」という、)■のエミッタ鎖酸、(2)は補
助トランジスタ■のベース電極、■は補助トランジスタ
■のエミッタ電極兼主サイリスタIa +Ibのゲート
電極、Dは補助トランジスタ■のベース電極四と補助サ
イリスタ■のエミッタ0電極兼主サイリスタIa、Ib
のゲート電極四との間に接続された外部ダイオード、R
はnl1層直下のh層のシート抵抗、J4はnl1層・
pm層関の接合である。補助トランジスタnの部分は勿
−pE層は設けられておらずnB十−が直接アノード電
極(3)に接触している。
FIG. 2 is a schematic cross-sectional view showing the structure of an embodiment of the present invention, where Ia and Ib indicate main thyristor portions, and ■ indicates a transistor portion. mail is the emitter chain acid of the transistor part (hereinafter referred to as "auxiliary transistor") ■, (2) is the base electrode of the auxiliary transistor ■, ■ is the emitter electrode of the auxiliary transistor ■ and the gate electrode of the main thyristor Ia + Ib, D is the auxiliary Base electrode 4 of transistor ■ and emitter 0 electrode of auxiliary thyristor ■ and main thyristor Ia, Ib
An external diode, R, connected between the gate electrode 4 of
is the sheet resistance of the h layer directly below the nl1 layer, and J4 is the sheet resistance of the nl1 layer.
This is the junction of the pm layer. Of course, the auxiliary transistor n portion is not provided with a pE layer, and the nB layer is in direct contact with the anode electrode (3).

この実施例において、ターンオフ時にはゲートG・カソ
ードに間に順バイアスすることによって、外部ゲート端
子G−ベース電極(2)−p、層−”ji1層−エミッ
タ電橋に)−pB層−−雪層−カソード電極11+−外
部カソード遺子にの経路、及び外部ゲート端子G−ベー
ス電極(財)−pB層−抵抗R−エミッタ電極に)−p
B層−nza層−カソード電極(1)−外部カソード電
子の経路でゲート電極を流す。抵抗只の値を大きくする
ことによって前者の経路の電流が支配的となり、 n1
1層からpB層への電子の注入が起こり補助トランジス
タ量がドライブされる。そして、この補助トランジスタ
で増幅されたゲート電流はh層から顯寓層に流れ込み図
の右側主サイリスタ■bに示すようにnh層からh層へ
囃子の注入がおこり、主サイリスタ1. 、Ibがター
ンオンする。ゲート電流は補助トランジスタ■によって
増幅されて主サイリスク’&Jbに流入するので、外部
からのゲート電流は補助トランジ次に、ターンオフ時に
はゲートG・カソードに間を逆バイアスすることによっ
て、91層−補助トランジスタロのエミッタ電極兼主サ
イリスク■のゲート電極に)−外部ダイオードクー外部
ゲート趨子Gの経路でキャリヤを排出して主サイリスタ
Ia、ibをター7オフさせる。補助トランジスタ■は
pB層からnB 1層へのベース電流の供給がないので
、h層−ペース電極(2)の経路でキャリヤが排出され
てター/オフする。補助トランジスタ厘は主サイリスク
xa、’ibに比して容量的に極めて小さいものでよい
ので、補助トランジスタ厘をター/オフさせるに要する
ゲート電流は備かであり、第1図の従来例の場合とほぼ
同じゲート電流で、この実施例のGTOはターンオフさ
せることができる。
In this embodiment, at turn-off, by forward biasing between the gate G and the cathode, external gate terminal G-base electrode (2)-p, layer-"ji1 layer-emitter bridge)-pB layer--snow layer - cathode electrode 11 + - path to the external cathode element, and external gate terminal G - base electrode - pB layer - resistor R - to the emitter electrode) - p
The gate electrode is passed along the path of B layer-NZA layer-cathode electrode (1)-external cathode electrons. By increasing the value of the resistor, the current in the former path becomes dominant, and n1
Electrons are injected from the first layer to the pB layer, and the amount of the auxiliary transistor is driven. Then, the gate current amplified by this auxiliary transistor flows from the h layer to the hysteresis layer, and as shown in main thyristor 2b on the right side of the figure, the hayashi is injected from the nh layer to the h layer, and the main thyristor 1. , Ib is turned on. Since the gate current is amplified by the auxiliary transistor ■ and flows into the main sirisk'& Jb, the gate current from the outside is transferred to the auxiliary transistor.Next, at turn-off, by applying a reverse bias between the gate G and the cathode, it is connected to the 91st layer - the auxiliary transistor. The carriers are discharged from the emitter electrode (b) and the gate electrode of the main thyristor (b) through the path of the external diode (coupled to the external gate terminal G) and the main thyristors Ia and ib are turned off. Since no base current is supplied from the pB layer to the nB1 layer of the auxiliary transistor (2), carriers are discharged through the path from the h layer to the space electrode (2) and the transistor is turned off. Since the auxiliary transistor needs to have an extremely small capacitance compared to the main silicon risks xa and 'ib, the gate current required to turn the auxiliary transistor on and off is small. The GTO of this embodiment can be turned off with approximately the same gate current as .

このようにター7オフのためのゲート14流を殆んど増
加させることなく、前に述べたようにターンオン時のゲ
ート11Eftを著しく小さくすることができるので、
ゲート制御が容易になり、回路の小形化が可能になる。
In this way, the gate 11Eft during turn-on can be significantly reduced as described above without increasing the gate 14 flow for turning off the gate 7, so that
Gate control becomes easier and the circuit can be made smaller.

以上説明したように、この発明になるGTOでは補助ト
2ンジスクを内′i1.させたので、ターンオフゲイン
を殆んど変えることなくターンオン時のゲート感度を著
しく向上することができ、周辺回路の簡略化、小形化が
l1iT能となる。特にこの発明C1pin形GTOに
通用して技術的にも製造工程的にも極めて好適である。
As explained above, in the GTO according to the present invention, the auxiliary engine disk is installed in the inside 'i1. As a result, the gate sensitivity at turn-on can be significantly improved without changing the turn-off gain, and peripheral circuits can be simplified and miniaturized. In particular, this invention is applicable to the C1 pin type GTO and is extremely suitable from both a technical and a manufacturing process standpoint.

【図面の簡単な説明】 第1図は従来のGTO、第2図はこの発明の一実施例で
あるGTOの構造を示す模式断面図である。 図において、−はn形ベース層(第1の半導体領域)、
pBはp形ペース層(第2の半導体領域)、nB+は低
抵抗率n形ベース層(@3の半導体領域)s”maは主
サイリスタ部のn形エミ゛ンタ層(第4の半導体領域)
、nilは補助トランジスタのn形エミッタ層(第6の
半導体領域)、pi+はp形エミッタ層(第6の半導体
領域) 、[11&tカソード電極(第1の生電橘)、
@は主ゲート電極、四は補助ゲート電極、(3)はアノ
ード電極(第2の主−a+)、Ia、Ibは主すイリス
ク部、n4:i禰助トランジスタ部、Dはダイオードで
ある。 なお、図中同一符号は同一ま几は相当部分を示す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic sectional view showing the structure of a conventional GTO, and FIG. 2 is a schematic sectional view showing the structure of a GTO that is an embodiment of the present invention. In the figure, - indicates an n-type base layer (first semiconductor region);
pB is a p-type space layer (second semiconductor region), nB+ is a low resistivity n-type base layer (@3 semiconductor region), and s"ma is an n-type emitter layer (fourth semiconductor region) of the main thyristor section. )
, nil is the n-type emitter layer (sixth semiconductor region) of the auxiliary transistor, pi+ is the p-type emitter layer (sixth semiconductor region), [11&t cathode electrode (first Seiden Tachibana),
@ is the main gate electrode, 4 is the auxiliary gate electrode, (3) is the anode electrode (second main -a+), Ia and Ib are the main iris parts, n4 is the auxiliary transistor part, and D is the diode. In addition, the same reference numerals in the figures indicate corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1) 高比抵抗の51i1伝導形を有する#11の半
導体−城、この第1半導体頑域の一方の冑に接して設け
られ比較的低抵抗率の第2伝導形を有する第2の半導体
領域、上記lalの半導体領域の他方の備に接して設け
られ比較的低抵抗率の箒1伝導形を有する#I3の半導
体領域、上記第3の半導体領域の表向部の一部に形成さ
れ低抵抗率の41伝導形をMするalI4の半導体領域
、上記第2の半導体領域5の4出表面の一部にオーミッ
ク接触する主ゲ上記61!20半導体領域の表面部の一
部に形成され低抵抗率の第1伝導形を有する第5の半導
体領域、上記第4の半導体領域に対向する位置において
上記i@3の半導体領域の表面部に形成され低抵抗率の
第2伝導形を有する@6の半導体−城、上記第50半導
体頑域の表面と上記第4の半導体領域の近傍に4出する
上記7j42の半導体領域の表面とにオーミック接触す
る補助ゲート電極、上記#!4の半導体−域の表面にオ
ーミック接触する@lの生電極及び上記第3の半導体領
域と上1に’1l16の半導体領域とにオーミック接触
する第2の生電極を備え、上記g6.i@3.第1.第
2および4番の半導体領域で構成され友主サイリスタ部
と、上記第3、第1.第2および第5の半導体領域で構
成された補助トランジスタ部とを同一の半導体基体内に
形成し友ことを特徴とするゲートターンオアサイリスタ
(1) A #11 semiconductor having a 51i1 conductivity type with high specific resistance, and a second semiconductor having a second conductivity type having a relatively low resistivity, which is provided in contact with one side of this first semiconductor region. #I3 semiconductor region, which is provided in contact with the other semiconductor region of the above-mentioned la1 and has a comparatively low resistivity Broom 1 conductivity type; A semiconductor region of AlI4 of 41 conductivity type M with low resistivity, a main gate in ohmic contact with a part of the surface of the second semiconductor region 5, is formed on a part of the surface of the 61!20 semiconductor region. a fifth semiconductor region having a first conductivity type with low resistivity; formed on the surface of the i@3 semiconductor region at a position opposite to the fourth semiconductor region and having a second conductivity type with low resistivity; @6 semiconductor-castle, the auxiliary gate electrode in ohmic contact with the surface of the 50th semiconductor region and the surface of the 7j42 semiconductor region protruding in the vicinity of the 4th semiconductor region, the #! A raw electrode @l is in ohmic contact with the surface of the semiconductor region of g6. i@3. 1st. The third and first thyristor portions are composed of the second and fourth semiconductor regions, and the third and first thyristor parts. A gate turn-or-thyristor characterized in that an auxiliary transistor section constituted by second and fifth semiconductor regions is formed within the same semiconductor substrate.
(2)補助ゲート電極は生ゲート電極から、1fI2の
半導体領域と第5の半導体領域との閾の接合に逆並列に
接続されたダイオードを介して駆動されるようにしたこ
とを特徴とする特許請求の範囲第1項記載のゲートター
ンオフサイリスク。
(2) A patent characterized in that the auxiliary gate electrode is driven from the raw gate electrode via a diode connected in antiparallel to the threshold junction of the 1fI2 semiconductor region and the fifth semiconductor region. A gate turn-off risk according to claim 1.
JP20052481A 1981-12-11 1981-12-11 Gate turn-off thyristor Pending JPS58101461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20052481A JPS58101461A (en) 1981-12-11 1981-12-11 Gate turn-off thyristor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20052481A JPS58101461A (en) 1981-12-11 1981-12-11 Gate turn-off thyristor

Publications (1)

Publication Number Publication Date
JPS58101461A true JPS58101461A (en) 1983-06-16

Family

ID=16425738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20052481A Pending JPS58101461A (en) 1981-12-11 1981-12-11 Gate turn-off thyristor

Country Status (1)

Country Link
JP (1) JPS58101461A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002124220A (en) * 2000-10-18 2002-04-26 Japan Storage Battery Co Ltd Lead-acid battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252377A (en) * 1975-10-24 1977-04-27 Hitachi Ltd Gate turn-off thyristor
JPS5441869A (en) * 1977-08-26 1979-04-03 Sagami Chem Res Center 1-methylsulfinyl-1-methylthio-2-(n-alkylpyrrolyl-2)- ethylene

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252377A (en) * 1975-10-24 1977-04-27 Hitachi Ltd Gate turn-off thyristor
JPS5441869A (en) * 1977-08-26 1979-04-03 Sagami Chem Res Center 1-methylsulfinyl-1-methylthio-2-(n-alkylpyrrolyl-2)- ethylene

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002124220A (en) * 2000-10-18 2002-04-26 Japan Storage Battery Co Ltd Lead-acid battery

Similar Documents

Publication Publication Date Title
EP0009367B1 (en) Gate turn-off thyristor
US4502070A (en) FET Controlled thyristor
JPS6115370A (en) Semiconductor device
JPS6019147B2 (en) gate turn off thyristor
JP2970774B2 (en) Semiconductor device
JPS6188563A (en) Semiconductor switch
US4471372A (en) FET Controlled Triac
JPH0465552B2 (en)
JPS6315464A (en) Gata turn-off thyristor
JPS58101461A (en) Gate turn-off thyristor
JP2513640B2 (en) Conduction modulation type MOSFET
JP2601862B2 (en) Anode short type conductive modulation MOSFET
JP2557818B2 (en) Reverse conduction gate turn-off thyristor device
JPS59163865A (en) Gate turn-off thyristor
JPS586312B2 (en) handmade seaweed
JPS60119776A (en) Gate turn-off thyristor
JPH01218066A (en) Semiconductor device
JPS5655068A (en) Thyristor
JP3284019B2 (en) Power semiconductor device
JPS6152586B2 (en)
JPS6142872B2 (en)
JPS582461B2 (en) thyristor
JPS60189261A (en) Gate turn-off thyristor
JPS583388B2 (en) Hand tie souchi
JPS5915186B2 (en) thyristor