JPS58100298A - Read-only memory circuit - Google Patents

Read-only memory circuit

Info

Publication number
JPS58100298A
JPS58100298A JP56199795A JP19979581A JPS58100298A JP S58100298 A JPS58100298 A JP S58100298A JP 56199795 A JP56199795 A JP 56199795A JP 19979581 A JP19979581 A JP 19979581A JP S58100298 A JPS58100298 A JP S58100298A
Authority
JP
Japan
Prior art keywords
threshold voltage
memory cell
read
circuit
memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56199795A
Other languages
Japanese (ja)
Other versions
JPH0531239B2 (en
Inventor
Takaaki Hayashi
孝明 林
Hiroshi Yasuda
保田 博史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP56199795A priority Critical patent/JPS58100298A/en
Publication of JPS58100298A publication Critical patent/JPS58100298A/en
Publication of JPH0531239B2 publication Critical patent/JPH0531239B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention

Landscapes

  • Read Only Memory (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To realize a CMOSROM of high density, high speed, and low electric power consumption, by setting the threshold voltage of the FET of the cell higher than that of the FET of peripheral circuits. CONSTITUTION:When the threshold voltage VthN of MOSFETs constituting each cell of a memory cell array section 5 is lowered, the coefficient of conductivity betaN of the MOSFETs is increased. Moreover, the threshold voltage of peripheral circuits of the ROM is set to a normal value, only the threshold voltage of the cell section is lowered, and the variation of the electric current at the time of stand-by is eliminated, and thus, a high-speed ROM is realized.

Description

【発明の詳細な説明】 本発明は、リードオンリーメモリに関する。[Detailed description of the invention] The present invention relates to a read-only memory.

本発明は、リードオンリーメモリのメモリセル部のMO
8FEiTのしきい値電圧を低くする事によシ、メモリ
のアクセスタイムを高速にする事に関する。
The present invention provides MO of a memory cell portion of a read-only memory.
It relates to increasing the memory access time by lowering the threshold voltage of 8FEiT.

近年のLT工技術の進歩は目覚しいものかあシ、特にマ
イクロプロセッサの高性能化は著しく、低消費電力の相
補型MO8PET回路PE後CMO8と呼ぶ)を使用し
た、高速・低消費電力のCMOSマイクロコンピュータ
や、その応用製品の普及が著しい。これにともない、コ
ントロールプログラムや、各種データを収納する、読み
出し専用のリードオンリーメモリ(以後ROMと呼ぶ)
も高密度・高速・低消費電力が要求されている。
Recent advances in LT engineering technology have been remarkable, especially in the performance of microprocessors. Computers and their applied products are becoming increasingly popular. Along with this, read-only memory (hereinafter referred to as ROM) stores control programs and various data.
High density, high speed, and low power consumption are also required.

本発明は、かかる要求にもとすく、高密度、高速・低消
費電力ROMを容易に提供するものである。
The present invention meets such demands and easily provides a high-density, high-speed, low-power consumption ROM.

ここでの高密度化とは、チップの面積を増大せず、メモ
リの容量を増大させる事にあシ、そのた2− めには出来るだけ、MOEIFETから構成されるメモ
リセルの寸法は小さくする必要がある。また高速化とは
、アクセスタイムを出来るだけ速く(小さく)する事で
あシ、低消費電力とは、動作時電流とスタンバイ時電流
を小さくする事である。
High density here refers to increasing the memory capacity without increasing the chip area, and for this purpose, the dimensions of the memory cells composed of MOEIFETs should be made as small as possible. There is a need. In addition, increasing the speed means making the access time as fast as possible (reducing it), and reducing power consumption means reducing the current during operation and the current during standby.

一般的なROMは、第1図の様に構成されている。任意
のアドレスにあるデータを読み出す場合は、まず所定の
行と列を選択し、その行と列の交点にあるメモリセルの
データを検出し、出、力回路を経て出力する。この時の
読み出しに要する時間(アクセスタイム)は、次式とな
る。
A typical ROM is configured as shown in FIG. When reading data at an arbitrary address, first select a predetermined row and column, detect the data in the memory cell at the intersection of the row and column, and output it via the output circuit. The time required for reading at this time (access time) is expressed by the following equation.

tacc = tR−1−tB +tc 、、、、 〔
1ltacC,、、、アクセスタイム tR、、、、行2列選択までの時間 ’iB、。。、メモリセルデータ検出時間i0  、。
tacc = tR-1-tB +tc, ,,, [
1ltacC, . . . Access time tR, . . . Time until row 2 column selection 'iB. . , memory cell data detection time i0,.

、。データ検出から出力までの時間 このアクセスタイムの中で、特にメモリセルデータ検出
時間の占める割合は大きい。たとえば比較的高速型のC
MO8型ROMの場合においても、3− tacc = 40ONS  、  tR= 15ON
S  、  tB = 20ONS  、tc3= 5
9N8  程度である。
,. Time from data detection to output Among this access time, the memory cell data detection time occupies a particularly large proportion. For example, relatively fast C
Even in the case of MO8 type ROM, 3-tacc = 40ONS, tR = 15ON
S, tB = 20ONS, tc3 = 5
It is about 9N8.

このメモリセルデータ検出時間tSは、さらにMOSF
ETのオン時間又は、オフ時間に比例して一般にメモリ
セルが、NチャンネルMO8FETで構成されている場
合は、概略NチャンネルMO8FETが飽和領域で働く
と近似すると、次式の様な関係がある。
This memory cell data detection time tS is further
In general, when a memory cell is composed of an N-channel MO8FET, the relationship is proportional to the on-time or off-time of the ET.If the N-channel MO8FET is approximated to work in the saturation region, there is a relationship as shown in the following equation.

[F]。。、立ち下がシ時間 VDD、、、電源□電圧 βN、、、NチャンネルMOEIFETの導電係数 VthN、 、。NチャンネルMO8FETのしきい値
電圧 C0゜。ドレイン容量 この様な(21式の関係から、従来アクセスタイムを高
速にする場合は、NチャンネルMO8FETの導電係数
βNを大きくして、メモリセルデータ検出時間を小さく
する方法がとられている。
[F]. . , Fall time VDD, , Power supply □ Voltage βN, , Conductivity coefficient of N-channel MOEIFET VthN, . Threshold voltage C0° of N-channel MO8FET. Based on the relationship of drain capacitance (Equation 21), conventional methods have been used to increase the access time by increasing the conductivity coefficient βN of the N-channel MO8FET to reduce the memory cell data detection time.

4− さらに、NチャンネルMO8FETの導電係数βNは、
一般的に次式の関係がある。
4- Furthermore, the conductivity coefficient βN of the N-channel MO8FET is
Generally, there is a relationship as shown below.

βN=μNCQ7−  * m a 131! βN。。。電子の移動度 CQZ 、。。単位面積尚シのゲート容量W 0.。N
チャンネルMO8FETのチャンネル巾 ! 、。。NチャンネルMO8FETのチャンネル長 131式から、βNを大きくする為には、メモリセルを
構成するMOSFETのチャンネル巾Wを大きくするか
、又は、チャンネル長jを小さくする必要がある。ここ
でチャンネル巾Wを大きくする方法は、メモリセルサイ
ズが大きくなシ、その為チップ面積が犬きくなシ、高密
度化に対し不利な欠点がある。又、チャンネル長!を小
さくする方法は、パターンの加工精度、とシわけエツチ
ング精度に影響され、現状の量産レベルでは、2μmか
ら3μmが最小寸法になっていて、さらに小さくするに
は、高度な技術が必要である。以上の点から、5− 現状におけるパターン寸法は、最小値となっていて、容
易に寸法を変える事が出来ない。
βN=μNCQ7− * m a 131! βN. . . Electron mobility CQZ. . Gate capacitance W per unit area 0. . N
Channel width of MO8FET! ,. . Channel length of N-channel MO8FET From Equation 131, in order to increase βN, it is necessary to increase the channel width W of the MOSFET constituting the memory cell or to decrease the channel length j. Here, the method of increasing the channel width W has the disadvantage that the memory cell size is large, and therefore the chip area is small, which is disadvantageous for high density. Also, channel chief! The method of reducing the size is influenced by the pattern processing accuracy and the etching accuracy, and at the current mass production level, the minimum size is 2 μm to 3 μm, and advanced technology is required to make it even smaller. . From the above points, 5- The current pattern dimensions are minimum values and cannot be easily changed.

本発明は、この様な最小パターン寸法に影響を与えず高
速化をはかる方法を提案するものである。
The present invention proposes a method for increasing speed without affecting the minimum pattern size.

ここでは、MOSFETの導電係数βNを増大するのに
、しきい値電圧VthNを低くして、高速化を達成する
Here, although the conductivity coefficient βN of the MOSFET is increased, the threshold voltage VthN is lowered to achieve higher speed.

一般に、しきい値電圧VihNは、基板への不純物のD
ORe量によシ決まシ、基板濃度を上げると、しきい値
電圧VtINは高くなシ、移動度μNは低下する。
Generally, the threshold voltage VihN is determined by the amount of impurity D to the substrate.
It depends on the amount of ORe, and when the substrate concentration is increased, the threshold voltage VtIN becomes higher and the mobility μN decreases.

そのため、しきい値電圧V4hNとMOSFETの導電
係数βNとの間には、第2図に示す関係がある。
Therefore, there is a relationship shown in FIG. 2 between the threshold voltage V4hN and the conductivity coefficient βN of the MOSFET.

第2図では、しきい値電圧VlhNが2■の時のMOS
FETの導電係数βNを正規化して、100と表わして
いる。しきい値電圧V4hNが005Vの詩は、MOS
FETの導電係数は175であり、しきい値電圧の2■
時に比較して、1.75倍に増大する。すなわち、しき
い値電圧■thNを低くすれば、MO8F  −BTの
導電係数βNは大きくなる。
In Figure 2, the MOS when the threshold voltage VlhN is 2■
The conductivity coefficient βN of the FET is normalized and expressed as 100. The threshold voltage V4hN is 005V is MOS
The conductivity coefficient of the FET is 175, and the threshold voltage is 2
This is an increase of 1.75 times compared to the current situation. That is, by lowering the threshold voltage ■thN, the conductivity coefficient βN of MO8F-BT increases.

ゆえに、しきい値電圧VtANを出来るだけ低くおさ6
一 えてやれば、MOSFETの導電係数βNが増大し、ア
クセスタイムは高速となる。
Therefore, the threshold voltage VtAN should be kept as low as possible6.
Once this is done, the conductivity coefficient βN of the MOSFET increases and the access time becomes faster.

ところが反面には、しきい値電圧V4hNをROM回路
全体に渡って低くすると、リーク電流が増大しスタンバ
イ時電流も増大する欠点がある。これは、CM (l 
S W R(] Mのスタンバイ時電流が小さい特徴を
持つ利点に反するものである。これは、スタンバイ時に
、第1図(D +21 、131 、 f4+ 、 +
61 、 +71 、 (7)周辺回路にリーク電流と
して流れる電流が多い為である。ゆえにROM周辺回路
のしきい値電圧V9yは、通常通シの値に設定し、メモ
リセル部分のしきい値電圧Vihyだけを低くすれば、
動作時電流はわずかに増大はするが、スタンバイ時電流
は変化しない、高速7ROMが出来る。CMO8型RO
Mの場合は、動作時電流は、数十ミ、リアンペアであシ
、メモリセル部分のVthNを下げた為に、数マイクロ
アンペア程度の電流の増加があるが、全体への占める割
合は小さい。
However, on the other hand, if the threshold voltage V4hN is lowered throughout the ROM circuit, there is a drawback that leakage current increases and standby current also increases. This is CM (l
This is contrary to the advantage that the standby current of SWR(]M is small. This is due to the fact that during standby,
61, +71, (7) This is because there is a large amount of current flowing into the peripheral circuits as leakage current. Therefore, if the threshold voltage V9y of the ROM peripheral circuit is set to the normal value and only the threshold voltage Vihy of the memory cell portion is lowered,
Although the current during operation increases slightly, the current during standby does not change, making it possible to create a high-speed 7ROM. CMO8 type RO
In the case of M, the operating current is several tens of amperes, and because the VthN of the memory cell portion is lowered, the current increases by about several microamperes, but the proportion of the total is small.

なお、メモリセル部分のみVlhNを低くする方法は、
第1図の(51のメモリセル部分の基桁へのD08e7
− 量を変えてやればよく、とれは、メモリセル部分を選択
するガラスマスク1枚があればよいので、容易にメモリ
セル部分のしきい値電圧が低く出来る。ゆえに、現状で
は、eMO8型ROMにお騒ては、ROM全体のしきい
値電圧VthNは、約0.7v程度であるので、すでに
並べた様に、メモリセル部分を選択するガラスマスクを
使用して、暴政濃度を制御し、メモリセル部分のしきい
値電圧を、0.3 V以下に低くすれば、ROMのパタ
ーン寸法を変更する事なく、容易に、高密度、高速、低
消費電力のCMO8型ROMが実現出来る。
Note that the method of lowering VlhN only in the memory cell portion is as follows:
D08e7 to the base digit of the memory cell part (51) in FIG.
- The threshold voltage of the memory cell portion can be easily lowered because it is only necessary to change the amount, and only one glass mask is needed to select the memory cell portion. Therefore, at present, the problem with eMO8 type ROM is that the threshold voltage VthN of the entire ROM is about 0.7V, so as already mentioned, a glass mask is used to select the memory cell part. By controlling the tyranny concentration and lowering the threshold voltage of the memory cell part to 0.3 V or less, it is possible to easily achieve high density, high speed, and low power consumption without changing the ROM pattern dimensions. CMO8 type ROM can be realized.

以上述べた如く本発明は、リードオンリーメモリ回路を
内蔵するマイクロプロセッサ−1音声合。
As described above, the present invention provides a microprocessor-1 voice processor incorporating a read-only memory circuit.

成用集積回路、その他の応用製品、複合製品の集積回路
にも、適用出来るものである。
It can also be applied to integrated circuits for commercial use, other applied products, and integrated circuits for composite products.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図・・一般的なROMのブロック・ダイヤグラム 1・・アドレス信号 8− 2・・アドレスバッファ 3・φアドレス列デコーダ 4・のアドレス行デコーダ 5・−メモリ・セル配列部 6・・列セレクタとセンスアンプ 71111出力バツフア 8・・出力信号 第2図・・しきい値電圧VilNとMOSFETの導電
係数の関係。 以   上 出願人 株式会社諏訪精工舎 代理人 弁理士最 上  務 9− 第  1  図 IN 1!1 2  図
Figure 1: General ROM block diagram 1: Address signal 8-2: Address buffer 3: φ address column decoder 4: Address row decoder 5: Memory cell array section 6: Column selector and sense amplifier 71111 output buffer 8...output signal Figure 2...relationship between threshold voltage VilN and conduction coefficient of MOSFET. Applicant Suwa Seikosha Co., Ltd. Agent Patent Attorney Mogami 9- Figure 1 IN 1!1 Figure 2

Claims (1)

【特許請求の範囲】 Ill  M OS F’ F: Tから構成されるリ
ードオンリーメモリ回路において、前記回路のメモリセ
ル部を構成するMO8F’F:Tのしきい値電圧が、前
記回路のメモリセル部分外の周辺回路を構成するMOS
FETのしきい値電圧よシも低い事を特徴とするリード
オンリーメモリ回路。 12)集積回路の構成が、相補型MO6FET回路から
構成される特許請求の範囲第1項記載のリードオンリー
メモリ回路。 (31メモリセル部分を構成するMOSFETのしきい
値電圧とメモリセル部分外の周辺回路を構成するMO8
FF!Tのしきい値電圧の差が、0.2V以上ある特許
請求の範囲第1項または第2項記載のリードオンリーメ
モリ回路。 −]−
[Claims] In a read-only memory circuit composed of IllMOSF'F:T, the threshold voltage of MO8F'F:T constituting the memory cell portion of the circuit is the same as that of the memory cell of the circuit. MOS that constitutes peripheral circuits outside the section
A read-only memory circuit characterized by a low FET threshold voltage. 12) The read-only memory circuit according to claim 1, wherein the integrated circuit is constituted by a complementary MO6FET circuit. (Threshold voltage of MOSFET forming the 31 memory cell portion and MO8 forming the peripheral circuit outside the memory cell portion)
FF! 3. The read-only memory circuit according to claim 1, wherein the difference in threshold voltage of T is 0.2 V or more. −]−
JP56199795A 1981-12-11 1981-12-11 Read-only memory circuit Granted JPS58100298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56199795A JPS58100298A (en) 1981-12-11 1981-12-11 Read-only memory circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56199795A JPS58100298A (en) 1981-12-11 1981-12-11 Read-only memory circuit

Publications (2)

Publication Number Publication Date
JPS58100298A true JPS58100298A (en) 1983-06-14
JPH0531239B2 JPH0531239B2 (en) 1993-05-12

Family

ID=16413739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56199795A Granted JPS58100298A (en) 1981-12-11 1981-12-11 Read-only memory circuit

Country Status (1)

Country Link
JP (1) JPS58100298A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5427778A (en) * 1977-08-04 1979-03-02 Seiko Instr & Electronics Ltd Non-volatile semiconductor memory device
JPS5565455A (en) * 1978-11-10 1980-05-16 Mitsubishi Electric Corp Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5427778A (en) * 1977-08-04 1979-03-02 Seiko Instr & Electronics Ltd Non-volatile semiconductor memory device
JPS5565455A (en) * 1978-11-10 1980-05-16 Mitsubishi Electric Corp Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPH0531239B2 (en) 1993-05-12

Similar Documents

Publication Publication Date Title
Kim et al. A forward body-biased low-leakage SRAM cache: device, circuit and architecture considerations
KR100443101B1 (en) Semiconductor integrated circuit device and method of activating the same
US20110258590A1 (en) Software controlled transistor body bias
Kim et al. A forward body-biased low-leakage SRAM cache: device and architecture considerations
Zhang et al. Leakage power reduction techniques of 55 nm SRAM cells
US7746720B2 (en) Techniques for reducing leakage current in memory devices
JP2009043415A (en) Semiconductor integrated circuit
KR20100132937A (en) Semiconductor integrated circuit device
US6297670B1 (en) Single-ended sense amplifier with adjustable noise margin and power down control
JPH02214097A (en) Sence amplifier
JPS61117915A (en) Delay circuit
JPH10189884A (en) Low power-consumption type semiconductor integrated circuit
JPS58100298A (en) Read-only memory circuit
Singh et al. Leakage power reduction techniques of 45 nm static random access memory (SRAM) cells
JPH09231756A (en) Semiconductor integrated circuit device, and method for its operation, and method for verification of its circuit connection
JPH0746510B2 (en) Semiconductor memory device
JPH0462966A (en) Mosfet masked rom
Goel et al. Area efficient diode and on transistor inter‐changeable power gating scheme with trim options for SRAM design in nano‐complementary metal oxide semiconductor technology
JPS6271098A (en) Semiconductor storage device
JP2000182377A (en) Semiconductor memory device
JPH10189883A (en) Semiconductor device
Zhu et al. Static Leakage Failure Analysis and Improvement for Small Size Sram
JPH0740435B2 (en) Memory read circuit
Rameya Sridharan et al. Design of high efficient low power static logic circuit using SG FinFET
PAHUJA et al. LEAKAGE IMMUNE SINGLE ENDED 8T SRAM CELL FOR ULTRA-LOW POWER MEMORY DESIGN