JPH1192229A - Production of highly heat-conductive aluminum nitride sintered product - Google Patents

Production of highly heat-conductive aluminum nitride sintered product

Info

Publication number
JPH1192229A
JPH1192229A JP10198335A JP19833598A JPH1192229A JP H1192229 A JPH1192229 A JP H1192229A JP 10198335 A JP10198335 A JP 10198335A JP 19833598 A JP19833598 A JP 19833598A JP H1192229 A JPH1192229 A JP H1192229A
Authority
JP
Japan
Prior art keywords
aluminum nitride
rare earth
sintered body
earth element
aln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10198335A
Other languages
Japanese (ja)
Inventor
Akihiro Horiguchi
昭宏 堀口
Mitsuo Kasori
光男 加曽利
Fumio Ueno
文雄 上野
Yoshiko Sato
佳子 佐藤
Akihiko Tsuge
章彦 柘植
Hiroshi Endo
博 遠藤
Masaru Hayashi
勝 林
Kazuo Shinozaki
和雄 篠崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10198335A priority Critical patent/JPH1192229A/en
Publication of JPH1192229A publication Critical patent/JPH1192229A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an aluminum nitride sintered product comprising dense aluminum nitride having high heat conductivity. SOLUTION: This method for producing a highly heat-conductive aluminum nitride sintered product comprises sintering (a) a molded product or a sintered product (b) in a sintering vessel producing carbon gas or in a reducing atmosphere obtained by including a substance producing carbon gas on sintering in a sintering vessel (c) under an atmospheric pressure including a reduced pressure at 1,550-2,050 deg.C for a time exceeding 24 hr. The molded product is obtained by mixing aluminum nitride powder having an impurity oxygen content of <=7 wt. % and an average-particle diameter of 0.05-5 μm with a compound comprising (excluding fluorides) the oxides, nitrides, oxynitrides of rare earth elements in an amount of 0.01-15 wt.% converted into the weight of the rare earth elements. The sintered product has a rare earth element content of 0.01-15 wt.% and an oxygen content of 0.01-20 wt.%, and contains AIN as a main phase and further the phases of a (rare earth element)-Al-O compound and/or a (rare earth element)-O compound.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、窒化アルミニウム
単相からなる窒化アルミニウム焼結体の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an aluminum nitride sintered body composed of a single phase of aluminum nitride.

【0002】[0002]

【従来の技術】窒化アルミニウム(AlN)は高温まで
強度低下が少なく、化学的耐性にも優れているため、耐
熱材料として用いられる一方、その高熱伝導性、高電気
絶縁性を利用して半導体装置の放熱板材料、回路基板用
絶縁体材料としても有望視されている。こうした窒化ア
ルミニウムは常圧下で融点を持たず、2500℃以上の
高温で分解するため、薄膜などの用途を除いては焼結体
として用いられる。
2. Description of the Related Art Aluminum nitride (AlN) is used as a heat-resistant material because its strength does not decrease to a high temperature and has excellent chemical resistance. On the other hand, a semiconductor device utilizing its high thermal conductivity and high electrical insulation is used. Is also promising as a heat sink material and an insulator material for circuit boards. Such aluminum nitride does not have a melting point under normal pressure and decomposes at a high temperature of 2500 ° C. or higher. Therefore, it is used as a sintered body except for applications such as thin films.

【0003】かかる窒化アルミニウム焼結体は通常、窒
化アルミニウム粉末を成形、焼成して得られる。超微粉
(0.3μm以下程度)のAlN粉末を用いた場合には
単独でもほぼ緻密な焼結体が得られるが、原料粉末表面
の酸化層中の酸素が焼結時にAlN格子中に固溶した
り、Al−O−N化合物を生成し、その結果無添加焼結
体の熱伝導率はたかだか100W/m・K程度である。
また粒径0.5μm以上のAlN粉末を用いた場合は焼
結成形体が良好でないために、ホットプレス法による以
外には無添加では緻密な焼結体を得ることは困難であ
る。そこで常圧で焼結体を得ようとする場合、焼結体の
緻密化およびAlN原料粉末の不純物酸素のAlN粒内
への固溶を防止するために、焼結助剤として希土類酸化
物、アルカリ土類金属酸化物等を添加することが一般的
に行われている(特開昭60−127267号公報、特
開昭61−10071号公報、特開昭60−71575
号公報)。これらの焼結助剤はAlN原料粉末の不純物
酸素と反応し液相を生成し焼結体の緻密化を達成すると
共に、この不純物酸素を粒界相として固定(酸素トラッ
プ)し、高熱伝導率化を達成すると考えられている。
[0003] Such an aluminum nitride sintered body is usually obtained by molding and firing aluminum nitride powder. When an ultrafine powder (about 0.3 μm or less) of AlN powder is used, an almost dense sintered body can be obtained by itself, but oxygen in the oxide layer on the surface of the raw material powder is dissolved in the AlN lattice during sintering. Or an Al—O—N compound is generated, and as a result, the thermal conductivity of the sintered body without addition is at most about 100 W / m · K.
When AlN powder having a particle size of 0.5 μm or more is used, since the sintered compact is not good, it is difficult to obtain a dense sintered body without any addition except by hot pressing. In order to obtain a sintered body at normal pressure, rare earth oxides are used as sintering aids in order to densify the sintered body and prevent solid solution of impurity oxygen of AlN raw material powder into AlN grains. It is common to add an alkaline earth metal oxide or the like (JP-A-60-127267, JP-A-61-10071, JP-A-60-71575).
No.). These sintering aids react with the impurity oxygen of the AlN raw material powder to form a liquid phase to achieve densification of the sintered body, and fix the impurity oxygen as a grain boundary phase (oxygen trap) to provide a high thermal conductivity. Is expected to achieve

【0004】このように焼結助剤を添加することにより
確かに焼結体は緻密化、高熱伝導率化するが、他方で、
結果的に残留する粒界相(主相であるAlNに対し副
相)の存在、完全にトラップしきれなかった酸素等の存
在等により、窒化アルミニウム焼結体のそれは高々19
0W/m・K程度と、AlNの理論熱伝導率320W/
m・Kに対しかなり低いものであった。そのため、窒化
アルミニウム焼結体の熱伝導率の向上を目的として種々
の試みがなされているが、未だ十分満足するべきものは
得られていない。
[0004] As described above, by adding a sintering aid, the sintered body is certainly densified and has a high thermal conductivity.
As a result, due to the existence of the remaining grain boundary phase (sub-phase with respect to the main phase of AlN) and the presence of oxygen and the like which could not be completely trapped, the aluminum nitride sintered body is at most 19
About 0 W / m · K, the theoretical thermal conductivity of AlN is 320 W /
It was much lower than m · K. Therefore, various attempts have been made for the purpose of improving the thermal conductivity of the aluminum nitride sintered body, but none of them have been obtained yet.

【0005】[0005]

【発明が解決しようとする課題】現在半導体搭載用の回
路基板、放熱基板等ではより高い熱伝導率を有する材料
が望まれている。しかしながら酸素その他の不純物特
に、助剤添加の結果として粒界に生成する粒界相の存在
により、窒化アルミニウム焼結体の高熱伝導率化には限
界があった。本発明は、以上の点を考慮してなされたも
ので、熱伝導性に優れた窒化アルミニウム焼結体の製造
方法を提供することを目的とする。
At present, a material having a higher thermal conductivity is desired for a circuit board for mounting a semiconductor, a heat dissipation board, and the like. However, due to the presence of oxygen and other impurities, in particular, the grain boundary phase formed at the grain boundary as a result of the addition of the auxiliary agent, there has been a limit in increasing the thermal conductivity of the aluminum nitride sintered body. The present invention has been made in view of the above points, and has as its object to provide a method for manufacturing an aluminum nitride sintered body having excellent thermal conductivity.

【0006】[0006]

【課題を解決するための手段】本発明等は上記目的を達
成すべく窒化アルミニウム粉末に添加する焼結助剤や焼
結条件、焼結体組成、焼結体微細構造等と熱伝導率の関
係について実験・検討を進めた結果、以下に示す新規事
項を発見し、本発明を完成するに至った。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a sintering aid added to aluminum nitride powder, sintering conditions, sintered body composition, sintered body microstructure, and the like. As a result of conducting experiments and studies on the relationship, the following new matter was discovered, and the present invention was completed.

【0007】すなわち、焼結助剤としてイットリウム化
合物をAlN粉末に添加し、窒素を含む還元性雰囲気中
で長時間焼成したところ、粒界相(Y−Al−O系化合
物相等)の存在量が、従来の窒化アルミニウム焼結体に
比べて減少するということがわかった。そして十分長時
間焼結すると実質的に副相がなくAlN単相からなり、
多結晶体としては非常に高い熱伝導率を有する窒化アル
ミニウム焼結体が得られるという事実をみいだした。こ
の高熱伝導率化は他の希土類元素でも同様に認められ
た。
That is, when an yttrium compound is added to an AlN powder as a sintering aid and calcined for a long time in a reducing atmosphere containing nitrogen, the amount of a grain boundary phase (Y-Al-O-based compound phase, etc.) is reduced. It was found that the amount was reduced as compared with the conventional aluminum nitride sintered body. And when it is sintered for a sufficiently long time, there is substantially no subphase and it consists of AlN single phase,
It has been found that an aluminum nitride sintered body having a very high thermal conductivity can be obtained as a polycrystal. This increase in thermal conductivity was similarly observed for other rare earth elements.

【0008】この事実に基づいて高熱伝導率化を達成す
る最適条件を種々検討した結果が本発明であり、 a)不純物酸素量が7重量%以下であり、平均粒径が
0.05〜5μmである窒化アルミニウム粉末と、希土
類元素の重量換算で0.01〜15重量%の希土類元素
の酸化物、窒化物、酸窒化物からなる化合物とを混合し
たのち成形した成形体を、 b)カーボンガスを生成する焼成容器または焼成時にカ
ーボンガスを生成する物質を焼成容器内に含むことで得
られる還元雰囲気中で、 c)1550〜2050°Cで、24時間を超える時
間、減圧下を含む雰囲気下で焼成して熱伝導率220W
/m・Kを超えるようにした高熱伝導性窒化アルミニウ
ム焼結体の製造方法である。
Based on this fact, the present invention is based on the results of various studies on the optimum conditions for achieving high thermal conductivity. A) The content of impurity oxygen is 7% by weight or less and the average particle size is 0.05 to 5 μm. A) a mixture of aluminum nitride powder as described above and 0.01 to 15% by weight, in terms of weight of rare earth element, of a compound of rare earth element oxide, nitride, and oxynitride; A baking vessel for generating gas or a reducing atmosphere obtained by including a substance that generates carbon gas during baking in a baking vessel; c) an atmosphere containing reduced pressure at 1550 to 2050 ° C. for more than 24 hours. Baking under the heat conductivity of 220W
/ M · K is a method for producing a highly thermally conductive aluminum nitride sintered body.

【0009】[0009]

【発明の実施の形態】この様な方法で得られた窒化アル
ミニウム焼結体は多結晶体としては非常に高い220W
/Kを越える熱伝導率を有し、この焼結体をX線回析お
よび電子顕微鏡を用いて構成相を観察してもAlN結晶
粒のみ認められ、他の相は観察されない。また成分分析
を行ったところAl,Nが主成分で、希土類元素0.0
1〜8000ppm、不純物酸素2000ppm未満を
含有し、その他の不純物イオン元素は1000ppm以
下という新規な窒化アルミニウム焼結体であった。熱伝
導率向上の観点から希土類元素は0.01〜1000p
pm、不純物酸素は1000ppm以下が好ましい。実
用上の観点からは希土類元素10〜3000ppmが好
ましい。この希土類元素は結晶粒界では観察されないこ
とから、AlN結晶粒に固溶しているものと考えられ
る。酸素元素も同様である。なお本発明焼結体において
は不純物酸素量が極力少ないことが望ましく、また原料
粉に起因する不純物陽イオンも熱伝導率低下の原因とな
るため極力少ないことが望まれる。
BEST MODE FOR CARRYING OUT THE INVENTION The aluminum nitride sintered body obtained by such a method has a very high polycrystalline body of 220 W
/ K, and only the AlN crystal grains are observed when the sintered body is observed for its constituent phases by X-ray diffraction and electron microscopy, and no other phases are observed. Further, when the component analysis was performed, Al and N were the main components, and the rare earth element 0.0
It was a novel aluminum nitride sintered body containing 1 to 8000 ppm, less than 2,000 ppm of impurity oxygen, and 1000 ppm or less of other impurity ion elements. From the viewpoint of improving the thermal conductivity, the rare earth element is 0.01 to 1000 p
pm and impurity oxygen are preferably 1000 ppm or less. From a practical viewpoint, the rare earth element is preferably 10 to 3000 ppm. Since this rare earth element is not observed at the crystal grain boundary, it is considered that it is dissolved in AlN crystal grains. The same applies to the oxygen element. In the sintered body of the present invention, the amount of impurity oxygen is desirably as small as possible, and the amount of impurity cations caused by the raw material powder is also desirably as small as possible because it causes a decrease in thermal conductivity.

【0010】本発明のAlN焼結体の密度は3.120
〜3.285g/cm3 が好ましい。低いと緻密化が
十分ではなく、高いと不純物成分が多いことになる。好
ましくは3.259〜3.264/cm3 である。
The density of the AlN sintered body of the present invention is 3.120.
~ 3.285 g / cm 3 is preferred. If the density is low, the densification is not sufficient, and if the density is high, the impurity component is large. Preferably it is 3.259-3.264 / cm < 3 >.

【0011】[0011]

【実施例】本発明の高熱伝導性窒化アルミニウム焼結体
の製造方法の実施例の骨子について述べる。本発明の製
造方法は、窒化アルミニウム原料粉末の純度および平均
粒経、焼結助剤、焼結容器、焼成時間および焼成雰囲気
を主体とするものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The outline of an embodiment of the method for producing a highly thermally conductive aluminum nitride sintered body of the present invention will be described. The production method of the present invention is mainly based on the purity and average particle size of the aluminum nitride raw material powder, sintering aid, sintering vessel, firing time and firing atmosphere.

【0012】主成分である窒化アルミニウム原料粉末と
しては、焼結性、熱伝導性を考慮して酸素を7重量%以
下、実用上は0.01〜7重量%含有し、平均粒経が
0.05〜5μmのものを使用する。
The aluminum nitride raw material powder, which is the main component, contains 7% by weight or less of oxygen in consideration of sinterability and thermal conductivity, practically 0.01 to 7% by weight, and has an average particle diameter of 0%. It is used in the range of 0.05 to 5 μm.

【0013】添加物としては希土類元素化合物(Y,S
c,Ce,Dyが好ましく、特にイットリウム化合物が
好ましい)を用いる。希土類元素の化合物としては、
化物、窒化物、酸窒化物、もしくは焼成によりこれらの
化合物となる物資が最適である。焼成によって例えば
記希土類元素酸化物となる物資としては、これらの元素
の炭酸塩、硝酸塩、シュウ酸塩、水酸化物などをあげる
ことができる。
As an additive, a rare earth element compound (Y, S
c, Ce and Dy are preferred, and an yttrium compound is particularly preferred). The compound of the rare earth elements, acid <br/> product, nitride, oxynitride, or is optimal materials comprising these compounds by firing. Above, for example by calcination
Examples of the material that becomes the rare earth oxide include carbonates, nitrates, oxalates, and hydroxides of these elements.

【0014】希土類元素化合物の添加は、希土類元素の
重量換算で0.01〜15重量%の範囲で添加する。こ
の添加量が0.01重量%未満であると、添加物の効果
が十分に発揮されず、焼結体が緻密化されなかったり、
AlN結晶中に酸素が固溶し高熱伝導な焼結体が得られ
ない。また、添加量が過度に多いと、粒界相が焼結体中
に残ったり、熱処理により除去される粒界相の体積が大
きいため、焼結体中に空孔が残ったり、収縮率が非常に
大きくなり、形状がくずれる等の不利な点が生ずる。好
ましくは、0.1〜15重量%であり、より好ましくは
0.5〜10重量%である。
The rare earth element compound is added in the range of 0.01 to 15% by weight in terms of the weight of the rare earth element. When the amount is less than 0.01% by weight, the effect of the additive is not sufficiently exhibited, and the sintered body is not densified,
Oxygen is dissolved in the AlN crystal and a sintered body having high thermal conductivity cannot be obtained. If the addition amount is excessively large, the grain boundary phase remains in the sintered body, or the volume of the grain boundary phase removed by the heat treatment is large, so that pores remain in the sintered body, and the shrinkage rate decreases. It becomes very large and has disadvantages such as the shape being distorted. Preferably, it is 0.1 to 15% by weight, more preferably 0.5 to 10% by weight.

【0015】本発明方法においてはこの様なAlN粉と
希土類元素化合物の混合された成形体を後述の条件で焼
結しても良いし、また、従来の方法(例えば特開昭61
−17160号公報)で、希土類元素含有量が0.01
〜15重量%で、酸素含有量が0.01〜20重量%で
あり、AlNを主相とし(希土類元素)−Al−O化合
物相および/または(希土類元素)−O化合物相から成
る焼結体を製造し、上記成形体の代りに用いてもよい。
In the method of the present invention, such a compact in which the AlN powder and the rare earth element compound are mixed may be sintered under the conditions described below, or a conventional method (for example, Japanese Patent Application Laid-Open No.
-17160), the rare earth element content is 0.01
Sintering with a main phase of AlN and a (rare earth element) -Al-O compound phase and / or a (rare earth element) -O compound phase A body may be manufactured and used in place of the compact.

【0016】焼成雰囲気中に関しては還元雰囲気、特に
窒素ガスを含む還元性雰囲気中で行なう。還元性雰囲気
はCO,H2 ガスおよびC(ガスそして固相)などを
一種または二種以上存在させることによって作ることが
できる。
The firing is performed in a reducing atmosphere, particularly in a reducing atmosphere containing nitrogen gas. The reducing atmosphere can be created by the presence of one or more of CO, H 2 gas and C (gas and solid phase).

【0017】焼成容器に関しては、窒化アルミニウム、
アルミナ、Mo製等でも可能である(特開昭61−14
6769号等)。しかし、これらの容器を用いたもので
は、焼結体中に、(希土類元素)−Al−O化合物相な
どが存在したままの状態となり、高熱伝導性は得られな
い。本発明では、焼成中にカーボンガス雰囲気をつくり
出す容器を用いることが好ましい。この様な焼成容器と
しては容器全体がカーボン成形体で試料を設置する箇所
にAlN板、BN板、W板等を敷いたもの、窒化アルミ
ニウム製の容器で上部蓋がカーボン製の物等を用いるこ
とができる。本発明でいうカーボンガス雰囲気とは、1
550〜2050℃の焼結温度範囲で蒸気圧が1×10
-6〜5×10-2Pa程度生成するガスをさす。このカー
ボンガスが、焼成中のAlNを還元するという作用が得
られ、さらに具体的には(希土類元素)−Al−O三元
系化合物等の粒界相を焼結体中より除去する作用が働
き、窒化アルミニウム焼結体はAlN単相となり、高熱
伝導性の焼結体に変化していく。
Regarding the firing container, aluminum nitride,
Alumina, Mo, etc. are also possible (Japanese Patent Laid-Open No. 61-14 / 1986).
No. 6769). However, in the case of using these containers, the (rare earth element) -Al-O compound phase or the like remains in the sintered body, and high thermal conductivity cannot be obtained. In the present invention, it is preferable to use a container that creates a carbon gas atmosphere during firing. As such a firing container, an AlN plate, a BN plate, a W plate, or the like is laid on a place where a sample is to be set, and a container made of aluminum nitride and a top cover made of carbon is used. be able to. The carbon gas atmosphere referred to in the present invention is 1
The vapor pressure is 1 × 10 in the sintering temperature range of 550-2050 ° C.
-6 to 5 × 10 -2 Pa refers to gas generated. This carbon gas has an effect of reducing AlN during firing, and more specifically, has an effect of removing a grain boundary phase such as a (rare earth element) -Al-O ternary compound from the sintered body. In operation, the aluminum nitride sintered body becomes an AlN single phase and changes to a sintered body having high thermal conductivity.

【0018】この容器の内容積は、その内容積と窒化ア
ルミニウム成形体との体積の比(内容積/成形体の体
積)が1.1×100 〜1×107 が良い。これ以
上大きな容積を用いた場合、試料近傍におけるカーボン
蒸気圧が低く、カーボンによる粒界相除去効果が小さく
なる。この容積比は5×100 〜1×105 が好ま
しい。
The internal volume of this container is preferably 1.1 × 10 0 to 1 × 10 7, in which the ratio of the internal volume to the volume of the aluminum nitride molded product (the internal volume / the volume of the molded product) is good. When a larger volume is used, the carbon vapor pressure in the vicinity of the sample is low, and the effect of carbon to remove the grain boundary phase is reduced. The volume ratio is preferably 5 × 10 0 to 1 × 10 5 .

【0019】焼結時間については、従来種々の助剤を用
い1〜3時間の短時間で行なわれているが、この程度の
時間では上記焼成容器中で焼成したとしても、窒化アル
ミニウム焼結体の緻密化、そして原料粉末表面の酸素を
粒界相に固定することは可能であるが、AlN粒間の陵
および三重点に粒界相が存在し、AlN単相の焼結体は
得られない。また前述の如くのカーボンガス雰囲気が得
られない場合は、長時間の焼成によっても粒界相の除去
の効果は現われない。AlN単相にするためには焼結温
度および助剤添加量にもよるが、24時間を越える時間
が必要である。
The sintering time is conventionally as short as 1 to 3 hours using various auxiliaries. However, in such a time, even if the sintering is performed in the above-mentioned sintering vessel, the aluminum nitride sintered body may be used. Although it is possible to densify and fix the oxygen on the surface of the raw material powder to the grain boundary phase, a grain boundary phase exists at the ridges and triple points between AlN grains, and a sintered body of AlN single phase is obtained. Absent. When the carbon gas atmosphere as described above cannot be obtained, the effect of removing the grain boundary phase does not appear even by firing for a long time. In order to form an AlN single phase, a time exceeding 24 hours is required, depending on the sintering temperature and the amount of the additive.

【0020】焼成温度については、1550〜2050
℃程度であるが1700〜2050℃が好ましい。低温
で焼成すると、原料粉末の粒経、酸素量にもよるが緻密
な焼結体が得にくく、またカーボンガスの発生が少なく
なり、粒界相を残したままとなる。また2050℃より
高温で焼成すると、AlN自体の蒸気圧が高くなり、緻
密化が困難になると共に、アルミニウムとカーボンとの
反応によりアルミニウムの炭化物(Al43 )を
生ずる可能性があり、また(希土類元素)−O化合物が
還元窒化され窒化物と推定される相が生じる。焼成温度
はより好ましくは1800〜2000℃である。さらに
は1800〜1950℃が好ましい。
Regarding the firing temperature, 1550-2050
Although it is about C, it is preferably 1700-2050C. When firing at a low temperature, a dense sintered body is difficult to obtain, depending on the particle size and oxygen content of the raw material powder, and the generation of carbon gas is reduced, leaving a grain boundary phase. Further, when firing at a temperature higher than 2050 ° C., the vapor pressure of AlN itself increases, making it difficult to densify, and there is a possibility that a reaction between aluminum and carbon produces aluminum carbide (Al 4 C 3 ). The (rare earth element) -O compound is reduced and nitrided to produce a phase presumed to be a nitride. The firing temperature is more preferably 1800 to 2000 ° C. Furthermore, 1800-1950 degreeC is preferable.

【0021】酸化性雰囲気で焼成するとカーボンの粒界
純化効果が作用しないばかりでなく、酸素の固溶、異相
生成により高熱伝導性は得られない。なお焼結は真空
(わずかな還元雰囲気を含む)、減圧、加圧および常圧
を含む雰囲気下で行なう。
When calcined in an oxidizing atmosphere, not only does the effect of purifying the carbon grain boundaries not work, but also high thermal conductivity cannot be obtained due to solid solution of oxygen and formation of a different phase. The sintering is performed in an atmosphere including vacuum (including a slight reducing atmosphere), reduced pressure, increased pressure, and normal pressure.

【0022】次いで本発明の窒化アルミニウム焼結体の
製造方法の一例を以下に述べる。まず、AlN粉末に焼
結添加物として希土類元素化合物を所定料添加したのち
ボールミル等を用いて混合する。焼結には常圧焼結法を
使用する。この場合、混合粉末にバインダーを加え、混
練、造粒、整粒を行なったのち成形する。成形として
は、金型プレス、静水圧プレス或いはシート成形などが
適用できる。続いて、成形体を非酸化性雰囲気中、例え
ば窒素ガス気流中で加熱してバインダーを除去したのち
常圧焼結する。この時用いる焼成容器は、焼成中カーボ
ンガス雰囲気をつくり出す、例えばカーボン製容器で、
容器内容積と成形体体積の比が1.1×100 〜1×
107 のものを用いる。焼結温度は1550〜205
0℃に、焼結時間は24時間を越える時間に設定する。
この様な方法により本発明焼結体を得ることができる。
Next, an example of the method for producing the aluminum nitride sintered body of the present invention will be described below. First, a predetermined amount of a rare earth element compound as a sintering additive is added to AlN powder, and then mixed using a ball mill or the like. A normal pressure sintering method is used for sintering. In this case, a binder is added to the mixed powder, kneading, granulation, and sizing are performed, followed by molding. As the molding, a mold press, an isostatic press, a sheet molding, or the like can be applied. Subsequently, the molded body is heated in a non-oxidizing atmosphere, for example, in a nitrogen gas stream to remove the binder, and then sintered at normal pressure. The firing container used at this time creates a carbon gas atmosphere during firing, for example, a carbon container,
The ratio between the volume in the container and the volume of the compact is 1.1 × 10 0 to 1 ×
Use 10 7 materials. Sintering temperature is 1550-205
At 0 ° C., the sintering time is set to a time exceeding 24 hours.
The sintered body of the present invention can be obtained by such a method.

【0023】次に本発明の窒化アルミニウム焼結体の熱
伝導性の向上効果および(希土類元素)−Al−O系化
合物相等の粒界の除去による窒化アルミニウム焼結体の
純化作用について説明する。厳密なメカニズムは現在の
ところ完全に解明されているわけではないが、本発明者
らの研究によれば高熱伝導率化の要因として次のように
推定される。
Next, the effect of improving the thermal conductivity of the aluminum nitride sintered body of the present invention and the action of purifying the aluminum nitride sintered body by removing the grain boundaries of the (rare earth element) -Al-O compound phase and the like will be described. The exact mechanism has not been completely elucidated at present, but according to the study of the present inventors, it is estimated as follows as a factor for increasing the thermal conductivity.

【0024】まず、希土類元素添加によるAlN原料粉
末の不純物酸素のトラップ効果である。すなわち、希土
類元素化合物を焼結助剤として添加することにより、不
純物酸素を(希土類元素)−Al−O化合物等の形でA
lN粒界の稜および三重点に固定するため、AlN格子
中への酸素の固溶が防止され、AlNの酸窒化物(Al
ON)、そしてAlNのポリタイプ(27R型)の生成
を防止する。発明者らの研究結果によれば、AlONそ
して27R型が生成した焼結体は、いずれも熱伝導率が
低いことがわかっている。この様な低熱伝導率化の原因
を抑制することが高熱伝導率化の一因として挙げられ
る。
First, the effect of trapping impurity oxygen in the AlN raw material powder by adding a rare earth element will be described. That is, by adding a rare earth element compound as a sintering aid, impurity oxygen can be converted into a (rare earth element) -Al-O compound or the like by A
Since it is fixed to the ridge and triple point of the 1N grain boundary, the solid solution of oxygen in the AlN lattice is prevented, and the oxynitride of AlN (Al
ON), and the generation of the AlN polytype (27R type) is prevented. According to the research results of the inventors, it is known that the sintered bodies in which AlON and 27R type are formed have low thermal conductivity. Suppressing the cause of such a low thermal conductivity can be cited as one of the causes of the high thermal conductivity.

【0025】希土類元素としてYを選んだ場合は原料粉
末の不純物酸素が、3Y23・5Al23
23 ・Al23 、2Y23 ・Al
23 、Y23 などの化合物としてトラップさ
れる。この状態は焼結初期で起こり、熱伝導率が最高1
90W/m・K程度に達する。
When Y is selected as the rare earth element, the impurity oxygen in the raw material powder is 3Y 2 O 3 .5Al 2 O 3 ,
Y 2 O 3 · Al 2 O 3 , 2Y 2 O 3 · Al
Trapped as compounds such as 2 O 3 and Y 2 O 3 . This condition occurs in the period Shoyuihatsu, thermal conductivity is the highest 1
It reaches about 90 W / m · K.

【0026】これ以降の焼結過程で、焼結体表面の(希
土類元素)−O化合物および/または(希土類元素)−
Al−O化合物(例えば、2Y23 ・Al2
3)は、雰囲気中に存在する窒素ガスそしてカーボンガ
スおよび/またはCOガスなどの還元作用を有する物資
により、還元窒化され(希土類元素)−N化合物(例え
ばYN)およびまたはAlNに変化する。
In the subsequent sintering process, the (rare earth element) -O compound and / or (rare earth element)-
Al—O compound (for example, 2Y 2 O 3 .Al 2 O
3 ) is reduced and nitrided by a substance having a reducing action such as a nitrogen gas and a carbon gas and / or a CO gas existing in the atmosphere, and is changed into a (rare earth element) -N compound (for example, YN) and / or AlN.

【0027】焼結体表面での還元窒化反応により、焼結
体内での(希土類元素)−O化合物および/または(希
土類元素)−Al−O化合物での濃度勾配が生じ、これ
が駆動力となってAlN以外の副相は、粒界を経由し
て、焼結体表面に移動する。そして最終的に焼結体は他
の相を実質的に含有しない。AlN単相となり、熱伝導
率は大巾に上昇する。これは熱伝導率が小さく熱抵抗と
して働いていた粒界相が除去されるためである。また長
時間の焼成により焼結体の粒子が成長する。AlN粒子
が成長すると熱抵抗となる粒界の数が結果的に少なくな
ることを意味し、フォノンの散乱が小さな焼結体にな
る。
The reductive nitridation reaction on the surface of the sintered body causes a concentration gradient of the (rare earth element) -O compound and / or the (rare earth element) -Al-O compound in the sintered body, which becomes a driving force. Sub-phases other than AlN move to the surface of the sintered body via the grain boundaries. And finally, the sintered body does not substantially contain other phases. It becomes an AlN single phase, and the thermal conductivity greatly increases. This is because the grain boundary phase having low thermal conductivity and acting as thermal resistance is removed. In addition, the particles of the sintered body grow by firing for a long time. When the AlN particles grow, it means that the number of grain boundaries that become the thermal resistance eventually decreases, resulting in a sintered body with small phonon scattering.

【0028】以上のような理由により高熱伝導性(22
0W/m・Kを越える値)窒化アルミニウム焼結体を得
ることができる。また本発明の条件を適当な範囲にする
ことにより、近紫外光における透光性を有するAlN焼
結体を得ることができる。
For the above reasons, the high thermal conductivity (22
(Value exceeding 0 W / m · K) An aluminum nitride sintered body can be obtained. Further, by setting the conditions of the present invention in an appropriate range, an AlN sintered body having translucency in near ultraviolet light can be obtained.

【0029】すなわち、窒化アルミニウム原料粉末とし
て、六方晶系のc軸の結晶格子定数が、498.00p
mから498.20pmである窒化アルミニウム粉末を
用い、焼結助剤としてイットリウム化合物を添加して、
気体状態の炭素が1×10-6Pa以上5×10-4Pa以
下存在する窒素ガス中で70Torr以上760Tor
r以下の窒素圧の雰囲気中で1850℃〜1950℃で
24時間を越える時間焼成したところ、得られた多結晶
体は、粒界の異相の量が従来の窒化アルミニウム多結晶
体に比べて少ないばかりでなく、結晶粒自体が物理的,
化学的に高純度であり、緻密であるために、少なくとも
300nm以上の近紫外域から850nmの可視域にい
たる光に対し透過性の高い窒化アルミニウム多結晶体が
得られるという事実をみいだした。
That is, as the aluminum nitride raw material powder, the crystal lattice constant of the hexagonal c-axis is 498.00 p
using an aluminum nitride powder is 498.20pm from m, yttrium of compound was added as a sintering aid,
70 Torr to 760 Torr in a nitrogen gas in which gaseous carbon exists at 1 × 10 −6 Pa or more and 5 × 10 −4 Pa or less.
r at 1850 ° C to 1950 ° C in an atmosphere of nitrogen pressure not higher than r
Was fired over a 24-hour time, the resulting polycrystalline material, the amount of different phase in the grain boundary is not only smaller than the conventional aluminum nitride polycrystal, grain itself physically,
The present inventors have found that a polycrystalline aluminum nitride having high transparency to light in a near ultraviolet region of at least 300 nm or more and a visible region of 850 nm can be obtained because of its high purity and denseness.

【0030】この事実に基づいてAlN焼結体の近紫外
線に対する透光性を達成するのに必要な条件を種々検討
したところ、六方晶窒化アルミニウムの結晶粒から成る
多結晶体であり、多結晶体の結晶格子定数が六方晶系の
c軸方向について497.98pm以上498.20p
m以下であり、結晶粒界に存在する異相の量が2重量%
以下であり気孔率が1%以下で多結晶体の密度が3.2
55gcm-3以上3.275gcm-3以下でかつ酸素量
が0.2重量%以下周期律表上のVIIa,VIIIに属する遷
移金属元素(Mn,Tc,Re,Fe,Co,Ni,R
u,Rh,Pd,Os,Ir,Pt)が0.1重量%以
下であることを特徴とする窒化アルミニウム焼結体が透
光性であることを見出した。
Based on this fact, various conditions necessary for achieving the transmissivity of the AlN sintered body to near-ultraviolet light were examined. As a result, it was found that the polycrystalline body was composed of hexagonal aluminum nitride crystal grains. The crystal lattice constant of the body is 497.98 pm or more and 498.20 p in the c-axis direction of the hexagonal system
m or less, and the amount of the heterophase existing in the crystal grain boundary is 2% by weight.
Or less, the porosity is 1% or less, and the density of the polycrystal is 3.2.
55Gcm -3 or more 3.275Gcm -3 or less and oxygen content VIIa on the following Periodic Table 0.2 wt%, a transition metal element belonging to VIII (Mn, Tc, Re, Fe, Co, Ni, R
u, Rh, Pd, Os, Ir, Pt) is 0.1% by weight or less, and the aluminum nitride sintered body was found to be translucent.

【0031】このAlN焼結体は以下の様にして製造で
きる。 a)六方晶窒化アルミニウムの結晶格子定数が六方晶系
のc軸方向について498.00pm498.20pm
以下である窒化アルミニウム粉末を主成分とし、これに
希土類元素化合物から成る添加物を、各々の元素の重量
換算で0.01〜15重量%添加した成形体を b)気体状態の炭素の分圧が1×10-6Pa以上5×1
-4Pa以下存在し、窒素ガスの圧力が70Torr以
上760Torr以下の雰囲気中で、 c)1850℃〜1950℃24時間を越える時間〜7
20時間焼成することによって得られる。
This AlN sintered body can be manufactured as follows. a) The crystal lattice constant of hexagonal aluminum nitride is 498.00 pm 498.20 pm in the c-axis direction of the hexagonal system
B) a partial pressure of gaseous carbon, which is composed of the following aluminum nitride powder as a main component and an additive composed of a rare earth element compound added thereto in an amount of 0.01 to 15% by weight in terms of the weight of each element; Is 1 × 10 −6 Pa or more and 5 × 1
0 -4 Pa exists below the pressure of the nitrogen gas in the following atmosphere 760Torr than 70 Torr, c) time exceeds 1850 ℃ ~1950 ℃ 24 hours to 7
It is obtained by firing for 20 hours.

【0032】この様な方法により得られた窒化アルミニ
ウム多結晶体は、高い透光性を有し、とりわけ近紫外部
においても透光性を示す。この窒化アルミニウム多結晶
体の透光性は該多結晶体(厚さ0.2mm)についての
光の全透過率の波長依存性は図8に示す通りである。下
記ランベルトの式により見掛けの吸収係数を求めると、
330nmの波長の光に対して70cm-1以下であり5
00nmの波長の光に対しては50cm-1以下である。 I=I0-a10 :入射光の強度 I :透過光の強度 I :多結晶体の厚さ a :見掛けの吸収係数 この窒化アルミニウム多結晶体は、近紫外から赤外にわ
たる光に対して、従来公知の窒化アルミニウム焼結体に
比べると著しく高い透光性を有する。とりわけ300n
m〜400nmの近紫外光に対し、透光性を示すという
特徴と持つ。従来可視部から赤外部にわたり透光性を有
する窒化アルミニウムについては公知であるが、本発明
においては近紫外光に対しても透光性を示す窒化アルミ
ニウム多結晶体となる。このように近紫外部を含む光の
エネルギー領域で高い透光性を持つ窒化アルミニウム焼
結体が得られる理由は 1.原料粉中の窒化アルミニウム結晶粒内に固溶してい
る酸素および陽イオン不純物の極めて少ない原料粉を用
い 2.焼結時に窒化アルミニウム結晶粒内に酸素および陽
イオン不純物が固溶せず、さらには固溶した陽イオン不
純物を多結晶体外に除去してしまう様な焼結法を発明し
たために得られた多結晶体の結晶粒の物理的化学的純
度、すなわち不純物量,格子欠陥量が極めて少なく従っ
て多結晶体の格子定数が六万晶系窒化アルミニウムのc
軸方向について497.95pmから498.20pm
という、完全な窒化アルミニウムの格子定数498.1
6pmに非常に近い緻密な多結晶体が得られたために、
多結晶体の結晶粒内での光の吸収および散乱とりわけ紫
外部に存在する結晶粒内の固溶酸素やその結果生じる格
子欠陥による吸収が極めて少ないために近紫外光から赤
外光の領域で高い透光性を示す多結晶体が得られたと考
えられる。さらに、粒界に存在する異相が実質的に少な
く気孔率が小さいことが透光性の向上に寄与している。
The aluminum nitride polycrystal obtained by such a method has high translucency, and particularly exhibits translucency even in the near ultraviolet region. The light transmittance of this aluminum nitride polycrystal is shown in FIG. 8 as the wavelength dependence of the total light transmittance of the polycrystal (thickness: 0.2 mm). When the apparent absorption coefficient is calculated by the following Lambert equation,
70 cm -1 or less for light having a wavelength of 330 nm, and 5
For light having a wavelength of 00 nm, it is 50 cm -1 or less. I = I 0 e -a1 I 0 : intensity of incident light I: intensity of transmitted light I: thickness of polycrystal a: apparent absorption coefficient This aluminum nitride polycrystal can be used for light ranging from near ultraviolet to infrared. On the other hand, it has a remarkably high translucency as compared with a conventionally known aluminum nitride sintered body. Especially 300n
It has the characteristic of showing translucency to near ultraviolet light of m to 400 nm. Conventionally, aluminum nitride having a light-transmitting property from the visible part to the infrared part is known, but in the present invention, an aluminum nitride polycrystal that is light-transmitting also to near ultraviolet light is obtained. The reason why an aluminum nitride sintered body having high transmissivity in the energy region of light including near-ultraviolet light can be obtained is as follows. 1. Use a raw material powder having extremely few oxygen and cation impurities dissolved in aluminum nitride crystal grains in the raw material powder. Oxygen and cation impurities do not form a solid solution in aluminum nitride crystal grains during sintering, and furthermore, a sintering method obtained by inventing a sintering method that removes the dissolved cation impurities out of the polycrystalline body is obtained. The physical and chemical purity of the crystal grains of the crystal, that is, the amount of impurities and the amount of lattice defects are extremely small, so that the lattice constant of the polycrystal is 60,000 c of aluminum nitride.
497.95 pm to 498.20 pm in the axial direction
The lattice constant of perfect aluminum nitride is 498.1.
Because a dense polycrystal very close to 6 pm was obtained,
Absorption and scattering of light in the crystal grains of the polycrystal, especially in the region from near-ultraviolet light to infrared light due to extremely low absorption due to dissolved oxygen in the crystal grains present in the ultraviolet and resulting lattice defects. It is considered that a polycrystal having high translucency was obtained. Further, it cross-phase existing in the grain boundary is small substantially less <br/> rather porosity contributes to the improvement of transparency.

【0033】上述のごとき高い透光性を持つ窒化アルミ
ニウム多結晶体は前に述べたごとき種々の条件を満たし
て焼成された場合にのみ得らえ、かつとりわけ近紫外光
に対する透過性を満足するためには前述のごとき諸条
件、とりわけ格子定数が六万晶c軸について497.9
5pm以上498.20pm以下であることが最も重要
でありかつ全酸素量が少なくとも0.7重量%でかつ気
孔率が少なくとも1%以下である多結晶体において始め
て達成される。
The aluminum nitride polycrystal having a high light-transmitting property as described above can be obtained only when fired under various conditions as described above, and particularly satisfy the transmittance for near-ultraviolet light. For this purpose, various conditions as described above, in particular, a lattice constant of 497.9 for the c-axis of 60,000 crystals
Most importantly, it is at least 5 pm and at most 498.20 pm, and is achieved only for polycrystals having a total oxygen content of at least 0.7% by weight and a porosity of at least 1%.

【0034】以下本発明の具体的な実施例を説明する。 実施例1 不純物としての酸素を1.0重量%含有し、平均粒経が
0.6μmのAlN粉末に、添加物として平均粒経0.
9μmのY23 をイットリウム元素の重量換算で
4重量%添加し、ボールミルを用いて混合を行ない原料
を調整した。ついで、この原料に有機系バインダーを4
重量%添加して造粒したのち500kg/ cm2
圧力でプレス成形して38×38×10mmの圧粉体と
した。この圧粉体を窒素ガス雰囲気中で700℃まで加
熱してバインダーを除去した。更に、BN粉末を塗布し
たAlN板を底板としてカーボン製容器(焼成用容器
A)に脱脂体を収容した。このとき容器Aの形状および
大きさは、12cmφ×6.4cmで内容積が720c
3 程度である。すなわちこの容器Aの内容積とAl
N成形体の体積の比が約5×101 程度となってい
る。この容器を用い窒素ガス雰囲気中(1気圧)190
0℃、96時間の条件で常圧焼結した。得られたAlN
焼結体の密度および粒経を測定した。また焼結体から、
直径10mm、厚さ3.3mmの円板を研削し、これを
試験片としてレーザーフラッシュ法により熱伝導率を測
定した(真空理工製TC−3000使用)。測定した温
度は25℃である。
Hereinafter, specific embodiments of the present invention will be described. Example 1 AlN powder containing 1.0% by weight of oxygen as an impurity and having an average particle diameter of 0.6 μm was added to an AlN powder having an average particle diameter of 0.1 μm as an additive.
9 μm of Y 2 O 3 was added at 4% by weight in terms of the weight of yttrium element, and the mixture was mixed using a ball mill to prepare a raw material. Next, add 4 organic binders to this raw material.
After adding the powder by weight and granulating, it was press-molded under a pressure of 500 kg / cm 2 to obtain a green compact of 38 × 38 × 10 mm. The green compact was heated to 700 ° C. in a nitrogen gas atmosphere to remove the binder. Further, the degreased body was accommodated in a carbon container (sintering container A) using an AlN plate coated with BN powder as a bottom plate. At this time, the shape and size of the container A are 12 cmφ × 6.4 cm and the inner volume is 720 c.
m 3 . That is, the inner volume of this container A and Al
The volume ratio of the N molded body is about 5 × 10 1 . Using this container in a nitrogen gas atmosphere (1 atm) 190
Sintering was performed under normal pressure at 0 ° C. for 96 hours. The obtained AlN
The density and grain size of the sintered body were measured. Also, from the sintered body,
A disk having a diameter of 10 mm and a thickness of 3.3 mm was ground and used as a test piece to measure the thermal conductivity by a laser flash method (using TC-3000 manufactured by Vacuum Riko). The measured temperature is 25 ° C.

【0035】さらに、この焼結体の分析を行なった。イ
ットリウムはICP発光分光法(セイコー電子工業製S
PS−1200A使用)により、陽イオン不純物の分析
は化学分析により行い、不純物酸素に関しては速中性子
放射化分析により行なった(東芝製NAT−200−I
C使用)。上記焼結条件および得られた焼結の特性を表
1に示した。
Further, the sintered body was analyzed. Yttrium is manufactured by ICP emission spectroscopy (S
PS-1200A), the analysis of cationic impurities was performed by chemical analysis, and the analysis of impurity oxygen was performed by fast neutron activation analysis (NAT-200-I manufactured by Toshiba).
C). Table 1 shows the sintering conditions and the obtained sintering characteristics.

【0036】[0036]

【表1】 [Table 1]

【0037】また、この焼結体のX線回析(理学電機製
ロータフレックスRU−200,ゴニオメータCN21
73D5,線源Cu 50kV,100mA使用)行な
った結果を図1に、焼結体破面の結晶構造の概略を図2
に示した。
The sintered body was subjected to X-ray diffraction (Rotorflex RU-200 manufactured by Rigaku Corporation, goniometer CN21).
73D5, using a source of Cu 50 kV, 100 mA). FIG. 1 shows the results, and FIG.
It was shown to.

【0038】実施例2〜4 焼結添加物の添加量を種々に変えて上記実施例1と同様
にしてAlN焼結体を製造し、それぞれについて、同様
に評価を行なった。
Examples 2 to 4 An AlN sintered body was manufactured in the same manner as in Example 1 except that the amount of the sintering additive was changed variously, and each was similarly evaluated.

【0039】実施例5〜6 焼結温度を種々に変えて上記実施例1と同様にしてAl
N焼結体を製造した。それぞれについて同様の評価を行
なった。
Examples 5 to 6 In the same manner as in Example 1 except that the sintering temperature was changed variously,
An N sintered body was manufactured. The same evaluation was performed for each.

【0040】実施例7〜8 焼結時間を変えて上記実施例1と同様にしてAlN焼結
体を製造し、それぞれについて同様の評価を行なった。
Examples 7 and 8 AlN sintered bodies were manufactured in the same manner as in Example 1 except that the sintering time was changed, and the same evaluation was performed for each.

【0041】実施例 上記実施例1と同様に脱脂までの工程を行なった。そし
て内側の寸法が700φ×380mmの焼結容器で、窒
素ガス減圧雰囲気中(0.1気圧)、1900℃におい
て192時間焼結し、同様の評価を行なった。
Example 9 The steps up to degreasing were performed in the same manner as in Example 1 above. Then, sintering was performed in a sintering container having an inner diameter of 700φ × 380 mm in a reduced pressure atmosphere of nitrogen gas (0.1 atm) at 1900 ° C. for 192 hours, and the same evaluation was performed.

【0042】実施例10 成形体の寸法が15φ×6mmで、内側の寸法が700
φ×380mmの焼結容器Aの使用、さらに焼結温度を
変えた点を除き、上記実施例9と同様にしてAlN焼結
体を製造し、同様の評価を行なった。
Example 10 The size of the molded product was 15 φ × 6 mm, and the inner size was 700 mm.
An AlN sintered body was manufactured and evaluated in the same manner as in Example 9 except that the sintering vessel A having a diameter of 380 mm was used and the sintering temperature was changed.

【0043】実施例11 BN板を底板としてひいたカーボン製容器(焼成容器
B)を用いたことを除いて、上記実施例1と同様にし
て、AlN焼結体を製造し、同様の評価を行なった。
Example 11 An AlN sintered body was manufactured and evaluated in the same manner as in Example 1 except that a carbon container (fired container B) in which a BN plate was used as a bottom plate was used. Done.

【0044】実施例13〜89 その他種々の条件を変えたものについて特性を調べた結
果を表2〜表8に示す。ただし、内側の全体がカーボン
製の容器(焼成容器C)を実施例45.83では用い
た。
Tables 2 to 8 show the results of examining the characteristics of Examples 13 to 89 and those obtained by changing various other conditions. However, in Example 45.83, a container made entirely of carbon (sintering container C) was used.

【0045】[0045]

【表2】 [Table 2]

【0046】[0046]

【表3】 [Table 3]

【0047】[0047]

【表4】 [Table 4]

【0048】[0048]

【表5】 [Table 5]

【0049】[0049]

【表6】 [Table 6]

【0050】[0050]

【表7】 [Table 7]

【0051】[0051]

【表8】 [Table 8]

【0052】実施例90 六方晶系のc軸方向の格子定数が498.07pmで、
不純物としての酸素を1.7重量%含有し、平均粒経が
1.9μmのAlN粉末に、添加物として平均粒経0.
9μmのY23 を重量換算で量%添加し、ボ
ールミルを用いて混合を行ない原料を調整した。つい
で、この原料に有機系バインダーを4重量%添加して造
粒したのち1000kg/cm2 の圧力でプレス成形
して38×10mmの圧粉体とした。この圧粉体を窒素
ガス雰囲気中で700℃まで加熱してバインダーを除去
した。さらに、BN粉末を塗布したAlNを底板として
ひいたカーボン製容器(焼成用容器A)に脱脂体を収容
した。このとき容器Aの形状および大きさは、12cm
φ×6.4cmで内容積が720cm3 程度である。
すなわちこの容器Aの内容積とAlN成形体の体積の比
が5×101 程度となっている。この容器を用い窒素
ガス雰囲気中(700Torr)1870℃、100
間の条件で常圧焼成した。得られたAlN多結晶体の密
度および粒経を測定した。また該多結晶体から、直径1
0mm、厚さ3.0mmの円板を研削し、これを試験片
としてレーザーフラッシュ法により熱伝導率を測定した
(真空理工製TC−3000使用)。測定温度は25℃
である。
Example 90 The lattice constant of the hexagonal system in the c-axis direction was 498.07 pm,
AlN powder containing 1.7% by weight of oxygen as an impurity and having an average particle diameter of 1.9 μm was added to an AlN powder having an average particle diameter of 0.1 μm as an additive.
The 9μm of Y 2 O 3 was added 7 by weight% by weight is to prepare a raw material subjected to mixing using a ball mill. Next, 4 wt% of an organic binder was added to the raw material, and the mixture was granulated and pressed at a pressure of 1000 kg / cm 2 to obtain a compact of 38 × 10 mm. The green compact was heated to 700 ° C. in a nitrogen gas atmosphere to remove the binder. Further, the degreased body was housed in a carbon container (baking container A) ground with AlN coated with BN powder as a bottom plate. At this time, the shape and size of the container A are 12 cm
It is φ × 6.4 cm and the inner volume is about 720 cm 3 .
That is, the ratio of the volume of the container A to the volume of the AlN compact is about 5 × 10 1 . This container was fired at 1870 ° C. for 100 hours in a nitrogen gas atmosphere (700 Torr) under normal pressure. The density and grain size of the obtained AlN polycrystal were measured. Also, from the polycrystal, a diameter of 1
A disk having a thickness of 0 mm and a thickness of 3.0 mm was ground, and the thermal conductivity was measured by a laser flash method using this as a test piece (using TC-3000 manufactured by Vacuum Riko). Measurement temperature is 25 ° C
It is.

【0053】また窒化アルミニウム原料粉末および窒化
アルミニウム多結晶体の格子定数は、粉末もしくは粉砕
した多結晶体粉末に10〜20重量%のSi粉末(NB
SSRM640標準試料)を混合し理学電機製ロータフ
レックスRu−200,ゴニオメータCN2173D5
を用い線源Cu Ka1 50kV 150mAにより測
定した100°<2θ<126°の範囲にある六方晶窒
化アルミニウムの6本の回析ピークを用い100°<2
θ<126°の範囲のSiの2つの回析ピークの値によ
り確度補正を行なった後最小自乗法により求めた。測定
時の室温は25℃±1℃であった。求めた格子定数の値
には±0.05pmの誤差が含まれていることが判って
いる。また多結晶体中の酸素量は速中性子放射化分析に
より行なった(東芝製NAT−200−IC使用)。さ
らにこの多結晶体の元素分析はICP発光分光法(セイ
コー電子工業製SPS−1200A使用)および湿式化
学分析法により行なった。多結晶体の気孔率,粒径は研
磨した多結晶体のSEM写真から求めた(日本電子製J
SM−T20使用)。また光の透過率の測定は該多結晶
体から切り出て光学研磨した厚さ0.1〜0.5mmの
多結晶体(外径20mmφ〜12mmφ )を用いてC
ary17自記分光光度計に積分球を設置して測定した
(図8)。
The aluminum nitride raw material powder and the aluminum nitride polycrystal have a lattice constant of 10 to 20% by weight of Si powder (NB
SSRM640 standard sample) mixed with Rigaku Corporation rotorflex Ru-200, goniometer CN2173D5
Using 6 diffraction peaks of hexagonal aluminum nitride in the range of 100 ° <2θ <126 ° measured with a radiation source Cu K a1 50 kV 150 mA using
The accuracy was corrected by the values of two diffraction peaks of Si in the range of θ <126 °, and then the values were obtained by the least square method. The room temperature at the time of measurement was 25 ° C. ± 1 ° C. It is known that the obtained value of the lattice constant contains an error of ± 0.05 pm. The amount of oxygen in the polycrystal was measured by fast neutron activation analysis (using NAT-200-IC manufactured by Toshiba). Further, elemental analysis of this polycrystal was performed by ICP emission spectroscopy (using SPS-1200A manufactured by Seiko Denshi Kogyo) and wet chemical analysis. The porosity and particle size of the polycrystal were obtained from the SEM photograph of the polished polycrystal (JEOL J
SM-T20 used). The light transmittance was measured using a polycrystalline body (outer diameter: 20 mmφ to 12 mmφ) having a thickness of 0.1 to 0.5 mm cut out from the polycrystalline body and optically polished.
The measurement was performed by installing an integrating sphere on an ary17 self-recording spectrophotometer (FIG. 8).

【0054】多結晶体の密度は見掛け密度として、空気
中での重さと純水中での重さから浮力を求めて測定し
た。該多結晶体の製造条件を表9に、該多結晶体の特性
を表10に示す。
The density of the polycrystal was measured as apparent density by determining buoyancy from the weight in air and the weight in pure water. Table 9 shows the production conditions of the polycrystal, and Table 10 shows the characteristics of the polycrystal.

【0055】[0055]

【表9】 [Table 9]

【0056】[0056]

【表10】 [Table 10]

【0057】その他条件を種々変えたものも併せて表9
および表10に示す。参考例1〜4 実施例90と同様な方法により得たAlN脱脂体を焼結
用容器A、およびAlN製容器Dにセットし、1800
〜1950℃、2〜200hr、N2 中で常圧焼結
し、焼結体を得た。これらの多結晶体の製造条件を表9
に、特性を表10に示す。さらに、参考例1の多結晶体
の透過率の測定結果を図9に示した。格子定数の値も六
方晶系のc軸について497.85pm以下と小さくそ
の結果として透光性も悪く熱伝導率も195W/m・K
以下の低い値である。
Table 9 also shows various other conditions.
And Table 10. Reference Examples 1 to 4 AlN degreased bodies obtained in the same manner as in Example 90 were set in a sintering container A and an AlN container D, and
It was sintered under normal pressure in N 2 at 21950 ° C. for 2 to 200 hours to obtain a sintered body. Table 9 shows the production conditions of these polycrystals.
Table 10 shows the characteristics. FIG. 9 shows the measurement results of the transmittance of the polycrystal of Reference Example 1. The value of the lattice constant is as small as 497.85 pm or less with respect to the c-axis of the hexagonal system. As a result, the light transmittance is poor and the thermal conductivity is 195 W / m · K.
The following low values.

【0058】このように高い透光性を有するAlN焼結
体を得るためには窒化アルミニウム原料粉の格子定数が
六方晶系のc軸について498.00pm以上498.
20pm以下でありかつカーボン還元雰囲気中でY2
3 助剤を添加して長時間(24時間を越える時間)
焼結することが必要であることがわかる。
In order to obtain an AlN sintered body having such high translucency, the lattice constant of the aluminum nitride raw material powder is at least 498.00 pm with respect to the hexagonal c-axis.
20 pm or less and Y 2 in a carbon reducing atmosphere.
Long time after adding O 3 auxiliary (time exceeding 24 hours)
It turns out that sintering is necessary.

【0059】比較例1〜3 実施例1と同様な方法により得たAlN脱脂体を焼結用
容器A,BおよびCに種々にセットし、1900℃、2
hr、N2 気流中で常圧焼結し、焼結体を得た。これ
らの焼結体の特性を表11に示す。
Comparative Examples 1 to 3 The degreased AlN bodies obtained in the same manner as in Example 1 were variously set in sintering vessels A, B and C.
The resultant was sintered at normal pressure in an N 2 stream of hr to obtain a sintered body. Table 11 shows the characteristics of these sintered bodies.

【0060】[0060]

【表11】 [Table 11]

【0061】さらに、比較例1の焼結体を用い、X線回
析を行なった結果を図3に、焼結体の破面の結晶構造の
概略を図4に示した。これらの結果および同様の評価の
結果より、副相としてイットリウムを含む化合物が観察
され、AlN単相でないことがわかり、その結果として
熱伝導率も170W/m・K以下の低い値である。
Further, the result of X-ray diffraction using the sintered body of Comparative Example 1 is shown in FIG. 3, and the crystal structure of the fracture surface of the sintered body is schematically shown in FIG. From these results and the result of the same evaluation, a compound containing yttrium was observed as a subphase, and it was found that the compound was not an AlN single phase. As a result, the thermal conductivity was a low value of 170 W / m · K or less.

【0062】このように焼結時間が24時間以下と短い
場合、カーボン製容器を用いることによる粒界相の除去
が十分でないことがわかり、高熱伝導率を有するAlN
焼結体を得るためには長時間(24時間を越える時間
の焼結が必要であることがわかる。
In the case where the sintering time is as short as 24 hours or less , it is found that the removal of the grain boundary phase by using a carbon container is not sufficient, and AlN having a high thermal conductivity is obtained.
Long time to obtain a sintered body (time exceeding 24 hours )
It is understood that sintering is necessary.

【0063】比較例4〜6 実施例1と同様な方法により得たAlN脱脂体を、比較
例4では内側の全体がAlN製の容器(焼成容器D)、
比較例5では内側の全体がアルミナ製の容器(焼成容器
E)、比較例6では内側の全体がタングステン製の容器
(焼成容器F)を用い、1900℃、96hr、N2
気流中で常圧焼結し、焼結体を得た。これらの焼結体の
特性を表1に示す。更に、比較例4の焼結体を用い、X
線回析を行なった結果を図5に、焼結体の破面の結晶構
造の概略図6にそれぞれ示した。これらの結果および、
評価の結果より、副相としてイットリウムを含む化合物
が観察され、AlN単相でないことがわかった。その結
果熱伝導率も168W/m・K以下の比較的に低い値で
ある。この様に少なくとも内部の一部が、カーボンより
なる焼成容器を用いない場合も高熱伝導率を有するAl
N焼結体が得られず、カーボン雰囲気の有効さがわか
る。
Comparative Examples 4 to 6 An AlN degreased body obtained by the same method as in Example 1 was used. In Comparative Example 4, the inside of the container was entirely made of AlN (calcination container D).
In Comparative Example 5, the whole inner container was made of alumina (sintering container E), and in Comparative Example 6, the inner whole container was made of tungsten (sintering container F) at 1900 ° C., 96 hours, N 2.
It was sintered under normal pressure in an air stream to obtain a sintered body. Table 1 shows the characteristics of these sintered bodies. Further, using the sintered body of Comparative Example 4, X
FIG. 5 shows the result of the line diffraction, and FIG. 6 is a schematic diagram showing the crystal structure of the fracture surface of the sintered body. These results, and
From the evaluation results, a compound containing yttrium was observed as a subphase, and it was found that the compound was not an AlN single phase. As a result, the thermal conductivity is also a relatively low value of 168 W / m · K or less. As described above, at least a part of the inside has high thermal conductivity even when a firing container made of carbon is not used.
No N sintered body was obtained, indicating the effectiveness of the carbon atmosphere.

【0064】比較例7 実施例1で用いたAlN粉末を、500kg/cm2
の圧力でプレス成形して、30×30×10mmの圧粉
体とし、この圧粉体をカーボン型中に入れ窒素ガス雰囲
気中、温度1900℃、400kg/cm2 の圧力下
で1時間ホットプレス焼結し焼結体を得た。この焼結体
の特性を表1に示した。さらにX線回析を行なった結果
を図7に示した。この結果より副相としてAl−O−N
系化合物が観察され、AlN単相でないことがわかっ
た。結果として熱伝導率も80W/m・Kという低い値
であった。
Comparative Example 7 The AlN powder used in Example 1 was 500 kg / cm 2
Into a green compact of 30 × 30 × 10 mm, put this green compact in a carbon mold, hot press for 1 hour at a temperature of 1900 ° C. under a pressure of 400 kg / cm 2 in a nitrogen gas atmosphere. It was sintered to obtain a sintered body. Table 1 shows the characteristics of the sintered body. FIG. 7 shows the result of further X-ray diffraction. From this result, Al-O-N
A system compound was observed, indicating that it was not an AlN single phase. As a result, the thermal conductivity was as low as 80 W / m · K.

【0065】この様に希土類元素化合物無添加では、A
lN原料粉末表面の不純物酸素とAlN反応し、熱伝導
率をさまたげるAl−O−N化合物が生成してしまうこ
とから、希土類元素化合物の添加の有効さがわかる。
As described above, when no rare earth element compound is added, A
Since AlN reacts with impurity oxygen on the surface of the 1N raw material powder to produce an Al-ON compound that hinders the thermal conductivity, the effectiveness of the addition of the rare-earth element compound is understood.

【0066】[0066]

【発明の効果】以上述べた如く、本発明の窒化アルミニ
ウム焼結体は実質的にAlN単相からなるもので、高純
度かつ、高熱伝導率を示すなど、優れた性質を有するも
のであり、その工業的価値は極めて大きいものである。
As described above, the aluminum nitride sintered body of the present invention is substantially composed of an AlN single phase and has excellent properties such as high purity and high thermal conductivity. Its industrial value is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例を説明するための図FIG. 1 is a diagram for explaining an embodiment of the present invention.

【図2】 本発明で得られるAlN焼結体の結晶構造の
概略を示す図。
FIG. 2 is a view schematically showing a crystal structure of an AlN sintered body obtained by the present invention.

【図3】 比較例1〜3のX線回析を行った結果を示す
図。
FIG. 3 is a diagram showing results of X-ray diffraction of Comparative Examples 1 to 3.

【図4】 比較例のAlN焼結体の結晶構造の概略を示
す図。
FIG. 4 is a view schematically showing a crystal structure of an AlN sintered body of a comparative example.

【図5】 比較例4〜6のX線回析を行った結果を示す
図。
FIG. 5 is a diagram showing the results of X-ray diffraction of Comparative Examples 4 to 6.

【図6】 比較例のAlN焼結体の結晶構造の概略を示
す図。
FIG. 6 is a view schematically showing a crystal structure of an AlN sintered body of a comparative example.

【図7】 比較例7のX線回析を行った結果を示す図。FIG. 7 is a view showing a result of performing X-ray diffraction of Comparative Example 7.

【図8】 本発明における光の全透過率の波長依存性を
示す図。
FIG. 8 is a diagram showing the wavelength dependence of the total light transmittance in the present invention.

【図9】 参考例における光の全透過率の波長依存性を
示す図。
FIG. 9 is a diagram showing the wavelength dependence of the total transmittance of light in a reference example.

【符号の説明】[Explanation of symbols]

1…AlNの回析ピーク 2…Y−Al−O化合物の回析ピーク 3…Al−O−N化合物ピーク 4…AlN粒 5…Y−Al−O化合物(粒界相) 1 ... Diffraction peak of AlN 2 ... Diffraction peak of Y-Al-O compound 3 ... Peak of Al-ON compound 4 ... AlN grains 5 ... Y-Al-O compound (grain boundary phase)

フロントページの続き (72)発明者 佐藤 佳子 神奈川県川崎市幸区小向東芝町1 株式会 社東芝総合研究所内 (72)発明者 柘植 章彦 神奈川県川崎市幸区小向東芝町1 株式会 社東芝総合研究所内 (72)発明者 遠藤 博 神奈川県川崎市幸区小向東芝町1 株式会 社東芝総合研究所内 (72)発明者 林 勝 神奈川県川崎市幸区小向東芝町1 株式会 社東芝総合研究所内 (72)発明者 篠崎 和雄 神奈川県川崎市幸区小向東芝町1 株式会 社東芝総合研究所内Continued on the front page (72) Inventor Yoshiko Sato 1 Komukai Toshiba-cho, Saiwai-ku, Kawasaki City, Kanagawa Prefecture Inside Toshiba Research Institute (72) Inventor Akihiko Tsuge 1 Komukai Toshiba-cho, Kochi-ku, Kawasaki City, Kanagawa Prefecture Co., Ltd. Inside Toshiba Research Institute (72) Inventor Hiroshi Endo 1 Komukai Toshiba-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Prefecture Inside Toshiba Research Institute (72) Inventor Masaru Hayashi 1 Komukai Toshiba-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Stock Company Within Toshiba Research Institute (72) Inventor Kazuo Shinozaki 1 Toshiba Research Institute, Komukai Toshiba-cho, Saiwai-ku, Kawasaki-shi, Kanagawa

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 a)不純物酸素量が7重量%以下であ
り、平均粒径が0.05〜5μmである窒化アルミニウ
ム粉末と、希土類元素の重量換算で0.01〜15重量
%の希土類元素の酸化物、窒化物、酸窒化物からなる化
合物(弗化物を除く)とを混合したのち成形した成形
体、または希土類元素含有量が0.01〜15重量%
で、酸素含有量が0.01〜20重量%であり、AlN
を主相とし、(希土類元素)−Al−O化合物および/
または(希土類元素)−O化合物相を含む焼結体を、 b)カーボンガスを生成する焼成容器または焼成時にカ
ーボンガスを生成する物質を焼成容器内に含むことで得
られる還元雰囲気中で、 c)1550〜2050℃で、24時間を越える時間、
減圧下を含む雰囲気圧下で焼成することを特徴とした高
熱伝導性窒化アルミニウム焼結体の製造方法。
1. a) an aluminum nitride powder having an impurity oxygen content of 7% by weight or less and an average particle size of 0.05 to 5 μm, and a rare earth element of 0.01 to 15% by weight in terms of weight of the rare earth element Molded product obtained by mixing with a compound (excluding fluoride) consisting of an oxide, a nitride, and an oxynitride, or a rare earth element content of 0.01 to 15% by weight
With an oxygen content of 0.01 to 20% by weight and AlN
And a (rare earth element) -Al-O compound and / or
Or b) a sintered body containing a (rare earth element) -O compound phase, b) in a firing vessel for generating carbon gas or in a reducing atmosphere obtained by including a substance that generates carbon gas during firing in a firing vessel; ) At 1550-2050 ° C for more than 24 hours;
A method for producing a highly thermally conductive aluminum nitride sintered body, characterized by firing under an atmosphere pressure including a reduced pressure.
【請求項2】 焼成雰囲気が窒素および、水素,一酸化
炭素,カーボンガス,カーボン固相から選ばれた少なく
とも一種を含有することを特徴とする請求項1記載の高
熱伝導性窒化アルミニウム焼結体の製造方法。
2. The high thermal conductive aluminum nitride sintered body according to claim 1, wherein the firing atmosphere contains nitrogen and at least one selected from hydrogen, carbon monoxide, carbon gas and carbon solid phase. Manufacturing method.
JP10198335A 1987-05-08 1998-07-14 Production of highly heat-conductive aluminum nitride sintered product Pending JPH1192229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10198335A JPH1192229A (en) 1987-05-08 1998-07-14 Production of highly heat-conductive aluminum nitride sintered product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP62110807A JP2547767B2 (en) 1987-05-08 1987-05-08 High thermal conductivity aluminum nitride sintered body
JP10198335A JPH1192229A (en) 1987-05-08 1998-07-14 Production of highly heat-conductive aluminum nitride sintered product

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP6234539A Division JP2829247B2 (en) 1994-09-05 1994-09-05 Method for producing high thermal conductive aluminum nitride sintered body

Publications (1)

Publication Number Publication Date
JPH1192229A true JPH1192229A (en) 1999-04-06

Family

ID=14545156

Family Applications (2)

Application Number Title Priority Date Filing Date
JP62110807A Expired - Lifetime JP2547767B2 (en) 1987-01-13 1987-05-08 High thermal conductivity aluminum nitride sintered body
JP10198335A Pending JPH1192229A (en) 1987-05-08 1998-07-14 Production of highly heat-conductive aluminum nitride sintered product

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP62110807A Expired - Lifetime JP2547767B2 (en) 1987-01-13 1987-05-08 High thermal conductivity aluminum nitride sintered body

Country Status (1)

Country Link
JP (2) JP2547767B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005119953A (en) * 2003-09-25 2005-05-12 Tokuyama Corp Aluminum nitride sintered compact and method of producing the same
JP2005175039A (en) * 2003-12-09 2005-06-30 Kenichiro Miyahara Light emitting element and substrate for mounting the same
US6953761B2 (en) 2002-12-27 2005-10-11 Hitachi, Ltd. Aluminum nitride sintered body and substrate for electronic devices
WO2005123627A1 (en) * 2004-06-21 2005-12-29 Tokuyama Corporation Nitride sintered compact and method for production thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2620260B2 (en) * 1987-10-27 1997-06-11 住友電気工業株式会社 Manufacturing method of aluminum nitride sintered body
JPH0684265B2 (en) * 1988-06-03 1994-10-26 日立金属株式会社 Aluminum nitride sintered body
JPH0238366A (en) * 1988-07-28 1990-02-07 Kyocera Corp Sintered material of aluminum nitride and production thereof
JPH02271968A (en) * 1989-04-12 1990-11-06 Toshiba Ceramics Co Ltd Aln-based sintered body
JP4447750B2 (en) * 1999-09-30 2010-04-07 日本碍子株式会社 Aluminum nitride sintered body and semiconductor manufacturing member
JPWO2005008683A1 (en) * 2003-07-16 2006-09-07 財団法人大阪産業振興機構 Conductive ceramics, manufacturing method thereof, and member for semiconductor manufacturing apparatus
JP5398430B2 (en) * 2009-03-31 2014-01-29 株式会社トクヤマ Aluminum nitride sintered body and method for producing the same
KR102626997B1 (en) * 2021-09-06 2024-01-23 (주) 네올 Composition for manufacturing AlN ceramics including Sc2O3 as sintering aid and the AlN ceramics and the manufacturing method of the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132776A (en) * 1985-12-02 1987-06-16 株式会社トクヤマ Aluminum nitride composition
JPS62252374A (en) * 1986-04-24 1987-11-04 株式会社村田製作所 Manufacture of aluminum nitride sintered body

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6953761B2 (en) 2002-12-27 2005-10-11 Hitachi, Ltd. Aluminum nitride sintered body and substrate for electronic devices
JP2005119953A (en) * 2003-09-25 2005-05-12 Tokuyama Corp Aluminum nitride sintered compact and method of producing the same
JP2005175039A (en) * 2003-12-09 2005-06-30 Kenichiro Miyahara Light emitting element and substrate for mounting the same
WO2005123627A1 (en) * 2004-06-21 2005-12-29 Tokuyama Corporation Nitride sintered compact and method for production thereof
US7876053B2 (en) 2004-06-21 2011-01-25 Tokuyama Corporation Nitride sintered body and method for manufacturing thereof
US7973481B2 (en) 2004-06-21 2011-07-05 Tokuyama Corporation Nitride sintered body and method for manufacturing thereof
JP4937738B2 (en) * 2004-06-21 2012-05-23 株式会社トクヤマ Nitride sintered body and manufacturing method thereof

Also Published As

Publication number Publication date
JP2547767B2 (en) 1996-10-23
JPS63277567A (en) 1988-11-15

Similar Documents

Publication Publication Date Title
JP4346151B2 (en) High thermal conductivity sintered silicon nitride, circuit board and integrated circuit using the same
EP0180724B1 (en) Aluminum nitride sintered body and process for producing the same
US7422992B2 (en) Aluminum nitride sintered body, semiconductor manufacturing member, and method of manufacturing aluminum nitride sintered body
US4847221A (en) AlN sintered body having high thermal conductivity and a method of fabricating the same
JPH1192229A (en) Production of highly heat-conductive aluminum nitride sintered product
JP2856734B2 (en) High thermal conductive aluminum nitride sintered body
EP3560904B1 (en) Oriented aln sintered body, and production method therefor
JP2829247B2 (en) Method for producing high thermal conductive aluminum nitride sintered body
US11014855B2 (en) Transparent AlN sintered body and method for producing the same
JP6346718B1 (en) Aluminum nitride particles
JP2578113B2 (en) Method for producing high thermal conductive aluminum nitride sintered body
JPH0825799B2 (en) Method for manufacturing high thermal conductivity aluminum nitride sintered body
JP2511011B2 (en) High thermal conductivity aluminum nitride sintered body
JPH07121829B2 (en) High thermal conductivity aluminum nitride sintered body
JP2578114B2 (en) Method for producing high thermal conductive aluminum nitride sintered body
JPH013075A (en) Method for manufacturing aluminum nitride sintered body
JPS62108775A (en) Manufacture of aluminum nitride sintered body
JPH09175867A (en) Aluminum nitride sintered product
JP5289184B2 (en) Method for producing high thermal conductivity silicon nitride sintered body
JPS63277565A (en) Heat-resistant composite material having high thermal conductivity and production thereof
JPS63277571A (en) Production of sintered aluminum nitride having high thermal conductivity
JPS63277568A (en) Production of sintered aluminum nitride having high thermal conductivity
JP2647346B2 (en) Manufacturing method of aluminum nitride sintered body heat sink
JP2003146760A (en) Aluminum nitride sintered compact and method of producing the same
JP2018158885A (en) Aluminum nitride particles