JPH1187930A - Manufacture of multilayered printed circuit board - Google Patents

Manufacture of multilayered printed circuit board

Info

Publication number
JPH1187930A
JPH1187930A JP26287897A JP26287897A JPH1187930A JP H1187930 A JPH1187930 A JP H1187930A JP 26287897 A JP26287897 A JP 26287897A JP 26287897 A JP26287897 A JP 26287897A JP H1187930 A JPH1187930 A JP H1187930A
Authority
JP
Japan
Prior art keywords
hole
conductive
holes
layer
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26287897A
Other languages
Japanese (ja)
Inventor
Hiroyuki Isako
浩幸 伊迫
Shuichi Matsui
秀一 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lincstech Circuit Co Ltd
Original Assignee
Hitachi AIC Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi AIC Inc filed Critical Hitachi AIC Inc
Priority to JP26287897A priority Critical patent/JPH1187930A/en
Publication of JPH1187930A publication Critical patent/JPH1187930A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve electrical connection reliability by filling heat resistant conductive paste or the like in a penetrating through-hole and a hole of a via through-hole, smoothing the paste, then forming a copper-plating layer, and forming a land on a conductive via through-hole and a land on the conductive penetrating through-hole. SOLUTION: Copper-plating layers 34, 35 are executed by an electrolytic copper plating method form via through-holes 42A, 42B and a penetrating through-hole 36, and solderless type nonconductor filler-contained insulating paste 37 or heat resistant conductive paste 38 is filled in the hole. Thereafter, the pastes 37, 38 projected from peripheries of the holes 42A, 42B and the hole 36 are emitted by a laser beam, smoothed, and then copper-plating layers 40, 41 are formed by an electrolytic copper-plating method. Then, the conductive via through-holes 42A, 42B, a conductive penetrating through-hole 36A, a land on the conductive via through hole, and a land on the conductive penetrating through-hole are formed by a photoetching method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、導電ビアホール穴
上ランド導電貫通スルーホール穴上ランド内層回路,最
外層回路を有する多層印刷配線板に関し、特に表面実装
部品の密度向上と高速化対応に係る多層印刷配線板の製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer printed wiring board having an inner layer circuit and an outermost layer circuit on a land on a conductive via hole and a land on a conductive through-hole hole, and more particularly to an improvement in the density of surface-mounted components and an increase in speed. The present invention relates to a method for manufacturing a multilayer printed wiring board.

【0002】[0002]

【従来の技術】最近、電子機器,パッケージ技術の高度
化により、印刷配線板に対して、高密度実装対応や、高
速化対応が急速に要求され、多層化対応が行われている
がこのうち特に最外配線回路とそれに隣接した内層回路
のみを選択的に接続する導電専用穴(以下、ビアスルー
ホールと記す。)を有する多層印刷配線板は、次に示す
製造方法で作成されている。以下、従来の技術の製法に
ついて、図7(a)〜(c),図8(d)〜(e),図
9(f),図10に基づき、説明する。
2. Description of the Related Art Recently, with the advancement of electronic equipment and package technology, printed wiring boards are rapidly required to be compatible with high-density mounting and high-speed, and multilayer wiring is being performed. In particular, a multilayer printed wiring board having a dedicated conductive hole (hereinafter, referred to as a via through hole) for selectively connecting only the outermost wiring circuit and an inner layer circuit adjacent thereto is manufactured by the following manufacturing method. Hereinafter, a conventional manufacturing method will be described with reference to FIGS. 7A to 7C, FIGS. 8D to 8E, FIG. 9F, and FIG.

【0003】その第1の例は、まず、図7(a)に示す
ように、内層銅箔61,62と絶縁基板63から形成さ
れる内層銅張り絶縁基板64を得る。
In the first example, first, as shown in FIG. 7A, an inner copper-clad insulating substrate 64 formed of inner copper foils 61 and 62 and an insulating substrate 63 is obtained.

【0004】次に、図7(b)に示すように、上記内層
銅張り絶縁基板64に層間接続用パッド65,66およ
び内層回路67,68を公知のフォトエッチング法によ
り形成して内層配線板64Aを得る。
[0007] Next, as shown in FIG. 7 (b), interlayer connection pads 65 and 66 and inner layer circuits 67 and 68 are formed on the inner layer copper-clad insulating substrate 64 by a known photoetching method to form an inner layer wiring board. 64A is obtained.

【0005】次に、図7(c)に示すように、上記内層
配線板64Aと接着樹脂を含浸、乾燥したガラス布(以
下、プリプレグ71,72と記す)及び最外層用銅箔6
9,70を組み合わせて加熱,加圧成型する。
Next, as shown in FIG. 7 (c), the inner wiring board 64A and an adhesive resin are impregnated and dried with a glass cloth (hereinafter, referred to as prepregs 71 and 72) and a copper foil 6 for the outermost layer.
9 and 70 are combined and heated and pressed.

【0006】次に、図8(d)に示すように、ドリルを
用い、表面から内層の接続用パッド65に到達するだけ
の深さのビア半貫通穴73および貫通穴75を穿孔後
に、表面より同様に半貫通穴74を穿孔する。
[0008] Next, as shown in FIG. 8 (d), a semi-through hole 73 and a through hole 75 having a depth sufficient to reach the inner connection pad 65 from the surface using a drill are formed. More similarly, the semi-through hole 74 is formed.

【0007】次に、図8(e)に示すように、化学めっ
きと電解めっきを併用して行い銅めっき層76,77を
形成する。
[0008] Next, as shown in FIG. 8 (e), copper plating layers 76 and 77 are formed by using both chemical plating and electrolytic plating.

【0008】次に、図9(f)に示すように、表裏面に
フォトエッチング法により回路を形成し、ビアスルーホ
ール79,80と、貫通スルーホール78と、最外配線
回路87,88と、ビアスルーホール用引き出しランド
85,86と、貫通スルーホール用引き出しランド8
3,84を有する表面実装部品の有効面積89が大きい
従来の技術に係る多層印刷配線板の製造方法90であ
る。
Next, as shown in FIG. 9 (f), a circuit is formed on the front and back surfaces by a photoetching method, and via through holes 79 and 80, through through holes 78, outermost wiring circuits 87 and 88 are formed. , Drawer lands 85 and 86 for via-through holes and drawer lands 8 for through-holes
This is a method 90 for manufacturing a multilayer printed wiring board according to the prior art, in which the effective area 89 of the surface mount component having 3, 84 is large.

【0009】また、図10に示すように、上記の従来の
技術の製造方法で作成された多層印刷配線板において、
表面実装部品の有効面積89を大きく占有し、前記貫通
スルーホール用引き出しランド83,84と前記ビアス
ルーホール用引き出しランド85,86が形成され、こ
れに表面実装部品89Aをハンダ付した模式図であり、
これは表面実装部品89Aを搭載できる有効面積89が
大きく作成されているため、実装密度を上げることが難
しいということと、ビアスルーホール79,80と接続
用パッド65,66の電気的な接続にも問題を有してい
るものである。
Further, as shown in FIG. 10, in a multilayer printed wiring board prepared by the above-mentioned conventional manufacturing method,
A schematic view in which the effective area 89 of the surface mount component is largely occupied and the lead-out lands 83 and 84 for through-holes and the lead-out lands 85 and 86 for via-holes are formed, and the surface mount component 89A is soldered thereto. Yes,
This is because it is difficult to increase the mounting density because the effective area 89 on which the surface mount component 89A can be mounted is made large, and the electrical connection between the via through holes 79 and 80 and the connection pads 65 and 66 is increased. Also have problems.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、前記従
来の技術に係る多層印刷配線板の製造方法90において
は、表面実装部品89A固定のためビアスルーホール用
引き出しランド85,86と貫通スルーホール用引き出
しランド83,84を形成するため、従来の技術図10
に示すように、表面実装部品の有効面積89を大きく占
有している。このため、多層印刷配線板の小型化,高密
度実装化,設計の合理化や高速回路対応においても大き
な問題となっていた。また、ビア半貫通穴73,74加
工にドリル径0.2mm以上しか公知穿孔できないので小
型のビアスルーホール79,80が作成できないという
問題もあった。
However, in the method 90 for manufacturing a multilayer printed wiring board according to the prior art, the lead-out lands 85 and 86 for via-through holes and the lead-out for through-holes for fixing the surface mount component 89A. In order to form the lands 83 and 84, the conventional technology shown in FIG.
As shown in the figure, the effective area 89 of the surface mount component is occupied greatly. For this reason, there have been major problems in miniaturization, high-density mounting, rationalization of design, and compatibility with high-speed circuits of multilayer printed wiring boards. In addition, there is a problem that small via-through holes 79 and 80 cannot be formed because only known drill holes having a diameter of 0.2 mm or more can be formed in processing the via half-through holes 73 and 74.

【0011】従って、本発明は、上述の事情を鑑みてな
されたものであり、その目的とするところは、表面実装
部品の有効面積48,49をできるだけ小さく占有で
き、またベーパーリフロー温度260℃3回通し対応も
でき、かつ導電貫通スルーホール36Aと導電貫通スル
ーホール穴上ランド44,45及び導電ビアスルーホー
ル穴上ランド42,43と層間接続用パッド5,6の電
気的な接続信頼性が得られ、高密度実装化および配線長
を短かくし、高速回路対応に適した優れた多層印刷配線
板の製造方法53を提供することにある。
Accordingly, the present invention has been made in view of the above circumstances, and an object thereof is to occupy the effective area 48, 49 of a surface mount component as small as possible, and to achieve a vapor reflow temperature of 260 ° C. In addition, the connection reliability can be improved between the conductive through-hole 36A and the lands 44, 45 on the conductive through-hole and the lands 42, 43 on the conductive via-hole, and the pads 5, 6 for interlayer connection. An object of the present invention is to provide a method 53 for manufacturing an excellent multilayer printed wiring board suitable for high-speed circuits by reducing the wiring length and the high-density mounting.

【0012】[0012]

【課題を解決するための手段】本発明は、最外層回路4
6,47と導電ビアスルーホール穴上ランド42,4
3,導電貫通スルーホール穴上ランド44,45および
内層回路7,8をもつ多層印刷配線板において、前記内
層回路7,8の所定の位置に前記導電ビアスルーホール
穴上ランド42,43と接続する層間接続用パッド5,
6を設けた内層配線板4Aを公知のフォト回路形成法で
形成する工程と、この内層配線板4Aに形成された内層
回路7,8表面に酸化還元処理を施した後に、絶縁樹脂
9,10層と層間接着剤11,12層を形成する工程
と、前記最外面層接着剤付き片面銅張絶縁基板19,2
0と前記内層配線板4Aを組み合わせて、加熱,加圧成
型し、多層化構成21,22する工程と、前記多層化構
成21,22された最外層用銅箔13,14層に前記層
間接続用パッド5,6の所定の位置に外層銅箔開口部2
4,25を設け得、これをメタルマスク24A,25A
として、公知の炭酸ガスレーザービームを用い、ビア半
貫通穴26,27を穿孔、後に、前記層間接続用パッド
5,6表面に付着している接着剤11,12,17,1
8層をエキシマレーザ光を照射し除去する工程とデスミ
アを行う工程と、次に、水平搬送方式ダイレクト電気銅
めっき法を用い、第1銅めっき層34,35を形成し、
ビアスルーホール42A,42Bと貫通スルーホール3
6を形成し、しかる後に、前記貫通スルーホール36お
よびビアスルーホール42A,42B穴内に無溶剤タイ
プの耐熱導電性ペースト38または不導体フィラー入り
絶縁ペースト37を充填,形成する工程と、前記ビアス
ルーホール42A,42Bと貫通スルーホール36との
穴上周辺に突出した耐熱導電性ペースト38または不導
体フィラー入り絶縁ペースト37をエキシマレーザ光を
照射して平滑化する工程と、水平搬送方式ダイレクト電
気銅めっき法を用い、第2銅めっき層40,41を形成
する工程と、最外層に、前記最外層回路46,47と導
電ビアスルーホール43A,43Bと導電貫通スルーホ
ール36Aと導電ビアスルーホール穴上ランド42,4
3と導電貫通スルーホール穴上ランド44,45を形成
する工程を有する製造方法53である。
According to the present invention, an outermost layer circuit 4 is provided.
6, 47 and land 42, 4 on the conductive via through hole hole
3. In the multilayer printed wiring board having the lands 44 and 45 on the conductive through-holes and the inner circuits 7 and 8, the lands 42 and 43 on the conductive via-holes are connected at predetermined positions of the inner circuits 7 and 8. Interlayer connection pad 5,
Forming the inner layer wiring board 4A provided with the inner layer wiring 6 by a known photo-circuit forming method, and applying an oxidation-reduction treatment to the surfaces of the inner layer circuits 7 and 8 formed on the inner layer wiring board 4A, Forming a layer and interlayer adhesives 11 and 12; and the single-sided copper-clad insulating substrates 19 and 2 with the outermost layer adhesive.
0, the inner layer wiring board 4A is combined, and heated and pressed to form a multilayer structure 21 and 22, and the interlayer connection is made to the multilayer outermost copper foils 13 and 14 in the multilayer structure 21 and 22. Outer copper foil openings 2 at predetermined positions of pads 5 and 6
4, 25, which can be provided with metal masks 24A, 25A.
A known carbon dioxide laser beam is used to pierce the via semi-through holes 26, 27, and then the adhesives 11, 12, 17, 1 attached to the surfaces of the interlayer connection pads 5, 6 are formed.
A step of irradiating the excimer laser beam on the eight layers and a step of performing desmearing, and then forming the first copper plating layers 34 and 35 by using a horizontal transport type direct electrolytic copper plating method,
Via through holes 42A and 42B and through through hole 3
6, a step of filling and forming a solvent-free type heat-resistant conductive paste 38 or an insulating paste 37 containing a non-conductive filler in the through-hole 36 and the via-holes 42A and 42B; A step of irradiating an excimer laser beam on the heat-resistant conductive paste 38 or the insulating paste 37 containing a non-conductive filler protruding around the holes 42A and 42B and the through-hole 36 to smooth the same; A step of forming the second copper plating layers 40 and 41 using a plating method, and forming the outermost layer circuits 46 and 47, conductive via through holes 43A and 43B, conductive through through holes 36A and conductive via through holes in the outermost layer. Upper land 42, 4
3 and a process 53 of forming lands 44 and 45 on the conductive through-holes.

【0013】[0013]

【発明の実施の形態】本発明の多層印刷配線板の製造方
法53において、前記内層回路7,8の所定の位置にビ
アスルーホール42A,42Bと接続する層間接続用パ
ッド5,6を設け得た内層配線板4Aを公知のフォト回
路形成法で形成する工程と、
BEST MODE FOR CARRYING OUT THE INVENTION In a method 53 for manufacturing a multilayer printed wiring board according to the present invention, interlayer connection pads 5 and 6 for connecting to via through holes 42A and 42B may be provided at predetermined positions of the inner layer circuits 7 and 8, respectively. Forming the inner wiring board 4A by a known photo circuit forming method;

【0014】次に前記最外層接着剤付き片面銅張絶縁基
板19,20と前記接着剤11,12層,絶縁層付き内
層配線板4Aを組み合わせて、熱プレス機により加熱、
加圧し、多層化構成21,22する工程と、
Next, the single-sided copper-clad insulating substrates 19, 20 with the outermost adhesive and the adhesives 11, 12, and the inner wiring board 4A with an insulating layer are combined and heated by a hot press machine.
Pressurizing and forming a multilayer structure 21 or 22;

【0015】次に前記多層化21,22構成された最外
層用銅箔13,14に前記層間接続用パッド5,6の所
定の位置に、フォトエッチング法により外層銅箔開口部
24,25を形成し、これをパルス発振型炭酸ガスレー
ザー加工のメタルマスク24A,25Aを治具として、
層間接続用パッド5,6面位置迄ビア半貫通穴26,2
7を穿設、しかる後に、微細穴26,27内の前記層間
接続用パッド5,6表面部の接着剤11,12,17,
18樹脂をkrFエキシマレーザー光を用い、除去を行
う工程とデスミアを行う工程と、
Next, outer layer copper foil openings 24, 25 are formed by photo-etching at predetermined positions of the interlayer connection pads 5, 6 on the outermost layer copper foils 13, 14 formed by the multilayers 21, 22. It is formed, and the metal mask 24A, 25A of the pulse oscillation type carbon dioxide laser processing is used as a jig.
Via semi-through holes 26, 2 up to interlayer connection pads 5, 6
7, and then the adhesives 11, 12, 17, and 17 on the surface portions of the interlayer connection pads 5 and 6 in the fine holes 26 and 27.
Using a krF excimer laser beam to remove 18 resin and a step of performing desmearing;

【0016】次に、第1銅めっき層34,35を水平搬
送方式ダイレクト電気銅めっき法により施し、ビアスル
ーホール42A,42Bと貫通スルーホール36を形成
し、この穴内に無溶剤タイプの不導体フィラー入り絶縁
ペースト37または耐熱導電性ペースト38を充填,形
成後に、上記導電ビアスルーホール43A,43Bと導
電貫通スルーホール36Aの穴上周辺に突出した37ま
たは38をkrFエキシマレーザー光を照射して、平滑
化を行い、
Next, the first copper plating layers 34 and 35 are applied by a horizontal transfer type direct electrolytic copper plating method to form via through holes 42A and 42B and a through through hole 36, and a solventless non-conductive type is formed in these holes. After filling and forming the filler-containing insulating paste 37 or the heat-resistant conductive paste 38, krF excimer laser light is applied to the 37 or 38 protruding around the conductive via through holes 43A and 43B and the conductive through through hole 36A. , Smoothing,

【0017】しかる後に、第2の銅めっき層40,41
を水平搬送方式ダイレクト電気銅めっき法を用い形成す
る工程と、
Thereafter, the second copper plating layers 40, 41
Forming using a horizontal transfer system direct electrolytic copper plating method,

【0018】次に、フォトエッチング法を用い、最外層
に最外層回路46,47と表面実装部品50固定用有効
面積48,49領域の小さい導電ビアスルーホール43
A,43Bと導電ビアスルーホール穴上ランド42,4
3と導電貫通スルーホール36Aと導電貫通スルーホー
ル穴上ランド44,45を形成する工程を有することに
より、従来の技術の問題点を解決しようとするものであ
る。
Next, the outermost layer circuits 46 and 47 and the conductive via through hole 43 having a small effective area 48 and 49 for fixing the surface mount component 50 are formed on the outermost layer by photoetching.
A, 43B and land 42, 4 above conductive via through hole hole
The process of forming the land 3, the conductive through-hole 36A and the lands 44, 45 on the conductive through-hole is intended to solve the problems of the prior art.

【0019】[0019]

【実施例】以下、本発明の実施例の製造方法を示す、図
2(a)〜(b),図3(c)〜(e),図4(f)〜
(g),図5(h),図6,図1に基づいて、説明す
る。
2 (a) to 2 (b), 3 (c) to 3 (e), and 4 (f) to 4 (f) show a manufacturing method according to an embodiment of the present invention.
(G), FIG. 5 (h), FIG. 6 and FIG.

【0020】(実施例1)まず、図2(a)に示すよう
に、内層銅箔1,2(厚さ18μm,35μm)と絶縁
基板(FR−4)3からなる低誘電率(4.0)の内層
銅張り絶縁基板4である。
(Embodiment 1) First, as shown in FIG. 2 (a), a low dielectric constant (4. 4) composed of inner copper foils 1 and 2 (18 μm and 35 μm in thickness) and an insulating substrate (FR-4) 3. 0) Inner layer copper-clad insulating substrate 4.

【0021】図2(b)に示すように、公知のフォトエ
ッチング法で上記内層銅張り絶縁基板4の任意の位置に
ビアスルーホール42A,42Bと接続する層間接続用
パッド5,6および内層回路7,8を形成し内層配線板
4Aを得る。この絶縁基板(FR−4)3を材料として
は、ガラス布入り樹脂を使用するが、エポキシ,変性エ
ポキシ,ポリイミド,アラミド,フェノール,テフロン
とその樹脂として用いることができる。
As shown in FIG. 2 (b), interlayer connection pads 5 and 6, which are connected to via-through holes 42A and 42B, and an inner layer circuit at arbitrary positions on the inner layer copper-clad insulating substrate 4 by a known photoetching method. 7 and 8 are formed to obtain an inner wiring board 4A. As the material of the insulating substrate (FR-4) 3, a resin containing glass cloth is used. However, epoxy, modified epoxy, polyimide, aramid, phenol, Teflon and its resin can be used.

【0022】次に、図3(c)に示すように、上記内層
配線板4Aに形成された層間接続用パッド5,6および
内層回路7,8表面上に酸化防止のための酸化還元処理
を施し、しかる後に自動印刷装置を用い、絶縁樹脂9,
10を塗布、硬化し、ガイド穴明け工程後に、カーテン
コーター機を使い、接着剤11,12を塗布し、乾燥炉
を用い硬化する。
Next, as shown in FIG. 3C, an oxidation-reduction treatment for preventing oxidation is performed on the surfaces of the interlayer connection pads 5 and 6 and the inner layer circuits 7 and 8 formed on the inner layer wiring board 4A. And then, using an automatic printing device, the insulating resin 9,
10 is applied and cured, and after the guide drilling step, adhesives 11 and 12 are applied using a curtain coater machine and cured using a drying furnace.

【0023】次に、図3(d)に示すように、上記接着
剤付き片面銅張絶縁基板19,20と前記内層配線板4
Aを組み合わせる。
Next, as shown in FIG. 3 (d), the single-sided copper-clad insulating substrates 19, 20 with the adhesive and the inner layer wiring board 4 are formed.
Combine A.

【0024】次に、図3(e)に示すように、図3
(d)にて、組み合わせて熱プレス機またはピンホール
エアーボイド及び密着性において、真空熱プレス機を用
い、加熱,加圧成型,多層化構成21,22する。その
後、最外層用銅箔13,14に前記、層間接続用パッド
5,6の所定の位置に公知のフォトエッチング法により
外層銅箔開口部24,25を設け得、これをビア半貫通
穴26,27を前記層間接続用パッド5,6表面迄穿孔
する治具にメタルマスク24A,25Aを用い、このメ
タルマスク24A,25Aにより配線設計で配置された
ビア半貫通穴26,27を穿孔する。
Next, as shown in FIG.
In (d), in combination with a heat press machine or a pinhole air void and a vacuum heat press machine, heating, press molding, and multilayer construction 21 and 22 are performed. After that, the outer layer copper foil openings 24 and 25 can be formed on the outermost layer copper foils 13 and 14 at predetermined positions of the interlayer connection pads 5 and 6 by a known photoetching method. , 27 are drilled to the surface of the interlayer connection pads 5, 6 using metal masks 24A, 25A, and the via holes 26, 27 arranged in the wiring design are punched by the metal masks 24A, 25A.

【0025】次いで、上記ビア半貫通穴26,27をパ
ルス発振型を炭酸ガスレーザ加工機を用い、そのレーザ
波長を9.0〜10.7μm範囲で加工を行うが最適は
10.6μmであり、この波長が9μm以下または1
0.7μm以上の加工条件ではビア半貫通穴26,27
の形状が阻害され、いずれも品質が保証できない現象が
発生し、いずれも適していない。
Next, the via semi-through holes 26 and 27 are machined in a pulse oscillation type using a carbon dioxide laser beam machine with a laser wavelength in the range of 9.0 to 10.7 μm, the optimum being 10.6 μm. This wavelength is 9 μm or less or 1
Under the processing condition of 0.7 μm or more, the semi-through holes 26 and 27
Are not suitable, the quality of which cannot be guaranteed, and none of them are suitable.

【0026】次いで、ビアスルーホール穴上径30とビ
アスルーホール穴底径29の差が1〜11%範囲で最適
は1〜5%範囲内がよく、11%以上では、電気的導通
接続に問題が生じることがある。また、ビア半貫通穴2
6,27壁面の穴の軸に対するテーパ角28は1〜9度
範囲で最適は1〜4度範囲がよく(図6参照のこと。)
9度以上の場合には、電気的導通接続に問題が生じるこ
とがある。
Next, when the difference between the upper diameter 30 of the via-hole hole and the bottom diameter 29 of the via-hole hole is in the range of 1 to 11%, the optimum value is preferably in the range of 1 to 5%. Problems may occur. Also, via half through hole 2
The taper angle 28 with respect to the axis of the hole on the wall surface of each of the walls 6 and 27 is in the range of 1 to 9 degrees, and optimally in the range of 1 to 4 degrees (see FIG. 6).
If the angle is 9 degrees or more, a problem may occur in the electrical conduction connection.

【0027】次いで、ビア貫通穴上径30が0.04〜
0.15mm範囲で、最適径は0.06〜0.1mm範囲で
このビア半貫通穴26,27内壁表面粗さは、4〜25
μm範囲で、最適は5〜15μm範囲でよい(図6参照
のこと。)。
Next, the upper diameter 30 of the via through hole is 0.04 to 0.04.
In the range of 0.15 mm, the optimum diameter is in the range of 0.06 to 0.1 mm, and the surface roughness of the inner walls of the via semi-through holes 26 and 27 is 4 to 25.
In the μm range, the optimum may be in the range of 5 to 15 μm (see FIG. 6).

【0028】次いでダイヤモンドドリルを用い自動数値
穴明け機を使い貫通穴31を穿孔する。この貫通穴31
直径は0.25〜0.6mm範囲でよい。
Next, a through hole 31 is formed using a diamond drill and an automatic numerical drilling machine. This through hole 31
The diameter may range from 0.25 to 0.6 mm.

【0029】次いで、ビア半貫通穴26,27内の層間
接続用パッド5,6上面に付着している接着剤11,1
2,17,18樹脂32,33層をKrFエキシマレー
ザ光を照射して除去し電気な導通接続性を高める。
Next, the adhesives 11, 1 adhered to the upper surfaces of the interlayer connection pads 5, 6 in the via semi-through holes 26, 27.
The KrF excimer laser light is applied to the 2, 17, 18 resin 32, 33 layers to remove them to enhance the electrical continuity.

【0030】次いで、上記krFエキシマレーザ波長
は、225〜275nm範囲で加工し、最適は、247
〜249nmでよく、また、樹脂32,33を除去する
手段としては、デスミア処理工法を行うことが可能であ
るが微細ビア半貫通穴26,27に採用すると、ビア貫
通穴26,27内がデスミア処理液で完全に洗浄できな
いため、樹脂が一部残渣として残り、銅めっきを施す場
合に未析出の原因になることがあるために微細穴径0.
2mm以下に適していない。従って、上記レーザ加工とデ
スミア処理を併用するとより一層除去可能である。
Next, the wavelength of the krF excimer laser is processed in the range of 225 to 275 nm.
As a means for removing the resins 32 and 33, a desmear treatment method can be used. However, when the fine vias are used as the semi-through holes 26 and 27, the inside of the via through holes 26 and 27 becomes desmear. Since the resin cannot be completely washed with the processing solution, a part of the resin remains as a residue and may cause non-precipitation when copper plating is performed.
Not suitable for less than 2mm. Therefore, when the laser processing and the desmearing process are used together, it can be further removed.

【0031】次に、図4(f)に示すように、水平搬送
式ダイレクト電気銅めっき法を用い、厚み15〜20μ
mの第1銅めっき層34,35を施し、貫通スルーホー
ル36とビアスルーホール42A,42Bを形成でき、
このビアスルーホール42A,42Bおよび貫通スルー
ホール36穴内に無溶剤タイプの不導体フィラー入り絶
縁ペースト37または耐熱導電性ペースト38を印刷技
術のスキージを用い、充填乾燥し導電ビアスルーホール
43A,43Bと導電貫通スルーホール36Aとを形成
する。
Next, as shown in FIG. 4 (f), a horizontal transfer type
m first copper plating layers 34 and 35 to form through through holes 36 and via through holes 42A and 42B.
A non-solvent type insulating paste 37 containing a non-conductive filler or a heat-resistant conductive paste 38 is filled in the via-through holes 42A and 42B and the through-holes 36 using a printing technique squeegee and dried to form the conductive via-through holes 43A and 43B. A conductive through-hole 36A is formed.

【0032】その後、導電ビアスルーホール43A,4
3Bおよび導電貫通スルーホール36Aの穴上周辺に突
出した前記37および38ペーストをKrFエキシマレ
ーザを用い、波長225〜275nmの範囲で最適は2
48nmでよくこれを照射し、除去を行い、平滑化す
る。
Thereafter, the conductive via through holes 43A, 43
3B and the paste 37 and 38 protruding around the hole of the conductive through-hole 36A using a KrF excimer laser, and the optimum is 2 in the wavelength range of 225 to 275 nm.
This is irradiated well at 48 nm, removed, and smoothed.

【0033】次いで、上記耐熱導電性ペースト38は、
耐熱熱硬化性樹脂と導体フィラーから形成され、この耐
熱熱硬化性樹脂は、エポキシ樹脂,変性エポキシ樹脂,
ポリイミド樹脂,変性ポリイミド樹脂から選ばれる少な
くとも一つの樹脂でよく、また、前記導体フィラーは、
金,銀,銅,ニッケル,パラジウム錫から選ばれる少な
くとも一つの金属微粒子でよく、この平均粒径は0.1
〜30μmの範囲でこの粒径形状は、球形状またはフレ
ーク形状であればよい。
Next, the heat-resistant conductive paste 38 is
Formed from heat-resistant thermosetting resin and conductive filler, this heat-resistant thermosetting resin is epoxy resin, modified epoxy resin,
Polyimide resin, at least one resin selected from modified polyimide resin may be, and the conductive filler,
At least one metal fine particle selected from gold, silver, copper, nickel, and palladium tin may be used.
The shape of the particle size may be spherical or flake in the range of 3030 μm.

【0034】前記導体フィラーの含有量は、50〜96
重量%の範囲で、最適は85〜96重量%でよく、残部
は耐熱熱硬化性樹脂で形成する。
The content of the conductor filler is 50 to 96.
In the range of weight%, the optimum may be 85 to 96 weight%, and the remainder is formed of a heat-resistant thermosetting resin.

【0035】また、前記不導体フィラー入り絶縁ペース
ト37は、絶縁樹脂と不導体フィラーから形成され、前
記絶縁樹脂とは、エポキシ樹脂,変性エポキシ樹脂,ポ
リイミド樹脂,変性ポリイミド樹脂から選ばれる少なく
とも一つの樹脂でよく、前記不導体フィラーとは、シリ
カ粉,タルク粉,ガラス粉末から選ばれる少なくとも一
つのフィラーでよく、この平均粒径は3.0〜50μm
の範囲で、好適な平均粒径は、5.0〜10μmの範囲
内がよく、この粒径形状は、球形状またはフレーク形状
でよい。
The non-conductive filler-containing insulating paste 37 is formed of an insulating resin and a non-conductive filler, and the insulating resin is at least one selected from an epoxy resin, a modified epoxy resin, a polyimide resin, and a modified polyimide resin. Resin may be used, and the non-conductive filler may be at least one filler selected from silica powder, talc powder, and glass powder, and has an average particle size of 3.0 to 50 μm.
, A suitable average particle size may be in the range of 5.0 to 10 μm, and the particle size may be spherical or flake.

【0036】次いで、前記不導体フィラーの含有量は、
50〜90重量%の範囲で、その残部が絶縁樹脂で形成
され、好適な含有量は80〜90重量%の範囲とした。
Next, the content of the non-conductive filler is as follows:
In the range of 50 to 90% by weight, the remainder is formed of an insulating resin, and the preferable content is in the range of 80 to 90% by weight.

【0037】次に、図4(g)に示すように、水平搬送
式ダイレクト電気銅めっき法を用い、厚み10〜15μ
mの第2銅めっき厚40.41を形成する。
Next, as shown in FIG. 4 (g), a horizontal transfer type direct electrolytic copper plating method was used to obtain a thickness of 10 to 15 μm.
Then, a second copper plating thickness of 40.41 m is formed.

【0038】次に、図5(h)に示すように、公知のフ
ォトエッチング法(ドライフィルム;H−N240,現
像液;Na2Ca3,塩化第2鉄液,NaOH水溶液)を
用い、最外層回路46,47と、導電貫通スルーホール
穴上ランド44,45層と導電ビアスルーホール穴上ラ
ンド42,43層を形成し、これにより表面実装部品5
0の有効面積48,49が小さく占有され、かつ従来の
引き出しランド83,84,85,86も必要なく、高
密度実装化、高速化回路対応および設計自由度が可能に
なる本発明の多層配線板の製造方法53が得られる。
Next, as shown in FIG. 5 (h), a known photo-etching method (dry film; H-N240, developing solution; Na 2 Ca 3 , ferric chloride solution, NaOH aqueous solution) is used. The outer layer circuits 46 and 47, the lands 44 and 45 on the conductive through-holes, and the lands 42 and 43 on the conductive via-holes are formed.
0 occupies a small effective area 48, 49, and does not require the conventional lead-out lands 83, 84, 85, 86. The multilayer wiring of the present invention enables high-density mounting, high-speed circuit support, and design flexibility. A plate manufacturing method 53 is obtained.

【0039】次に、図6に示すように、図3(e)のビ
ア半貫通穴26,27を前記層間接続用パッド5,6表
面の位置迄、パルス発振型炭酸ガスレーザ加工を行う場
合のビアスルーホール穴上径30とビアスルーホール穴
底径29の差が1〜11%範囲で、前記ビア半貫通穴2
6,27壁面の穴の軸に対するテーパ角28が1〜9度
の範囲で行う模式図である。
Next, as shown in FIG. 6, the pulse oscillation type carbon dioxide laser processing is performed when the via half through holes 26 and 27 in FIG. 3E are positioned up to the surface of the interlayer connection pads 5 and 6. When the difference between the upper diameter 30 of the via through hole and the bottom diameter 29 of the via through hole is in the range of 1 to 11%,
It is a schematic diagram performed when the taper angle 28 with respect to the axis | shaft of the hole of 6,27 wall surfaces is 1-9 degree.

【0040】更に、図1に示すように、図5(h)の導
電貫通スルーホール穴上ランド44,45と導電ビアス
ルーホール穴上ランド43A,43Bに表面実装部品5
0を搭載し、ハンダ51付固定でき、表面実装部品の有
効面積48,49をより小さく占有し、高密度実装化及
び高速回路対応した本発明の多層印刷配線板の製造方法
53の模式断面図である。
Further, as shown in FIG. 1, the surface mount components 5 are provided on the lands 44 and 45 on the conductive through-hole holes and the lands 43A and 43B on the conductive via-hole holes in FIG.
0, which can be fixed with the solder 51, occupies a smaller effective area 48, 49 of the surface mount component, and has a high-density mounting and a high-speed circuit compatible manufacturing method 53 of the present invention for a multilayer printed wiring board. It is.

【0041】[0041]

【発明の効果】【The invention's effect】

(1)本発明の製造方法によれば、耐熱導電性ペースト
38,ダイレクト電気銅めっき法及びレーザー加工法を
用い、導電ビアスルーホール穴上ランド42,43層や
導電貫通スルーホール穴上ランド44,45層を形成す
ることにより、表面実装部品50固定のためのペーパー
リフロー温度260℃3回通し後、電気的接続も可能と
なり得、かつ表面実装部品50固定のための従来のビア
スルーホール引き出しランド85,86と貫通スルーホ
ール引き出しランド83,84は具備必要なく、これに
より、表面実装部品の有効面48,49を従来より約1
5%小さく占有可能になり、表面実装部品50の密度向
上、高速化対応ができ産業上寄与する効果は極めて大き
い。
(1) According to the manufacturing method of the present invention, the lands 42 and 43 on the conductive via-hole holes and the lands 44 on the conductive through-hole holes are formed by using the heat-resistant conductive paste 38, the direct electrolytic copper plating method and the laser processing method. , 45 layers, the paper reflow temperature 260 ° C. for fixing the surface-mounted component 50 can be passed three times, and then electrical connection can be made. The lands 85 and 86 and the through-hole extraction lands 83 and 84 do not need to be provided, so that the effective surfaces 48 and 49 of the surface mount component can be reduced by about 1 unit.
It can be occupied 5% smaller, and the density of the surface-mounted component 50 can be increased and the speed can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の製造方法を説明する模式断面
図。
FIG. 1 is a schematic cross-sectional view illustrating a manufacturing method according to an embodiment of the present invention.

【図2】(a)〜(b)は、本発明の実施例の製造方法
を説明する工程順に示した断面図。
FIGS. 2A and 2B are cross-sectional views illustrating a manufacturing method according to an embodiment of the present invention in the order of steps for explaining the manufacturing method.

【図3】(c)〜(e)は、本発明の実施例の製造方法
を説明する工程順に示した断面図。
FIGS. 3 (c) to 3 (e) are cross-sectional views showing a manufacturing method according to an embodiment of the present invention in the order of steps.

【図4】(f)〜(g)は、本発明の実施例の製造方法
を説明する工程順に示した断面図。
FIGS. 4 (f) to (g) are cross-sectional views shown in the order of steps for explaining a manufacturing method according to an embodiment of the present invention.

【図5】(h)は、本発明の実施例の製造方法を説明す
る工程順に示した断面図。
FIG. 5H is a cross-sectional view showing a manufacturing method according to the embodiment of the present invention in the order of steps for explaining the manufacturing method.

【図6】本発明の実施例の製造方法で、ビア半貫通穴形
状を示す模式図。
FIG. 6 is a schematic view showing a shape of a half via hole in a manufacturing method according to an embodiment of the present invention.

【図7】(a)〜(c)は、従来の技術に係る製造方法
の実施例を説明する工程順に示した断面図。
FIGS. 7A to 7C are cross-sectional views shown in the order of steps for explaining an embodiment of a manufacturing method according to a conventional technique.

【図8】(d)〜(e)は、従来の技術に係る製造方法
の実施例を説明する工程順に示した断面図。
FIGS. 8D to 8E are cross-sectional views shown in the order of steps for explaining an example of a manufacturing method according to a conventional technique.

【図9】(f)は、従来の技術に係る製造方法の実施例
を説明する工程順に示した断面図。
FIG. 9 (f) is a sectional view illustrating an example of a manufacturing method according to the related art in the order of steps for explaining the example.

【図10】従来の技術に係る製造方法の実施例にて、表
面実装部品の有効面積89を大きく示した模式断面図。
FIG. 10 is a schematic cross-sectional view showing a large effective area 89 of a surface mount component in an embodiment of a manufacturing method according to a conventional technique.

【符号の説明】[Explanation of symbols]

1,2…内層銅箔 3…絶縁基板(FR−4) 4…内
層銅張り絶縁基板 4A…内層配線板 5,6…層間接続用パッド 7,8
…内層回路 9,10…絶縁樹脂(内層) 11,12…接着剤(内
層) 13,14…最外層用銅箔 15,16…絶縁樹脂(外
層) 17,18…接着剤(外層) 19,20…最外層接着剤付き片面銅張り絶縁基板 2
1,22…多層化構成 24,25…外層銅箔開口部 24A,25A…メタル
マスク 26,27…ビア半貫通穴 28…テーパ角 29…ビ
アスルーホール穴底径 30…ビアスルーホール穴上径 31…貫通穴 32,33…接続用パッド上樹脂 34,35…第1め
っき層 36…貫通スルーホール 36A…導電貫通スルーホー
ル 37…不導体フィラー入り絶縁ペースト 38…耐熱導
電性ペースト 40,41…第2銅めっき層 42A,42B…ビアス
ルーホール 42,43…導電ビアスルーホール穴上ランド 43A,43B…導電ビアスルーホール 44,45…導電貫通スルーホール穴上ランド 46,47…最外層回路 48,49…表面実装部品の
有効面積 50…表面実装部品(電極付き) 51…ハンダ 53…本発明の多層印刷配線板の製造方法 61,62
…内層銅箔 63…絶縁基板 64…内層銅張り絶縁基板 64A…
内層配線板 65,66…接続用パッド 67,68…内層回路 69,70…最外層用銅箔 71,72…プリプレグ
73,74…半貫通穴 75…貫通穴 76,77…銅めっき層 78…貫通ス
ルーホール 79,80…ビアスルーホール 83,84…貫通スルーホール引き出しランド 85,86…ビアスルーホール引き出しランド 87,
88…最外層配線回路 89…表面実装部品の有効面積 89A…表面実装部品
(電極付き) 89B…ハンダ 90…従来技術に係る多層印刷配線板
の製造方法
1, 2 ... Inner copper foil 3 ... Insulating board (FR-4) 4 ... Inner copper clad insulating board 4A ... Inner wiring board 5,6 ... Interlayer connection pad 7,8
... Inner layer circuit 9,10 ... Insulating resin (inner layer) 11,12 ... Adhesive (inner layer) 13,14 ... Copper foil for outermost layer 15,16 ... Insulating resin (outer layer) 17,18 ... Adhesive (outer layer) 19, 20: Single-sided copper-clad insulating substrate with outermost layer adhesive 2
1, 22: multilayer structure 24, 25: outer layer copper foil opening 24A, 25A: metal mask 26, 27: via half-through hole 28: taper angle 29: via through hole hole bottom diameter 30: via through hole hole upper diameter DESCRIPTION OF SYMBOLS 31 ... Through-hole 32, 33 ... Resin on connection pad 34, 35 ... First plating layer 36 ... Through-hole 36A ... Conductive through-hole 37 ... Insulating paste containing non-conductive filler 38 ... Heat-resistant conductive paste 40, 41 ... 2nd copper plating layer 42A, 42B ... Via through hole 42, 43 ... Land on conductive via through hole hole 43A, 43B ... Conductive via through hole 44, 45 ... Land on conductive through through hole hole 46, 47 ... Outer layer circuit 48 Reference numerals 49, 49: Effective area of surface mount components 50: Surface mount components (with electrodes) 51: Solder 53: Multilayer printed wiring board of the present invention Production method 61, 62
... Inner layer copper foil 63 ... Insulating substrate 64 ... Inner layer copper-clad insulating substrate 64A ...
Inner layer wiring board 65, 66 ... connection pad 67, 68 ... inner layer circuit 69, 70 ... outermost layer copper foil 71, 72 ... prepreg
73, 74: Semi-through hole 75: Through hole 76, 77 ... Copper plating layer 78: Through through hole 79, 80 ... Via through hole 83, 84 ... Land for drawing out through through hole 85, 86 ... Land for drawing out via through hole 87,
88 ... Outermost layer wiring circuit 89 ... Effective area of surface mounting parts 89A ... Surface mounting parts (with electrodes) 89B ... Solder 90 ... Manufacturing method of multilayer printed wiring board according to prior art

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年9月19日[Submission date] September 19, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項2[Correction target item name] Claim 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【請求項2】 請求項1において、前記ビア半貫通穴
(26)(27)を炭酸ガスレーザ光を用い、そのレー
ザ波長9.0〜10.7μm範囲で加工し、そのビアス
ルーホール穴上径(30)とビアスルーホール穴低径
(29)の差が1〜11%範囲で、前記ビア半貫通穴
(26)(27)壁面の穴の軸に対するテーパ角(2
8)は、1〜9度範囲で行う工程と、前記ビアスルーホ
ール穴上径(30)が0.04〜0.15mm範囲で、
このビア半貫通穴(26)(27)内壁表面粗さは4〜
25μm範囲で行う工程を有することを特徴とする本発
明の多層印刷配線板の製造方法(53)。
2. The via-hole upper diameter according to claim 1, wherein the via semi-through holes (26) and (27) are processed using a carbon dioxide laser beam in a laser wavelength range of 9.0 to 10.7 μm. When the difference between (30) and the diameter of the via-through hole (29) is in the range of 1 to 11%, the taper angle (2) with respect to the axis of the hole on the wall surface of the via (26) (27)
8) a step performed in a range of 1 to 9 degrees, and a step (30) in which the upper diameter of the via-through hole is 0.04 to 0.15 mm;
The via semi-through holes (26) and (27) have an inner wall surface roughness of 4 to
A method (53) for producing a multilayer printed wiring board according to the present invention, comprising a step of performing the process in a range of 25 μm.

【手続補正書】[Procedure amendment]

【提出日】平成9年10月23日[Submission date] October 23, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項2[Correction target item name] Claim 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0025[Correction target item name] 0025

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0025】次いで、上記ビア半貫通穴26,27をパ
ルス発振型を炭酸ガスレーザ加工機を用いそのレーザ
長を8.5〜11.5μm範囲で加工を行うが最適
9.5μm以上であり、この波長が8.5μm以下また
11.5μm以上のビーム加工条件ではビア半貫通穴
26,27の形状が阻害され、いずれも品質が保障でき
ない現象が発生しいずれも適していない。
[0025] Then, the laser waves using a carbon dioxide gas laser processing machine pulsed oscillation of the via semi through-hole 26, 27
A length for machining in 8.5~11.5μm range but optimal
A 9.5μm on than, the wavelength is less or <br/> 8.5 .mu.m is inhibited the shape of the via-half through holes 26 and 27 in the above beam processing conditions 11.5 .mu.m, both can not be guaranteed the quality phenomenon All of them are not suitable.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 最外層回路(46)(47)導電ビアス
ルーホール穴上ランド(43A)(43B),導電貫通
スルーホール穴上ランド(44)(45)、および内層
回路(7)(8)をもつ多層印刷配線板において、前記
内層回路(7)(8)の所定の位置に前記導電ビアスル
ーホール穴上ランド(42)(43)と接続する層間接
続用パッド(5)(6)を設けた内層配線板(4A)を
公知のフォト回路形成法で形成する工程と、この内層配
線板(4A)に形成された内層回路(7)(8)表面に
酸化還元処理を施し後に、絶縁樹脂(9)(10)層と
層間接着剤(11)(12)層を形成する工程と、前記
最外層接着剤付き片面銅張絶縁基板(19)(20)と
前記内層配線板(4A)を組み合わせて、加熱,加圧成
型し、多層化構成(21)(22)する工程と、前記多
層化構成(21)(22)された最外層用銅箔(13)
(14)層に前記層間接続用パッド(5)(6)の所定
の位置に外層銅箔開口部(24)(25)を設け得、こ
れをメタルマスク(24A)(25A)として、公知の
炭酸ガスレーザービームを用い、ビア半貫通穴(26)
(27)を穿孔後に、前記層間接続用パッド(5)
(6)上面に付着している接着剤(11)(12)(1
7)(18)層をエキシマレーザ光を照射し除去する工
程とデスミアを行う工程と、次に水平搬送方式ダイレク
ト電気銅めっき法を用い、第1銅めっき層(34)(3
5)を形成し、ビアスルホール(42A)(42B)と
貫通スルーホール(36)を形成、しかる後に前記貫通
スルーホール(36)およびビアスルーホール(42
A)(42B)穴内に無溶剤タイプの耐熱導電性ペース
ト(38)または不導体フィラー入り絶縁ペースト(3
7)を充填形成する工程と、前記、ビアスルーホール
(42A)(42B)と貫通スルーホール(36)との
穴上に突出した耐熱導電性ペースト(38)または不導
体フィラー入り絶縁ペースト(37)をエキシマレーザ
光を照射して、平滑化する工程と、水平搬送方式ダイレ
クト電気銅めっき法を用い、第2銅めっき層(40)
(41)を行う工程と、最外層に、前記最外層回路(4
6)(47)と導電ビアスルーホール(43A)(43
B)と導電貫通スルーホール(36A)と導電ビアスル
ーホール穴上ランド(42)(43)と導電貫通スルー
ホール穴上ランド(44)(45)とを形成する工程を
有することを特徴とする本発明の多層印刷配線板の製造
方法(53)。
An outer layer circuit (46) (47), a land (43A) (43B) on a conductive via-through hole, a land (44) (45) on a conductive through-hole, and an inner layer circuit (7) (8). ), The interlayer connection pads (5) (6) connected to the conductive via through hole hole lands (42) (43) at predetermined positions of the inner layer circuits (7) (8). Forming the inner wiring board (4A) provided with the above by a known photocircuit forming method, and performing an oxidation-reduction treatment on the surface of the inner circuit (7) (8) formed on the inner wiring board (4A). Forming an insulating resin (9) (10) layer and an interlayer adhesive (11) (12) layer; the single-sided copper-clad insulating substrate (19) (20) with the outermost adhesive; and the inner layer wiring board (4A) ), Heat and pressure molding to form a multi-layer structure ( 21) and (22), the outermost copper foil (13) having the multilayer structure (21) or (22).
In the (14) layer, outer layer copper foil openings (24) and (25) can be provided at predetermined positions of the interlayer connection pads (5) and (6), and these are known as metal masks (24A) and (25A). Via semi-through hole using carbon dioxide laser beam (26)
After drilling (27), the interlayer connection pad (5)
(6) Adhesive (11) (12) (1)
7) A step of irradiating the layer (18) with excimer laser light and a step of performing desmearing, and then using a horizontal transfer type direct electrolytic copper plating method to form a first copper plating layer (34) (3).
5) to form via through holes (42A) and (42B) and through through holes (36), and thereafter, the through through holes (36) and via through holes (42).
A) (42B) Solvent-free heat-resistant conductive paste (38) or insulating paste containing non-conductive filler (3)
7), and a heat-resistant conductive paste (38) or an insulating paste containing a nonconductive filler (37) protruding above the holes of the via-through holes (42A) (42B) and the through-hole (36). ) Is irradiated with an excimer laser beam to smooth it, and a second copper plating layer (40) is formed by using a horizontal transfer type direct electrolytic copper plating method.
Performing step (41), and providing the outermost layer circuit (4
6) (47) and conductive via through hole (43A) (43)
B), conductive through-holes (36A), conductive via-through-hole lands (42) and (43), and conductive through-hole lands (44) and (45). A method (53) for manufacturing a multilayer printed wiring board according to the present invention.
【請求項2】 請求項1において、前記ビア半貫通穴
(26)(27)を炭酸ガスレーザ光を用い、そのレー
ザ波長9.0〜10.7μm範囲で加工し、そのビアス
ルーホール穴上径(30)とビアスルーホール穴底径
(29)の差が1〜11%範囲で、前記ビア半貫通穴
(26)(27)壁面の穴の軸に対するテーパ角(2
8)は、1〜9度範囲で行う工程と、前記ビアスルーホ
ール穴上径(30)が0.04〜0.15mm範囲で、こ
のビアスルーホール穴(26)(27)内壁表面粗さは
4〜25μm範囲で行う工程を有することを特徴とする
本発明の多層印刷配線板の製造方法(53)。
2. The via-hole upper diameter according to claim 1, wherein the via semi-through holes (26) and (27) are processed using a carbon dioxide laser beam in a laser wavelength range of 9.0 to 10.7 μm. When the difference between (30) and the bottom diameter of the via through hole (29) is in the range of 1 to 11%, the taper angle (2) with respect to the axis of the hole of the via semi-through hole (26) (27)
8) a step performed in a range of 1 to 9 degrees, and a method in which the upper diameter (30) of the via-through hole is in a range of 0.04 to 0.15 mm; (53) The method for producing a multilayer printed wiring board according to the present invention (53), comprising the step of performing the process in the range of 4 to 25 µm.
【請求項3】 請求項1において、前記無溶剤タイプの
耐熱導電性ペースト(38)は、耐熱熱硬化性樹脂と導
体フィラーからなり、この耐熱熱硬化性樹脂は、無溶剤
タイプで、エポキシ樹脂,変性エポキシ樹脂,変性ポリ
イミド樹脂から選ばれる少なくとも一つの樹脂であるこ
と、また、前記導体フィラーは、金,銀,銅,ニッケ
ル,パラジウム,錫から選ばれる少なくとも一つの微粒
子であること、この平均粒径は、0.1〜30μmの範
囲で、この粒径形状は、球形状またはフレーク形状であ
ればよく、前記導体フィラーの含有量は、50〜96重
量%の範囲で、残部が耐熱熱硬化性樹脂で形成し得るこ
とを特徴とする本発明の多層印刷配線板の製造方法(5
3)。
3. The heat-resistant conductive paste (38) according to claim 1, wherein the heat-resistant conductive paste of the solventless type comprises a heat-resistant thermosetting resin and a conductive filler, and the heat-resistant thermosetting resin is a solventless type, and is an epoxy resin. , A modified epoxy resin, a modified polyimide resin, and the conductive filler is at least one fine particle selected from gold, silver, copper, nickel, palladium, and tin. The particle size is in the range of 0.1 to 30 μm, and the particle shape may be spherical or flake. The content of the conductor filler is in the range of 50 to 96% by weight, and the remainder is heat resistant heat. The method for producing a multilayer printed wiring board according to the present invention, which can be formed of a curable resin (5)
3).
JP26287897A 1997-09-11 1997-09-11 Manufacture of multilayered printed circuit board Pending JPH1187930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26287897A JPH1187930A (en) 1997-09-11 1997-09-11 Manufacture of multilayered printed circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26287897A JPH1187930A (en) 1997-09-11 1997-09-11 Manufacture of multilayered printed circuit board

Publications (1)

Publication Number Publication Date
JPH1187930A true JPH1187930A (en) 1999-03-30

Family

ID=17381894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26287897A Pending JPH1187930A (en) 1997-09-11 1997-09-11 Manufacture of multilayered printed circuit board

Country Status (1)

Country Link
JP (1) JPH1187930A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001031984A1 (en) * 1999-10-26 2001-05-03 Ibiden Co., Ltd. Multilayer printed wiring board and method of producing multilayer printed wiring board
JP2001127434A (en) * 1999-10-26 2001-05-11 Ibiden Co Ltd Multilayer printed wiring board and method of production
JP2001156452A (en) * 1999-11-26 2001-06-08 Hitachi Chem Co Ltd Manufacturing method for printed wiring board
JP2002026519A (en) * 2000-07-05 2002-01-25 Furukawa Electric Co Ltd:The Printed-circuit board and its manufacturing method
JP2002134920A (en) * 2000-10-30 2002-05-10 Ibiden Co Ltd Multilayer printed wiring board and method for manufacturing the same
JP2002134921A (en) * 2000-10-30 2002-05-10 Ibiden Co Ltd Multilayer printed wiring board and method for manufacturing the same
JP2005310934A (en) * 2004-04-20 2005-11-04 Dainippon Printing Co Ltd Multilayer wiring board and its manufacturing method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100833723B1 (en) * 1999-10-26 2008-05-29 이비덴 가부시키가이샤 Multi-layer printed circuit board and metheod of manufacturing multi-layer printed circuit board
US7178234B2 (en) 1999-10-26 2007-02-20 Ibiden Co., Ltd. Method of manufacturing multi-layer printed circuit board
WO2001031984A1 (en) * 1999-10-26 2001-05-03 Ibiden Co., Ltd. Multilayer printed wiring board and method of producing multilayer printed wiring board
US6930258B1 (en) 1999-10-26 2005-08-16 Ibiden Co., Ltd. Multilayer printed wiring board and method of producing multilayer printed wiring board
JP2001127434A (en) * 1999-10-26 2001-05-11 Ibiden Co Ltd Multilayer printed wiring board and method of production
JP4505908B2 (en) * 1999-11-26 2010-07-21 日立化成工業株式会社 Method for manufacturing printed wiring board
JP2001156452A (en) * 1999-11-26 2001-06-08 Hitachi Chem Co Ltd Manufacturing method for printed wiring board
JP2002026519A (en) * 2000-07-05 2002-01-25 Furukawa Electric Co Ltd:The Printed-circuit board and its manufacturing method
JP2002134921A (en) * 2000-10-30 2002-05-10 Ibiden Co Ltd Multilayer printed wiring board and method for manufacturing the same
JP2002134920A (en) * 2000-10-30 2002-05-10 Ibiden Co Ltd Multilayer printed wiring board and method for manufacturing the same
JP4535598B2 (en) * 2000-10-30 2010-09-01 イビデン株式会社 Multilayer printed wiring board and method for producing multilayer printed wiring board
JP4605888B2 (en) * 2000-10-30 2011-01-05 イビデン株式会社 Multilayer printed wiring board and method for producing multilayer printed wiring board
JP2005310934A (en) * 2004-04-20 2005-11-04 Dainippon Printing Co Ltd Multilayer wiring board and its manufacturing method
JP4634735B2 (en) * 2004-04-20 2011-02-16 大日本印刷株式会社 Manufacturing method of multilayer wiring board

Similar Documents

Publication Publication Date Title
US5243142A (en) Printed wiring board and process for producing the same
US6195882B1 (en) Method for producing printed wiring boards
WO2007097440A1 (en) Printed wiring board and process for producing the same
US6703565B1 (en) Printed wiring board
JP4592891B2 (en) Multilayer circuit board and semiconductor device
JPH1187930A (en) Manufacture of multilayered printed circuit board
JPH11168281A (en) Manufacture of thin multilayer printed wiring board
JP2000068648A (en) Manufacture of multi-layered printed substrate
JP2013187458A (en) Method for manufacturing multilayer printed wiring board and multilayer printed wiring board
US8493173B2 (en) Method of cavity forming on a buried resistor layer using a fusion bonding process
JP2000269647A (en) Single-side circuit board, multilayer printed wiring board and manufacture thereof
JPH10224040A (en) Method for manufacturing multilayer wiring board
JP2005094033A (en) Printed wiring board
JPH1041635A (en) Single-sided circuit board for multilayer printed wiring board, its manufacture, and multilayer printed wiring board
JP4545866B2 (en) Method for manufacturing circuit board for multilayer printed wiring board
JPH10190234A (en) Manufacture of multilayer interconnection board
JPH10224041A (en) Multilayer wiring board and its manufacturing method
JP2737548B2 (en) Manufacturing method of multilayer printed wiring board
JP2006049457A (en) Wiring board with built-in parts and manufacturing method thereof
KR100745520B1 (en) Multi-layered printed circuit board and the manufacturing method thereof
JP2000252631A (en) Multilayer printed wiring board and its manufacture
JPH05315760A (en) Manufacture of multilayer printed circuit board
JP2508981B2 (en) Multilayer printed wiring board and manufacturing method thereof
JPH10335824A (en) Multilayered wiring board and its manufacture
KR19990002580A (en) Method for forming via hole in multilayer printed circuit board