JPH1174242A - Method for manufacturing semiconductor device - Google Patents
Method for manufacturing semiconductor deviceInfo
- Publication number
- JPH1174242A JPH1174242A JP17998798A JP17998798A JPH1174242A JP H1174242 A JPH1174242 A JP H1174242A JP 17998798 A JP17998798 A JP 17998798A JP 17998798 A JP17998798 A JP 17998798A JP H1174242 A JPH1174242 A JP H1174242A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor device
- insulating film
- interlayer insulating
- tool
- wiring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 143
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 title claims abstract description 23
- 239000011229 interlayer Substances 0.000 claims abstract description 43
- 238000012545 processing Methods 0.000 claims abstract description 35
- 238000006073 displacement reaction Methods 0.000 claims description 8
- 239000012530 fluid Substances 0.000 claims description 7
- 238000000151 deposition Methods 0.000 claims 3
- 238000005498 polishing Methods 0.000 abstract description 19
- 239000006061 abrasive grain Substances 0.000 abstract description 16
- 238000005516 engineering process Methods 0.000 abstract description 5
- 239000000463 material Substances 0.000 abstract description 5
- 238000007796 conventional method Methods 0.000 abstract description 2
- 230000006866 deterioration Effects 0.000 abstract description 2
- 239000010410 layer Substances 0.000 abstract description 2
- 238000001459 lithography Methods 0.000 abstract description 2
- 230000008961 swelling Effects 0.000 abstract 1
- 239000000919 ceramic Substances 0.000 description 17
- 238000012937 correction Methods 0.000 description 7
- 229910003460 diamond Inorganic materials 0.000 description 7
- 239000010432 diamond Substances 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011078 in-house production Methods 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 231100000105 margin of exposure Toxicity 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/30625—With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B7/00—Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
- B24B7/20—Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground
- B24B7/22—Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain
- B24B7/228—Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain for grinding thin, brittle parts, e.g. semiconductors, wafers
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Abstract
(57)【要約】
【課題】従来の半導体装置の製造方法では、平坦化が不
十分であり、表面段差が大きく、多層配線を行う場合
に、配線の断線が生じやすく、歩留まり低下の原因とな
っている。また、リソグラフィの焦点深度不足による配
線の微細化を困難にしていた。また、プロセス技術の複
雑化、工程数の増加という問題があった。さらに、研磨
による平坦化法では、半導体装置を形成するウェハの寸
法が大きくなるにつれ使用する研磨機が大きくなり、研
磨砥粒や研磨パッド等の補材の使用量が多くなるほか、
研磨パッドの交換に多大の労力を要する。更に、加工中
の研磨パッドの劣化により加工面の平坦度が劣化した
り、研磨能率が安定しないという欠点があった。又、ウ
ェハがうねっているために、砥石による加工では、配線
を切断してしまうという問題があった。
【解決手段】本発明においては、半導体装置のうねりを
矯正し、半導体装置を配線上面あるいは層間膜上面を基
準に平坦に固定した後、切削あるいは研削加工により、
半導体装置を基準面と平行に加工する。
(57) [Summary] In a conventional method of manufacturing a semiconductor device, planarization is insufficient, a surface step is large, and when performing multi-layer wiring, disconnection of wiring is apt to occur, which causes a decrease in yield. Has become. In addition, it has been difficult to miniaturize wiring due to insufficient depth of focus of lithography. Further, there is a problem that the process technology is complicated and the number of steps is increased. Furthermore, in the planarization method by polishing, as the size of a wafer forming a semiconductor device increases, the size of a polishing machine used increases, and in addition to the use of auxiliary materials such as polishing abrasive grains and polishing pads,
Great effort is required to replace the polishing pad. Further, there are disadvantages that the flatness of the processed surface is deteriorated due to the deterioration of the polishing pad during the processing, and the polishing efficiency is not stable. In addition, there is a problem that the wiring is cut by the processing using the grindstone because the wafer is undulating. In the present invention, after swelling of a semiconductor device is corrected and the semiconductor device is fixed flat on the basis of the upper surface of a wiring or the upper surface of an interlayer film, cutting or grinding is performed.
The semiconductor device is processed in parallel with the reference plane.
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【発明の属する技術分野】本発明は、半導体装置の製造
方法に関し、特に半導体装置の配線とその上層の配線と
を絶縁するための層間絶縁膜表面を平坦化する半導体装
置の製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device for planarizing the surface of an interlayer insulating film for insulating a wiring of a semiconductor device and a wiring thereover. is there.
【0002】[0002]
【従来の技術】従来、半導体装置の層間絶縁膜表面の平
坦化を実現するためには、凹凸の有る層間絶縁膜表面に
SOGを用いて平坦化を行ってきた。しかしながら、パ
ターンの微細化と多層化が進むに連れ、露光光のフォー
カスマージンが減少し、十分な効果が得られず、最近で
は、IBM Journal of Research and development vol.3
6,No.5,September 1992 p845 や、1993年度 精密工学会
春季大会学術講演会講演論文集 p839 に見られるよう
に、加工砥粒を含む研磨液を供給しながら被加工物を回
転する弾性パッドに押しつけ、相対運動を行わせなが
ら、被加工物表面の凹凸の凸の部分を研磨材で優先的に
研磨する化学機械研磨(CMP)なる研磨法も用いられ
ている。2. Description of the Related Art Conventionally, in order to realize the planarization of the surface of an interlayer insulating film of a semiconductor device, the surface of the interlayer insulating film having irregularities has been planarized using SOG. However, as pattern miniaturization and multilayering have progressed, the focus margin of exposure light has decreased, and sufficient effects have not been obtained. Recently, IBM Journal of Research and development vol.3
6, No.5, September 1992 p845 and 1993 Precision Engineering Society Spring Conference Lecture Paper p839, an elastic pad that rotates a workpiece while supplying a polishing solution containing abrasive grains. In addition, a chemical mechanical polishing (CMP) polishing method in which a convex portion of unevenness on the surface of a workpiece is preferentially polished with an abrasive while being pressed against the workpiece and performing relative movement is also used.
【0003】[0003]
【発明が解決しようとする課題】従来の方法では、平坦
化が不十分であり、表面段差が大きく、多層配線を行う
場合に、配線の断線が生じやすく歩留まり低下の原因と
なっている。また、リソグラフィの焦点深度不足による
配線の微細化を困難にしていた。また、プロセス技術の
複雑化、工程数の増加という問題があった。さらに、研
磨による平坦化法では、半導体装置を形成するウェハの
寸法が大きくなるにつれ、使用する研磨機も大きくな
り、研磨砥粒や研磨パッド等の補材の使用量が多くな
る。また、研磨パッドの交換に多大の労力を必要とした
り、加工中の研磨パッドの劣化により加工面の平坦度が
劣化したり、研磨能率が安定しないという問題点があっ
た。また、ウェハがうねっているために、砥石による加
工では、配線を切断してしまうという問題があった。In the conventional method, the planarization is insufficient, the surface steps are large, and when performing multi-layer wiring, disconnection of the wiring is likely to occur, which causes a decrease in yield. In addition, it has been difficult to miniaturize wiring due to insufficient depth of focus of lithography. Further, there is a problem that the process technology is complicated and the number of steps is increased. Further, in the planarization method by polishing, as the size of a wafer forming a semiconductor device increases, the size of a polishing machine used also increases, and the amount of auxiliary materials such as polishing abrasive grains and polishing pads increases. In addition, there is a problem that a great deal of labor is required for replacement of the polishing pad, flatness of a processed surface is deteriorated due to deterioration of the polishing pad during processing, and polishing efficiency is not stable. In addition, there is a problem that the wiring is cut by the processing using the grindstone because the wafer is undulating.
【0004】本発明は、研磨パッドや研磨砥粒を不要と
し、かつ高精度の平坦化が実現できる半導体装置の製造
方法を提供することを目的とする。SUMMARY OF THE INVENTION An object of the present invention is to provide a method of manufacturing a semiconductor device which does not require a polishing pad or abrasive grains and can realize high-precision planarization.
【0005】[0005]
【課題を解決するための手段】上記目的は、半導体装置
のうねりを矯正し、半導体装置を配線上面あるいは層間
絶縁膜上面を基準に平坦に固定した後、切削あるいは研
削加工により、基準面と平行に加工することにより達成
される。The object of the present invention is to correct the undulation of a semiconductor device, fix the semiconductor device flat with reference to the upper surface of the wiring or the upper surface of the interlayer insulating film, and then cut or grind the semiconductor device so as to be parallel to the reference surface. This is achieved by processing to
【0006】[0006]
【発明の実施の形態】以下、本発明の一実施例につい
て、添付図面を参照して詳細に説明する。図1は、本発
明による半導体装置の製造方法を実現するための加工装
置で、10は加工装置の本体、20は半導体装置(ウェ
ハ)50のうねりを補正し、平坦に固定するうねり矯正
部、30は半導体装置50の表面を平坦に加工するため
の工具で、例えばダイヤモンド等の超砥粒からなる砥
石、41は工具30としてメタルボンドダイヤモンド砥
石を用いた場合にダイヤモンド砥石の切れ味を維持する
ための電解ドレッシング用電極、44は加工工具30及
び半導体装置50の冷却及び潤滑を目的とする純水から
なる加工液供給部、60は半導体装置50の表面形状を
測定する装置、70はうねり矯正部20を加工装置本体
10に取り付けるための固定装置である。円形若しくは
直線形状をした割り出しテーブル80上にあるうねり矯
正部20に取り付けられた半導体装置50は、表面形状
測定装置60の下でうねりを矯正した後、加工工具30
の下へ移動させ、加工される。An embodiment of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 shows a processing apparatus for realizing a method of manufacturing a semiconductor device according to the present invention. Reference numeral 10 denotes a main body of the processing apparatus, 20 denotes a waviness correction unit that corrects the waviness of a semiconductor device (wafer) 50 and fixes it flat. 30 is a tool for flattening the surface of the semiconductor device 50, for example, a grindstone made of superabrasive grains such as diamond, and 41 is a tool for maintaining the sharpness of the diamond grindstone when a metal bond diamond grindstone is used as the tool 30. An electrode for electrolytic dressing, 44 a working fluid supply unit made of pure water for cooling and lubricating the processing tool 30 and the semiconductor device 50, 60 a device for measuring the surface shape of the semiconductor device 50, 70 a swell correction unit 20 is a fixing device for attaching 20 to the processing apparatus main body 10. The semiconductor device 50 mounted on the undulation correcting section 20 on the indexing table 80 having a circular or linear shape corrects the undulation under the surface shape measuring device 60, and then the processing tool 30.
Moved below and processed.
【0007】図2は、第1のうねり矯正法による場合の
うねり矯正部20の拡大図で、表面基準固定用治具71
は、固定装置70から取り外し可能で、薄い例えば鋼鈑
73の一方の面には、ポーラスセラミックブロック群7
2が固定されており、外周の緻密質のセラミックリング
74にあけられた孔を通して、真空に吸引できる構造と
なっている。鋼板73のポーラスセラミックブロック群
72の裏に相当する位置には、セラミックブロック群7
5が配されている。FIG. 2 is an enlarged view of the waviness correction section 20 in the case of the first waviness correction method.
Is detachable from the fixing device 70, and a porous ceramic block group 7 is provided on one surface of a thin, for example, steel plate 73.
2 is fixed, and can be evacuated to vacuum through a hole formed in a dense ceramic ring 74 on the outer periphery. At a position corresponding to the back of the porous ceramic block group 72 of the steel plate 73, the ceramic block group 7
5 are arranged.
【0008】上記加工装置により、表面の平坦な半導体
装置50を製造する方法を、以下に説明する。図2
(a)において、固定装置70に、半導体装置50の層
間絶縁膜52の表面を基準に真空吸着した後、真空吸引
バルブ78をあけて半導体装置50の裏面のシリコン基
板53に、表面基準固定用治具71を真空吸着により固
定する。半導体装置50の裏面に半導体装置固定用治具
71を真空吸着により固定し、表面基準固定用治具71
が半導体装置50の裏面に倣った状態でセラミックブロ
ック群75を平坦化加工し、半導体装置50の表面と平
行に加工する。A method for manufacturing a semiconductor device 50 having a flat surface by the above processing apparatus will be described below. FIG.
5A, after the surface of the interlayer insulating film 52 of the semiconductor device 50 is vacuum-sucked to the fixing device 70 with reference to the surface, the vacuum suction valve 78 is opened and the silicon substrate 53 on the back surface of the semiconductor device 50 is fixed to the surface. The jig 71 is fixed by vacuum suction. A jig 71 for fixing the semiconductor device is fixed to the back surface of the semiconductor device 50 by vacuum suction, and a jig 71 for fixing the surface reference is provided.
Planarizes the ceramic block group 75 while following the back surface of the semiconductor device 50, and processes the ceramic block group 75 in parallel with the front surface of the semiconductor device 50.
【0009】次に、真空吸引バルブ78を閉じて、半導
体装置50を表面基準固定用治具71に吸着させた状態
で固定装置70の真空系統を切り、半導体装置50を表
面基準固定用治具71に密着させた状態で反転させて、
セラミックブロック群75を固定装置70上に真空吸引
にて固定する。そして、半導体装置50と加工用工具3
0の間に、加工液供給部44からの純水を供給しながら
両者を回転させ、両者の間隙を小さくしていく。この
時、超砥粒31が脱落して半導体装置50の層間絶縁膜
52に傷を付けないように、加工用工具30の超砥粒3
1を保持するボンド材をメタル等とし、超砥粒31の目
つぶれにより研削抵抗が増大し加工精度が劣化しないよ
うに、粒径が5μm以下の超砥粒を用いるのが好まし
い。また、超砥粒31と超砥粒31の間の目詰まりによ
る研削抵抗が増大するのを防ぐために、超砥粒31と相
対向する一部に電解ドレッシング用電極41を設け、ま
た電極41の周囲に隔壁45を設け、電解液が飛散しな
いように加工用工具30と電極41間に電解液43を吹
きかけながら印加する。Next, with the vacuum suction valve 78 closed, the vacuum system of the fixing device 70 is cut off while the semiconductor device 50 is adsorbed on the surface reference fixing jig 71, and the semiconductor device 50 is fixed to the surface reference fixing jig. Inverted while in close contact with 71,
The ceramic block group 75 is fixed on the fixing device 70 by vacuum suction. Then, the semiconductor device 50 and the processing tool 3
During zero, both are rotated while supplying pure water from the working fluid supply unit 44 to reduce the gap between them. At this time, the super-abrasive grains 3 of the processing tool 30 are used so that the super-abrasive grains 31 do not fall off and damage the interlayer insulating film 52 of the semiconductor device 50.
It is preferable to use a super-abrasive grain having a particle size of 5 μm or less so that the bond material holding 1 is made of metal or the like and the grinding resistance is not increased due to the crushing of the super-abrasive grain 31 and the processing accuracy is not deteriorated. In addition, in order to prevent the grinding resistance from increasing due to clogging between the superabrasive grains 31 and the superabrasive grains 31, an electrode 41 for electrolytic dressing is provided on a part opposed to the superabrasive grains 31. A partition 45 is provided around the periphery, and the electrolyte 43 is applied between the processing tool 30 and the electrode 41 while spraying the electrolyte 43 so that the electrolyte is not scattered.
【0010】なお、半導体装置50と加工用工具30の
接触を、固定装置70の下に配したセンサ76により検
知し、その位置から半導体装置50もしくは加工用工具
30のいづれかを、加工したい量だけ変位させることに
より、配線51上の層間絶縁膜52の厚さを一定量だけ
加工することができる。上記実施例の加工によれば、図
2(b)に示す様に、層間絶縁膜52の平坦な半導体装
置50が得られる。The contact between the semiconductor device 50 and the processing tool 30 is detected by a sensor 76 disposed below the fixing device 70, and from the position, either the semiconductor device 50 or the processing tool 30 is determined by a desired amount. By displacing, the thickness of the interlayer insulating film 52 on the wiring 51 can be processed by a certain amount. According to the processing of the above embodiment, a semiconductor device 50 having a flat interlayer insulating film 52 can be obtained as shown in FIG.
【0011】図3は、第2のうねり矯正法による場合の
うねり矯正部20の拡大図で、薄い例えば鋼板23の上
面には、半導体装置50を真空吸着するためポーラスセ
ラミックのブロック群24が配列されており、下面には
ポーラスセラミックのブロック群24と相対する位置に
セラミック等の剛体からなるブロック群25が配列され
ている。ブロック群25の下部には、各ブロックに対応
して例えばピエゾ素子のようなアクチュエータ21が配
され、アクチュエータ21の変位に伴ってブロック群2
5も変位し、アクチュエータ21に対応して鋼板23を
自由に変形できる構造になっている。FIG. 3 is an enlarged view of the undulation correction section 20 in the case of the second undulation correction method. On the upper surface of a thin steel plate 23, for example, a block group 24 of porous ceramics for vacuum-suctioning the semiconductor device 50 is arranged. On the lower surface, a block group 25 made of a rigid body such as ceramic is arranged at a position facing the block group 24 of porous ceramic. An actuator 21 such as a piezo element is disposed below the block group 25 in correspondence with each block.
5 is also displaced, so that the steel plate 23 can be freely deformed corresponding to the actuator 21.
【0012】上記加工装置により、表面の平坦な半導体
装置50を製造する方法を以下に説明する。初めに、ダ
ミーの半導体装置55(図示省略)をうねり矯正部20
のポーラスセラミックブロック群24上に真空吸着によ
り固定し、この半導体装置55をダイヤモンド等の超砥
粒31からなる工具30で加工して、その表面形状を測
定装置60で計測し、その形状をコンピュータ28(図
1)に記憶させておく。A method for manufacturing a semiconductor device 50 having a flat surface by the above processing apparatus will be described below. First, the dummy semiconductor device 55 (not shown) is undulated by the swell corrector 20.
Is fixed on the porous ceramic block group 24 by vacuum suction, the semiconductor device 55 is processed by a tool 30 made of superabrasive grains 31 such as diamond, the surface shape is measured by a measuring device 60, and the shape is measured by a computer. 28 (FIG. 1).
【0013】次に、半導体装置50をうねり矯正部20
のポーラスセラミックブロック群24上に真空吸着によ
り固定するとともに、ブロック群25及びアクチュエー
タ21のある空隙29を真空吸引し、各ブロック25と
各アクチュエータ21とを接触させ、半導体装置50が
アクチュエータ21の先端に倣った状態で固定する。表
面形状測定装置60により半導体装置50の上に堆積さ
れた層間絶縁膜52の表面の座標、あるいは半導体装置
50の上に形成された配線51の座標を計測し、コンピ
ュータ28に記憶されている基準面からの高さが一定に
なるように各アクチュエータ21に印加し、アクチュエ
ータ21の寸法変化によりアクチュエータ21上にある
各ブロック25およびポーラスセラミックの各ブロック
24を変位させ、半導体装置50のうねりを矯正して、
半導体装置50の層間絶縁膜52表面、あるいは配線5
1の上面を予めコンピュータ28に記憶させておいた面
形状と同一状態にする。Next, the semiconductor device 50 is moved to the swell corrector 20.
Is fixed on the porous ceramic block group 24 by vacuum suction, and the gap 29 having the block group 25 and the actuator 21 is vacuum-sucked, and each block 25 and each actuator 21 are brought into contact with each other. And fix it in the state of following. The coordinates of the surface of the interlayer insulating film 52 deposited on the semiconductor device 50 or the coordinates of the wiring 51 formed on the semiconductor device 50 are measured by the surface shape measuring device 60, and the reference values stored in the computer 28 are measured. The voltage is applied to each actuator 21 so that the height from the surface is constant, and each block 25 and each porous ceramic block 24 on the actuator 21 are displaced by the dimensional change of the actuator 21 to correct the undulation of the semiconductor device 50. do it,
The surface of the interlayer insulating film 52 of the semiconductor device 50 or the wiring 5
The upper surface of 1 is made to have the same state as the surface shape stored in the computer 28 in advance.
【0014】その状態で、ブロック群25のある空隙2
9を真空吸引して、固定用ブロック24をブロック25
と壁27との間に密着させ、固定する。In this state, the space 2 having the block group 25
9 is evacuated, and the fixing block 24 is
And between the wall 27 and fixed.
【0015】次に、半導体装置50をうねりを矯正した
状態で、図3の矢印Aに示すように回転させ、また、ダ
イヤモンド等の超砥粒31からなる工具30も図3の矢
印Bに示すように回転させ、半導体装置50と工具30
の超砥粒31のと間に加工液供給部44より純水を供給
しながら両者の間隙を小さくしていく。Next, the semiconductor device 50 is rotated as shown by an arrow A in FIG. 3 in a state where the undulation is corrected, and a tool 30 made of superabrasive grains 31 such as diamond is also shown by an arrow B in FIG. The semiconductor device 50 and the tool 30
The gap between the super-abrasive grains 31 is reduced while supplying pure water from the machining fluid supply unit 44 between the super-abrasive grains 31.
【0016】この時、超砥粒31が脱落して半導体装置
50の層間絶縁膜52に傷を付けないように、超砥粒3
1を保持する工具30のボンド材にメタル等の砥粒保持
力の大きなボンド材を用い、超砥粒31の目つぶれによ
り研削抵抗が増大し加工精度が劣化しないように、粒径
が5μm以下の超砥粒を用いるのが好ましい。また、超
砥粒31と超砥粒31の間の目詰まりによる研削抵抗が
増大するのを防ぐために、超砥粒31と対向する一部に
電解ドレッシング用電極41を設け、また電極41の周
囲に隔壁45を設け、電解液が飛散しないように工具3
0と電極41間に電解液43を吹きかけながら印加し、
ドレッシングを行いながら加工する。At this time, the super-abrasive grains 3 are formed so that the super-abrasive grains 31 do not fall off and damage the interlayer insulating film 52 of the semiconductor device 50.
The bonding material of the tool 30 holding the tool 1 is a bonding material having a large abrasive holding force such as metal, and the grain size is 5 μm or less so that the grinding resistance is not increased due to the crushing of the superabrasive grains 31 and the processing accuracy is not deteriorated. It is preferable to use super abrasive grains of Further, in order to prevent an increase in grinding resistance due to clogging between the superabrasive grains 31, an electrode 41 for electrolytic dressing is provided on a part opposed to the superabrasive grains 31, and around the electrode 41. Is provided with a partition wall 45 so that the electrolytic solution does not scatter.
Applying while spraying the electrolytic solution 43 between 0 and the electrode 41,
Process while dressing.
【0017】半導体装置50と工具30の超砥粒31と
の間隙が小さくなり、両者が接触すると、接触抵抗によ
り、半導体装置50が変形し、真空吸着により密着して
いるポーラスセラミックのブロック群24およびブロッ
ク群25が変位するので、ブロック群25の下にアクチ
ュエータ21あるいはギャップセンサ18を設置してお
くことにより、半導体装置50と工具30の超砥粒31
との接触を検知できる。その位置から半導体装置50若
しくは工具30のいづれかを、加工したい量だけ変位さ
せることにより、半導体装置50の表面に形成された配
線51上の層間絶縁膜52の厚さを一定量だけ加工でき
る。When the gap between the semiconductor device 50 and the super-abrasive grains 31 of the tool 30 is reduced and the two are brought into contact, the semiconductor device 50 is deformed due to contact resistance, and the porous ceramic block group 24 adhered by vacuum suction. And the block group 25 is displaced. By setting the actuator 21 or the gap sensor 18 below the block group 25, the semiconductor device 50 and the super abrasive grains 31 of the tool 30 are provided.
Can be detected. By displacing either the semiconductor device 50 or the tool 30 from that position by an amount to be processed, the thickness of the interlayer insulating film 52 on the wiring 51 formed on the surface of the semiconductor device 50 can be processed by a certain amount.
【0018】このとき、表面形状測定装置60で層間絶
縁膜52の厚さを計測しながら加工することにより、よ
り高精度に加工できる。At this time, by processing while measuring the thickness of the interlayer insulating film 52 with the surface shape measuring device 60, processing can be performed with higher precision.
【0019】図4は他の実施例で、ピエゾ素子等のアク
チュエータ21に力がかかったときのアクチュエータ2
1の変位量と電圧の関係をあらかじめ測定しておき、加
工中に常にフィードバックをかけることにより、半導体
装置50の配線51の上面もしくは層間絶縁膜52の上
面を基準に平坦に加工することができる。FIG. 4 shows another embodiment, in which the actuator 2 when a force is applied to an actuator 21 such as a piezo element.
By measuring the relationship between the amount of displacement and the voltage of 1 in advance and always applying feedback during processing, the semiconductor device 50 can be processed flat with reference to the upper surface of the wiring 51 or the upper surface of the interlayer insulating film 52. .
【0020】又、この時、アクチュエータ21の変位に
より接触した位置を検出できるとともに、接触した位置
を検出した後、全アクチュエータ21を加工したい量だ
け変位させ、加工圧による変形分を補正することによ
り、配線51上の層間絶縁膜厚さ54を精度良く一定に
加工できる。At this time, the contact position can be detected by the displacement of the actuator 21. After the contact position is detected, all the actuators 21 are displaced by an amount to be processed, and the deformation due to the processing pressure is corrected. In addition, the thickness 54 of the interlayer insulating film on the wiring 51 can be accurately and uniformly processed.
【0021】次に、図5を用いて他の実施例について説
明する。11は工具30を回転させる主軸で、軸受け外
周12とは流体15によって支持されている。主軸11
のフランジ部14の相対する位置にギャップセンサ18
が配されており、フランジ部14と軸受け外周12の軸
方向の間隙19を計測している。加工用工具30と半導
体装置50を回転させながら近付ける。両者が接触する
と接触抵抗により、加工用工具30を取り付けている主
軸11が変位し、主軸フランジ14と軸受け外周12間
の間隙が変わることによって接触を検知し、加工量だけ
変位したときに流体15の圧力を上げて流体軸受けの剛
性を高めることにより、主軸フランジ14は軸受け外周
12間の距離17と19が同じになるように戻り、実質
的に半導体装置50と加工用工具30の間に切り込みが
与えられ、半導体装置50の表面が加工される。Next, another embodiment will be described with reference to FIG. Reference numeral 11 denotes a main shaft for rotating the tool 30, and the bearing outer periphery 12 is supported by a fluid 15. Spindle 11
A gap sensor 18 is provided at a position
Are measured, and an axial gap 19 between the flange portion 14 and the bearing outer periphery 12 is measured. The processing tool 30 and the semiconductor device 50 are brought closer to each other while rotating. When they come into contact with each other, the main shaft 11 on which the machining tool 30 is attached is displaced due to contact resistance, and the contact is detected by changing the gap between the main shaft flange 14 and the bearing outer periphery 12. To increase the rigidity of the fluid bearing, the main shaft flange 14 returns so that the distances 17 and 19 between the bearing outer circumferences 12 become the same, and a cut is made substantially between the semiconductor device 50 and the processing tool 30. And the surface of the semiconductor device 50 is processed.
【0022】他の実施例を図6を用いて説明する。77
は工具30もしくはうねり矯正部20の変位量を測定す
るギャップセンサで、半導体装置50のうねりを矯正し
た後、半導体装置50と工具30の間隙を小さくしてい
き、工具30もしくはうねり矯正部20の変位量をギャ
ップセンサ77で測定することにより、半導体装置50
と工具30が接触した時の工具30もしくはうねり矯正
部の傾きによる変位量の変化から接触を検知し、工具3
0と半導体装置50の間に所定の切り込み量を与えるこ
とによっても、配線51上の層間絶縁膜厚さ54を一定
に加工できる。また、図5に示す実施例のように、工具
主軸11の振動を測定手段42により測定することによ
って、工具30と半導体装置50の接触を検知し、工具
30と半導体装置50の間に切り込みを与えることによ
っても、配線51上の層間絶縁膜厚さ54を一定に加工
できる。Another embodiment will be described with reference to FIG. 77
Is a gap sensor that measures the amount of displacement of the tool 30 or the undulation correcting section 20. After correcting the undulation of the semiconductor device 50, the gap between the semiconductor device 50 and the tool 30 is reduced, and the gap of the tool 30 or the undulation correcting section 20 is reduced. By measuring the amount of displacement with the gap sensor 77, the semiconductor device 50
The contact is detected from the change in the displacement amount due to the inclination of the tool 30 or the swell correction unit when the tool 3 comes into contact with the tool 30, and the tool 3
By providing a predetermined notch amount between 0 and the semiconductor device 50, the thickness 54 of the interlayer insulating film on the wiring 51 can be made constant. Further, as in the embodiment shown in FIG. 5, the contact between the tool 30 and the semiconductor device 50 is detected by measuring the vibration of the tool spindle 11 by the measuring means 42, and a cut is made between the tool 30 and the semiconductor device 50. Also, the thickness of the interlayer insulating film 54 on the wiring 51 can be made uniform.
【0023】これまで説明した実施例のいずれの場合
も、工具30に超砥粒砥石の代わりにダイヤモンドバイ
ト(省略)を用いて半導体装置50のうねりを矯正した
状態で回転させ、ダイヤモンドバイトと半導体装置50
の間に切り込みを与えることによっても配線51上の層
間絶縁膜52の厚さを一定に加工できる。In any of the embodiments described above, the tool 30 is rotated in a state where the undulation of the semiconductor device 50 is corrected by using a diamond tool (omitted) instead of the superabrasive grindstone, and the diamond tool and the semiconductor tool are rotated. Device 50
By providing a notch between them, the thickness of the interlayer insulating film 52 on the wiring 51 can be made uniform.
【0024】[0024]
【発明の効果】以上のように本発明によれば、研磨パッ
ドや研磨砥粒が不要となり、コストの低減を図ることが
でき、残膜管理が可能となり、平坦度の高い半導体装置
が得られる。As described above, according to the present invention, there is no need for a polishing pad or abrasive grains, the cost can be reduced, the remaining film can be controlled, and a semiconductor device with high flatness can be obtained. .
【図1】本発明の半導体装置の製造方法に使用される加
工装置の第1の実施例の斜視図である。FIG. 1 is a perspective view of a first embodiment of a processing apparatus used for a method of manufacturing a semiconductor device according to the present invention.
【図2】本発明の第1の実施例に係わる加工装置の拡大
断面図である。FIG. 2 is an enlarged sectional view of a processing apparatus according to the first embodiment of the present invention.
【図3】本発明の半導体装置の製造方法に使用される加
工装置の第2の実施例の断面図である。FIG. 3 is a sectional view of a second embodiment of a processing apparatus used in the method of manufacturing a semiconductor device according to the present invention.
【図4】本発明の半導体装置の製造方法に使用される加
工装置の第3の実施例の断面図である。FIG. 4 is a sectional view of a third embodiment of a processing apparatus used in the method of manufacturing a semiconductor device according to the present invention.
【図5】本発明の半導体装置の製造方法に使用される加
工装置の第4の実施例の断面図である。FIG. 5 is a sectional view of a fourth embodiment of a processing apparatus used for the method of manufacturing a semiconductor device according to the present invention.
【図6】本発明の半導体装置の製造方法に使用される加
工装置の第5の実施例の断面図である。FIG. 6 is a sectional view of a fifth embodiment of the processing apparatus used in the method of manufacturing a semiconductor device according to the present invention.
【図7】本発明によって平坦化加工された半導体装置の
断面図である。FIG. 7 is a cross-sectional view of a semiconductor device planarized by the present invention.
10:加工装置本体、 20:うねり矯正
部、30:平坦化加工用工具、 50:半導体
装置、51:配線、 52:層間
絶縁膜、60:表面形状測定装置、 70:固
定装置、71:表面基準固定用治具、 72:ポ
ーラスセラミックブロック群、73:鋼鈑、
74:セラミックリング、75:セラミッ
クブロック群、 78:真空吸引バルブ、80:割
り出しテーブル。Reference numeral 10: processing apparatus main body, 20: undulation corrector, 30: flattening tool, 50: semiconductor device, 51: wiring, 52: interlayer insulating film, 60: surface shape measuring device, 70: fixing device, 71: surface Reference fixing jig, 72: porous ceramic block group, 73: steel plate,
74: ceramic ring, 75: ceramic block group, 78: vacuum suction valve, 80: indexing table.
フロントページの続き (72)発明者 大川 哲男 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所生産技術研究所内 (72)発明者 小島 弘之 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所生産技術研究所内 (72)発明者 川森 優子 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所生産技術研究所内Continued on the front page (72) Inventor Tetsuo Okawa 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Prefecture Inside Hitachi, Ltd.Production Technology Research Institute (72) Inventor Hiroyuki Kojima 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Hitachi, Ltd. In Production Technology Laboratory (72) Inventor Yuko Kawamori 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Prefecture In-house Production Technology Laboratory, Hitachi, Ltd.
Claims (12)
もしくは配線上面を基準に矯正し、半導体装置表面もし
くは配線上面を基準に工具と半導体装置表面もしくは配
線上面との間に所定量の切り込みを与えることにより層
間絶縁膜を平坦化することを特徴とする半導体装置の製
造方法。An undulation on a surface of a semiconductor device is corrected based on the surface of the semiconductor device or the upper surface of the wiring, and a predetermined amount of cut is provided between the tool and the surface of the semiconductor device or the upper surface of the wiring based on the surface of the semiconductor device or the upper surface of the wiring. A method for manufacturing a semiconductor device, comprising:
項1記載の半導体装置の製造方法において、配線上に、
配線とその上層の配線とを絶縁するための層間絶縁膜を
堆積した後、半導体装置表面を基準となる平坦な面に固
定させて、半導体装置表面のうねりを矯正した状態で半
導体装置裏面に吸着させた変形自由な固定治具裏面を平
坦に加工する工程と、固定治具裏面を基準に工具と半導
体装置表面との間に切り込みを与え、工具と半導体装置
表面との接触を検知する工程と、工具と半導体装置表面
との間に所定量の切り込みを与える工程とからなること
を特徴とする半導体装置の製造方法。2. The method of manufacturing a semiconductor device according to claim 1, wherein the interlayer insulating film of the semiconductor device is planarized.
After depositing an interlayer insulating film for insulating the wiring and the wiring above it, the surface of the semiconductor device is fixed to a reference flat surface, and the surface of the semiconductor device is adsorbed on the back surface of the semiconductor device in a state where the undulation is corrected. A step of flattening the deformable free side of the fixing jig, a step of providing a cut between the tool and the surface of the semiconductor device based on the back of the fixing jig, and detecting contact between the tool and the surface of the semiconductor device. Providing a predetermined amount of cut between the tool and the surface of the semiconductor device.
項1記載の半導体装置の製造方法において、配線上に、
配線とその上層の配線とを絶縁するための層間絶縁膜を
堆積した後、配線上面の座標及びもしくは層間絶縁膜上
面の座標を測定する工程と、半導体装置を支持する治具
の内部に配置された複数個のアクチュエータにより半導
体装置を裏面から変位させて配線上面もしくは層間絶縁
膜上面のうねりを矯正する工程と、工具と半導体装置表
面との間に切り込みを与え、工具と半導体装置表面との
接触を検知する工程と、工具と半導体装置表面との間に
所定量の切り込みを与えて半導体装置の層間絶縁膜表面
を所定量だけ平坦に除去する工程とからなることを特徴
とする半導体装置の製造方法。3. The method for manufacturing a semiconductor device according to claim 1, wherein the interlayer insulating film of the semiconductor device is planarized.
After depositing an interlayer insulating film for insulating the wiring and the wiring above it, measuring the coordinates of the upper surface of the wiring and / or the coordinates of the upper surface of the interlayer insulating film; and placing the inside of a jig supporting the semiconductor device. Correcting the undulation on the upper surface of the wiring or the upper surface of the interlayer insulating film by displacing the semiconductor device from the back surface by the plurality of actuators, and providing a notch between the tool and the surface of the semiconductor device to make contact between the tool and the surface of the semiconductor device. Manufacturing the semiconductor device, comprising: providing a predetermined amount of cut between the tool and the surface of the semiconductor device to remove the interlayer insulating film surface of the semiconductor device by a predetermined amount flat. Method.
項1記載の半導体装置の製造方法において、配線上に、
配線とその上層の配線とを絶縁するための層間絶縁膜を
堆積した後、配線上面の座標及びもしくは層間絶縁膜上
面の座標を測定する工程と、半導体装置を支持する治具
の内部に配置された複数個のアクチュエータにより半導
体装置を裏面から変位させて配線上面もしくは層間絶縁
膜上面のうねりを矯正する工程と、半導体装置表面の層
間絶縁膜の厚さを測定しながら工具と半導体装置表面と
の間に所定量の切り込みを与え、半導体装置の層間絶縁
膜表面を所定量だけ平坦に除去する工程とからなること
を特徴とする半導体装置の製造方法。4. The method of manufacturing a semiconductor device according to claim 1, wherein the interlayer insulating film of the semiconductor device is planarized.
After depositing an interlayer insulating film for insulating the wiring and the wiring above it, measuring the coordinates of the upper surface of the wiring and / or the coordinates of the upper surface of the interlayer insulating film; and placing the inside of a jig supporting the semiconductor device. Displacing the semiconductor device from the back surface with the plurality of actuators to correct the undulation on the upper surface of the wiring or the upper surface of the interlayer insulating film; and measuring the thickness of the interlayer insulating film on the surface of the semiconductor device by measuring the thickness of the tool and the surface of the semiconductor device. Providing a predetermined amount of cuts therebetween, and flattening the surface of the interlayer insulating film of the semiconductor device by a predetermined amount.
項3または請求項4記載の半導体装置の製造方法におい
て、アクチュエータにピエゾ素子を用いて半導体装置を
裏面から変位させて配線上面もしくは層間絶縁膜上面の
うねりを矯正し、半導体装置の配線上面もしくは層間絶
縁膜上面を平坦にした状態で固定し、半導体装置の層間
絶縁膜表面を所定量だけ平坦に除去することを特徴とす
る半導体装置の製造方法。5. A method of manufacturing a semiconductor device according to claim 3, wherein the interlayer insulating film of the semiconductor device is flattened by displacing the semiconductor device from the back surface by using a piezo element as an actuator. A semiconductor device, which corrects undulation on an upper surface of an insulating film, fixes the wiring upper surface of the semiconductor device or the upper surface of the interlayer insulating film in a flat state, and removes a predetermined amount of the interlayer insulating film surface of the semiconductor device. Manufacturing method.
項3または請求項4記載の半導体装置の製造方法におい
て、アクチュエータにピエゾ素子を用いて半導体装置を
裏面から変位させて配線上面もしくは層間絶縁膜上面の
うねりを矯正し、半導体装置の配線上面もしくは層間絶
縁膜上面を基準として、半導体装置表面加工中の加工力
による半導体装置表面変形量を測定し、上記ピエゾ素子
により補正しながら半導体装置の層間絶縁膜表面を所定
量だけ平坦に除去することを特徴とする半導体装置の製
造方法。6. A method of manufacturing a semiconductor device according to claim 3, wherein the interlayer insulating film of the semiconductor device is flattened by displacing the semiconductor device from the back surface by using a piezo element as an actuator. Correcting the undulation of the upper surface of the insulating film, measuring the amount of surface deformation of the semiconductor device by the processing force during the processing of the surface of the semiconductor device with reference to the upper surface of the wiring of the semiconductor device or the upper surface of the interlayer insulating film, and correcting the semiconductor device by the piezo element. A method for manufacturing a semiconductor device, wherein a predetermined amount of an interlayer insulating film surface is removed flat.
項2または請求項3記載の半導体装置の製造方法におい
て、半導体装置を支持する治具内部にピエゾ素子を配置
し、工具と半導体装置表面との間に所定量の切り込みを
与え、工具が半導体装置表面に当たって力がかかった時
のピエゾ素子の電圧の変化により半導体装置表面と工具
との接触を検知することを特徴とする半導体装置の製造
方法。7. A method for manufacturing a semiconductor device according to claim 2, wherein the interlayer insulating film of the semiconductor device is flattened, wherein a piezo element is arranged inside a jig for supporting the semiconductor device, and the tool and the semiconductor device are arranged. A predetermined amount of notch is provided between the surface of the semiconductor device and a contact between the surface of the semiconductor device and the tool by detecting a change in the voltage of the piezo element when a force is applied to the surface of the semiconductor device by applying a force to the surface of the semiconductor device. Production method.
項2または請求項3記載の半導体装置の製造方法におい
て、半導体装置を支持する治具内部に複数個のギャップ
センサを配置し、工具が半導体装置表面に当たって力が
かかった時の工具もしくは半導体装置を固定している治
具の変位を測定することにより半導体装置表面と工具と
の接触を検知することを特徴とする半導体装置の製造方
法。8. A method for manufacturing a semiconductor device according to claim 2, wherein a plurality of gap sensors are disposed inside a jig for supporting the semiconductor device. Measuring the displacement of a tool or a jig holding the semiconductor device when a force is applied to the surface of the semiconductor device to detect contact between the tool and the surface of the semiconductor device. .
項2または請求項3記載の半導体装置の製造方法におい
て、工具が半導体装置表面に当たって力がかかった時
の、工具を支持回転させている軸、もしくは半導体装置
を固定するための治具を支持しているワーク軸の変位に
より、半導体装置表面と工具との接触を検知することを
特徴とする半導体装置の製造方法。9. The method for manufacturing a semiconductor device according to claim 2, wherein the interlayer insulating film of the semiconductor device is flattened, wherein the tool is supported and rotated when a force is applied to the surface of the semiconductor device. A method of manufacturing a semiconductor device, comprising: detecting a contact between a tool and a surface of a semiconductor device by a displacement of a shaft that is present or a work axis that supports a jig for fixing the semiconductor device.
求項9記載の半導体装置の製造方法において、工具軸も
しくはワーク軸の軸受けに流体軸受けを用い、軸の変位
により接触を検知した後、流体の圧力を変化させること
によって工具と半導体装置表面との間に所定量の切り込
みを与えることを特徴とする半導体装置の製造方法。10. A method of manufacturing a semiconductor device according to claim 9, wherein the interlayer insulating film of the semiconductor device is flattened, and a fluid bearing is used as a bearing of the tool shaft or the work shaft, and after contact is detected by displacement of the shaft, A method of manufacturing a semiconductor device, wherein a predetermined amount of cut is provided between a tool and a surface of a semiconductor device by changing a pressure of a fluid.
求項2または請求項3記載の半導体装置の製造方法にお
いて、工具が半導体装置表面に当たって力がかかった時
の、工具軸もしくはワーク軸の振動の変化により、半導
体装置表面と工具との接触を検知することを特徴とする
半導体装置の製造方法。11. The method for manufacturing a semiconductor device according to claim 2, wherein the interlayer insulating film of the semiconductor device is flattened. A method for manufacturing a semiconductor device, comprising: detecting a contact between a surface of the semiconductor device and a tool based on a change in vibration.
製造方法により、平坦面をもって製造されたことを特徴
とする半導体装置。12. A semiconductor device manufactured with a flat surface by the manufacturing method according to claim 1.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17998798A JPH1174242A (en) | 1997-06-30 | 1998-06-26 | Method for manufacturing semiconductor device |
PCT/JP1998/002907 WO1999000831A1 (en) | 1997-06-30 | 1998-06-29 | Method of manufacturing semiconductor devices |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17352297 | 1997-06-30 | ||
JP9-173522 | 1997-06-30 | ||
JP17998798A JPH1174242A (en) | 1997-06-30 | 1998-06-26 | Method for manufacturing semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1174242A true JPH1174242A (en) | 1999-03-16 |
Family
ID=26495470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17998798A Pending JPH1174242A (en) | 1997-06-30 | 1998-06-26 | Method for manufacturing semiconductor device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPH1174242A (en) |
WO (1) | WO1999000831A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000006003A (en) * | 1998-04-21 | 2000-01-11 | Asahi Glass Co Ltd | Method and apparatus for pressing plate material |
JP2009049356A (en) * | 2007-07-26 | 2009-03-05 | Denso Corp | Method of forming metal electrode of semiconductor device, and semiconductor device |
US7800232B2 (en) | 2007-03-06 | 2010-09-21 | Denso Corporation | Metallic electrode forming method and semiconductor device having metallic electrode |
US8263490B2 (en) | 2009-09-29 | 2012-09-11 | Denso Corporation | Formation method of metallic electrode of semiconductor device and metallic electrode formation apparatus |
JP2019107729A (en) * | 2017-12-18 | 2019-07-04 | 株式会社ディスコ | Holding table and polishing device provided with holding table |
KR102005191B1 (en) * | 2018-05-03 | 2019-07-29 | 일윤주식회사 | Fluorescent layer flattening apparatus for led package |
CN110193774A (en) * | 2018-02-27 | 2019-09-03 | 株式会社迪思科 | Processing unit (plant) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6387807B1 (en) | 2001-01-30 | 2002-05-14 | Speedfam-Ipec Corporation | Method for selective removal of copper |
EP3790617B1 (en) | 2018-05-10 | 2023-10-11 | Kardium Inc. | Catheter sheath devices |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06196456A (en) * | 1992-12-24 | 1994-07-15 | Fujitsu Ltd | Wafer polishing apparatus and wafer polishing method |
JPH06333891A (en) * | 1993-05-24 | 1994-12-02 | Sony Corp | Substrate polishing apparatus and substrate holding table |
JP2536434B2 (en) * | 1993-10-29 | 1996-09-18 | 日本電気株式会社 | Semiconductor substrate polishing equipment |
JP3329034B2 (en) * | 1993-11-06 | 2002-09-30 | ソニー株式会社 | Polishing equipment for semiconductor substrates |
-
1998
- 1998-06-26 JP JP17998798A patent/JPH1174242A/en active Pending
- 1998-06-29 WO PCT/JP1998/002907 patent/WO1999000831A1/en active Application Filing
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000006003A (en) * | 1998-04-21 | 2000-01-11 | Asahi Glass Co Ltd | Method and apparatus for pressing plate material |
US7800232B2 (en) | 2007-03-06 | 2010-09-21 | Denso Corporation | Metallic electrode forming method and semiconductor device having metallic electrode |
US7910460B2 (en) | 2007-03-06 | 2011-03-22 | Denso Corporation | Metallic electrode forming method and semiconductor device having metallic electrode |
JP2009049356A (en) * | 2007-07-26 | 2009-03-05 | Denso Corp | Method of forming metal electrode of semiconductor device, and semiconductor device |
US8263490B2 (en) | 2009-09-29 | 2012-09-11 | Denso Corporation | Formation method of metallic electrode of semiconductor device and metallic electrode formation apparatus |
JP2019107729A (en) * | 2017-12-18 | 2019-07-04 | 株式会社ディスコ | Holding table and polishing device provided with holding table |
CN110193774A (en) * | 2018-02-27 | 2019-09-03 | 株式会社迪思科 | Processing unit (plant) |
JP2019149461A (en) * | 2018-02-27 | 2019-09-05 | 株式会社ディスコ | Processing device |
KR102005191B1 (en) * | 2018-05-03 | 2019-07-29 | 일윤주식회사 | Fluorescent layer flattening apparatus for led package |
Also Published As
Publication number | Publication date |
---|---|
WO1999000831A1 (en) | 1999-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3515917B2 (en) | Method for manufacturing semiconductor device | |
JP3076291B2 (en) | Polishing equipment | |
CN1070403C (en) | Workpiece holder for rotary grinding machines for grinding semiconductor wafers, and method of positioning the workpiece holder | |
US6540597B1 (en) | Polishing pad conditioner | |
JP5827976B2 (en) | Polishing equipment | |
JP2005153085A (en) | Truing method of chamfering grinding wheel and chamfering device | |
JP7046668B2 (en) | Wafer chamfering device and wafer chamfering method | |
JP6283081B1 (en) | Setting method of processing equipment | |
KR20010107745A (en) | Method and apparatus for leveling process and manufacturing method for semiconductor device | |
JPH1174242A (en) | Method for manufacturing semiconductor device | |
Li et al. | Simultaneous double side grinding of silicon wafers: a literature review | |
WO2006132725A1 (en) | Conditioning element for electrochemical mechanical processing | |
JP4749700B2 (en) | Polishing cloth, wafer polishing apparatus and wafer manufacturing method | |
US6386957B1 (en) | Workpiece holder for polishing, method for producing the same, method for polishing workpiece, and polishing apparatus | |
JP2000158306A (en) | Both-surface grinding device | |
KR102818061B1 (en) | Processing device | |
JP3497492B2 (en) | Hard foam resin grooved pad for semiconductor device processing and pad turning groove processing tool | |
JPH0732252A (en) | Work rotation type grinding method, work rotation type grinding machine, silicon wafer and ceramic substrate | |
WO2006041629A1 (en) | Semiconductor wafer material removal apparatus and method for operating the same | |
JPH11267968A (en) | Polishing method of wafer and polishing machine used therefor | |
JP3575944B2 (en) | Polishing method, polishing apparatus, and method of manufacturing semiconductor integrated circuit device | |
JP3612599B2 (en) | Polishing method and apparatus | |
US6821190B1 (en) | Static pad conditioner | |
JP2002217145A (en) | Chuck for polishing apparatus | |
JPH02274459A (en) | Automatic surface grinding method and device for semiconductor wafers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Effective date: 20040615 Free format text: JAPANESE INTERMEDIATE CODE: A02 |