JPH1173950A - Manufacture of lead-acid battery - Google Patents

Manufacture of lead-acid battery

Info

Publication number
JPH1173950A
JPH1173950A JP9232073A JP23207397A JPH1173950A JP H1173950 A JPH1173950 A JP H1173950A JP 9232073 A JP9232073 A JP 9232073A JP 23207397 A JP23207397 A JP 23207397A JP H1173950 A JPH1173950 A JP H1173950A
Authority
JP
Japan
Prior art keywords
pores
lead
discharge
sulfuric acid
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9232073A
Other languages
Japanese (ja)
Other versions
JP3505972B2 (en
Inventor
Takeshi Hatanaka
剛 畑中
Katsuhiro Takahashi
勝弘 高橋
Yoshiaki Nitta
芳明 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23207397A priority Critical patent/JP3505972B2/en
Publication of JPH1173950A publication Critical patent/JPH1173950A/en
Application granted granted Critical
Publication of JP3505972B2 publication Critical patent/JP3505972B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pore structure for improving the discharge capacity in high rate discharge and a low rate discharge by specifying the total pore volume of a positive pole plate and the total pore volume of pores having diameters within a specified range. SOLUTION: A pore structure of a positive pole plate is set so that the total pore volume is 0.14-0.18 cm<3> /g, the total pore volume of pores having diameters within a range of 0.01 or more and less than 0.1 is 0.02 cm<3> /g or more, the total pore volume of pores having diameters within the range of 0.1 or more and 4.0 m or less is 0.13 cm<3> /g. In order to provide this pore structure, chemical conversion charge is performed in mannitol or a diluted sulfuric acid containing mannitol and hydrazine sulfide, when a non-chemical conversion treated plate is used. Since the structure is determined in the process of converting the non-chemical conversion plate into lead dioxide when mannitol is added to the electrolyte in chemical conversion, the pore structure of the positive pole plate can be controlled by its addition quantity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉛蓄電池、特に正
極板の構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lead-acid battery, and more particularly to a structure of a positive electrode plate.

【0002】[0002]

【従来の技術】現在、鉛蓄電池の極板製造工程において
ペースト式が生産性に富む工業的製造法として最も普及
している。ペースト式極板は、鉛または鉛合金製の鋳造
またはエキスパンド格子からなる集電体の空隙部に、鉛
粉に希硫酸と水を加えて混練したペーストを充填後、熟
成・乾燥することにより、まず未化成板を作製する。ペ
ーストの充填後に希硫酸に浸す浸酸処理によって、極板
表面に硫酸鉛を生成させて、強固にしたのちに乾燥する
場合もある。
2. Description of the Related Art At present, the paste method is most widely used as an industrial production method having high productivity in the production process of an electrode plate of a lead storage battery. The paste type electrode plate is filled with a paste made by adding dilute sulfuric acid and water to lead powder, and then aging and drying the voids of a current collector made of a cast or expanded lattice made of lead or a lead alloy, First, an unformed plate is prepared. In some cases, lead sulphate is generated on the surface of the electrode plate by acid immersion in dilute sulfuric acid after filling with the paste, and the electrode plate is dried after hardening.

【0003】ここで得られる未化成極板の成分は、まだ
起電能力がないので希硫酸電解液中で充電し、起電能力
のある活物質成分に変換することが必要である。この工
程をふつう化成工程という。また、この充電前の極板を
未化成板という。この化成充電は極板の状態で行う極板
化成法と、未化成板の状態で電池を構成して行う電槽化
成法とがある。いずれにしても、一般的には化成工程後
の充電状態で出荷されている。
[0003] Since the components of the unformed electrode plate obtained here do not yet have an electromotive ability, it is necessary to charge them in a dilute sulfuric acid electrolyte to convert them into active material components having an electromotive ability. This step is usually called a chemical conversion step. The electrode plate before charging is called an unformed plate. The formation charge includes a plate formation method performed in the state of an electrode plate and a battery formation method performed by configuring a battery in an unformed state. In any case, it is generally shipped in a charged state after the chemical conversion step.

【0004】鉛蓄電池用の鉛粉の主成分は、一般には一
酸化鉛で、金属鉛を15〜35%含んでいるが、必要に応じ
て鉛丹などを添加する場合もある。鉛粉と希硫酸を混練
したペーストは硫酸鉛と一部塩基性硫酸鉛などを生成
し、適度の堅さと煎断強度となる。熟成中には、金属鉛
の酸化と塩基性硫酸鉛の結晶成長とともに、部分的に水
分が蒸発して粉体粒子相互間が結着するセメンテーショ
ン現象によって極板は硬化する。この段階が未化成板で
ある。この未化成板を化成して得られた正極板は多孔体
となり,その細孔構造が鉛蓄電池の放電特性に影響して
いることが知られている。
[0004] The main component of the lead powder for a lead storage battery is generally lead monoxide, which contains 15 to 35% of metallic lead. However, if necessary, lead and the like may be added. A paste obtained by kneading lead powder and dilute sulfuric acid produces lead sulfate and partially basic lead sulfate, and has an appropriate hardness and decay strength. During the aging, the electrode plate is hardened by the cementation phenomenon in which the moisture is partially evaporated and the powder particles are bound together with the oxidation of the metallic lead and the crystal growth of the basic lead sulfate. This stage is the unformed plate. It is known that the positive electrode plate obtained by forming this unformed plate becomes porous, and the pore structure affects the discharge characteristics of the lead-acid battery.

【0005】上記正極板の多孔体の細孔分布は、一般に
は図1のような2つのピークを有している。ここで細孔
径が0.1から4.0μmの範囲にある細孔を細孔A、0.
01から0.1μmの範囲にある細孔を細孔Bとすると、
図2に示すように細孔Aは活物質粒子1の隙間2であ
り、細孔Bは化成時に硫酸鉛あるいは塩基性硫酸鉛がP
bO2に変化するときの体積減少によって形成された粒
子表面の針状結晶間に存在する隙間3であると考えられ
る。
The pore distribution of the porous body of the positive electrode plate generally has two peaks as shown in FIG. Here, pores having pore diameters in the range of 0.1 to 4.0 μm are referred to as pores A and 0.1.
Assuming that pores in the range of 01 to 0.1 μm are pores B,
As shown in FIG. 2, the pores A are the gaps 2 of the active material particles 1, and the pores B are formed of lead sulfate or basic lead sulfate during formation.
It is considered to be the gap 3 existing between the acicular crystals on the particle surface formed by the volume decrease when changing to bO 2 .

【0006】[0006]

【発明が解決しようとする課題】極板の細孔構造は、蓄
電池としての放電特性に影響が表れる。それは、前記の
細孔AおよびBがそれぞれ放電反応に重要な働きを担っ
ているからである。主に細孔Aは硫酸の拡散経路であ
り、この細孔を通って硫酸が極板内部に拡散する。また
細孔Bは極板比表面積の大部分を占めており、放電にお
ける電荷移動反応はこの細孔でおこっていると考えられ
る。
The pore structure of the electrode plate affects the discharge characteristics of the storage battery. This is because the pores A and B each play an important role in the discharge reaction. Pore A is mainly a diffusion path of sulfuric acid, and sulfuric acid diffuses into the inside of the electrode plate through the pores. Further, the pore B occupies most of the specific surface area of the electrode plate, and it is considered that the charge transfer reaction in the discharge occurs in the pore.

【0007】しかし、鉛蓄電池の放電では析出する硫酸
鉛が上記の細孔構造を変化させてしまい、この細孔変化
によって放電が終了している。放電が終了するメカニズ
ムは放電率によって異なり、次の2つの放電率領域に分
かれると考えられる。
However, in the discharge of the lead storage battery, the precipitated lead sulfate changes the above-mentioned pore structure, and the discharge is terminated by the change in the pores. The mechanism by which discharge ends depends on the discharge rate, and is considered to be divided into the following two discharge rate regions.

【0008】放電率が小さい場合、硫酸は細孔Aおよび
細孔Bの双方に十分拡散されるために、溶解してきたP
2+イオンはすぐにSO4 2ーイオンと反応し、硫酸鉛が
細孔Aにも細孔Bにも析出することになる。この放電率
での放電では、細孔Bが硫酸鉛によって塞がれてしま
い、上記の溶解反応が起こる場が失われることによって
終了する。以降、この放電率領域を第1領域と称するこ
ととする。
[0008] When the discharge rate is small, sulfuric acid is sufficiently diffused into both the pores A and B, so that the dissolved P
b 2+ ions immediately react with SO 4 2 over ion, so that the lead sulfate also precipitates in the pores B in the pore A. The discharge at this discharge rate ends when the pores B are closed by the lead sulfate, and the place where the above dissolution reaction occurs is lost. Hereinafter, this discharge rate region is referred to as a first region.

【0009】放電率が大きくなるにしたがって、小さな
細孔BへのSO4 2ーイオンの拡散は反応速度に対して間
に合わなくなり、溶解してきたPb2+イオンの一部ある
いはほとんど全てが細孔Bから細孔Aへ拡散してしま
い、硫酸鉛となって析出してしまう。この状況では細孔
A及びBの両方に硫酸鉛が析出することになるが、放電
は細孔Aが硫酸鉛によって塞がり、SO4 2ーイオンの拡
散が制限されることになり終了する。以降、この放電率
領域を第2領域と称することとする。
[0009] In accordance with the discharge rate increases, the diffusion of SO 4 2 over ions into small pores B becomes too late with respect to the reaction rate, some or nearly all of the Pb 2+ ions that have dissolved pores B , And diffuses into the pores A, and precipitates as lead sulfate. Although will be precipitated lead sulfate in both pores A and B in this situation, discharge pores A is blocked by the lead sulfate, SO 4 results in the diffusion of 2-ions is limited ends. Hereinafter, this discharge rate region is referred to as a second region.

【0010】これらのことから、一般には大きな孔径の
細孔Aを増加させることが高率放電時の高容量化には重
要であると考えられてきた。そのための手段としてペー
スト中の水や硫酸の量を増加させたり、原料である鉛粉
の粒径を制御する方法が試みられた。
[0010] From these facts, it has generally been considered that increasing the pores A having a large pore diameter is important for increasing the capacity during high-rate discharge. As means for that purpose, methods of increasing the amount of water or sulfuric acid in the paste or controlling the particle size of lead powder as a raw material have been tried.

【0011】しかし、上記の手法では期待通りの効果は
得られず、逆に低率放電容量や寿命特性が低下してしま
った。これらの現象を詳細に検討した結果、高率放電特
性の向上には細孔Bの増加による電流密度を低下と細孔
Aによる硫酸の拡散を満足させなければならない、つま
り細孔A,Bの量をバランスすることが大切であること
がわかった。
[0011] However, the above-mentioned method did not provide the expected effect, and conversely reduced the low rate discharge capacity and the life characteristics. As a result of examining these phenomena in detail, in order to improve the high rate discharge characteristics, the current density must be reduced by increasing the pores B and the diffusion of sulfuric acid by the pores A must be satisfied. It turned out that it was important to balance the quantities.

【0012】本発明は、このような従来の課題を解決す
るものであり、高率放電および低率放電での放電容量を
向上させるための適正な細孔構造とすることを目的とす
る。
An object of the present invention is to solve such a conventional problem, and an object of the present invention is to provide an appropriate pore structure for improving discharge capacity in high-rate discharge and low-rate discharge.

【0013】[0013]

【課題を解決するための手段】本発明は上記目的を達成
するために、正極板の細孔構造を、全細孔体積が0.1
4〜0.18cm3/gで、直径が0.01以上0.1μm未満
の範囲にある細孔の全細孔体積が0.02cm3/g以上で
あり、直径が0.1以上4.0μm以下の範囲にある細孔
の全細孔体積が0.13cm3/g以下としたものである。
According to the present invention, in order to achieve the above object, the pore structure of the positive electrode plate is adjusted to a total pore volume of 0.1.
4 to 0.18 cm3 / g, the total pore volume of pores having a diameter in the range of 0.01 to less than 0.1 μm is 0.02 cm3 / g or more, and the diameter is 0.1 to 4.0 μm. The total pore volume of the pores in the range of 0.13 cm3 / g or less.

【0014】この極板は細孔Bが増加しており、高率放
電でも従来の極板に比べ、細孔B個々でみると電流密度
は小さくなっている。このため細孔B1つあたりのPb
2+イオン溶解量が少なく、細孔Aへの拡散も少なくな
る。その結果、硫酸の拡散通路である細孔Aが塞がれる
のが遅れ、高率放電容量が向上することになる。
In this electrode plate, the pores B are increased, and the current density is smaller in each of the pores B than in the conventional electrode plate even at a high rate discharge. Therefore, Pb per pore B
The amount of 2+ ions dissolved is small, and the diffusion into the pore A is also small. As a result, the blocking of the pores A, which are diffusion paths for sulfuric acid, is delayed, and the high-rate discharge capacity is improved.

【0015】上記構成とするための製造法としては、未
化成板を用いる場合は、マンニトールあるいはマンニト
ールと硫酸ヒドラジンが含まれている希硫酸中で化成充
電するものである。
As a manufacturing method for the above constitution, when an unformed plate is used, formation and charging are performed in mannitol or dilute sulfuric acid containing mannitol and hydrazine sulfate.

【0016】マンニトールは有機化合物の一種であり、
鉛酸化物を溶解させる作用を有する。化成時の電解液中
にマンニトールを加えておくと未化成板が二酸化鉛に変
換される過程で構造が決定されていくものであって、そ
の添加量によって正極板の細孔構造を制御することがで
きる。上記の作用は極板化成、電槽化成いずれの方法で
実施した場合でも同様である。
Mannitol is a kind of organic compound,
It has the effect of dissolving lead oxide. If mannitol is added to the electrolytic solution during chemical formation, the structure is determined in the process of converting the unformed plate to lead dioxide, and the amount of the added material controls the pore structure of the positive electrode plate. Can be. The above operation is the same regardless of whether the method is carried out by electrode plate formation or battery case formation.

【0017】また、化成された極板を用いる場合は、H
g/Hg2SO4基準で-1.10Vから-1.60Vの範囲
にまで過放電し、その後再び充電する工程を少なくとも
一回以上行うものである。
When a chemically formed electrode plate is used, H
The step of overdischarging the battery in the range of −1.10 V to −1.60 V based on g / Hg 2 SO 4 and then charging it again is performed at least once.

【0018】これは過放電によってPb2+イオンが過溶
解する現象を利用するものであって、この場合も電池を
構成後に行っても電槽外で行っても同様の効果がある。
This utilizes the phenomenon that Pb 2+ ions are over-dissolved due to overdischarge. In this case, the same effect can be obtained even after the battery is constructed or outside the battery case.

【0019】さらに、この過放電による製造法は、上記
したマンニトールまたはマンニトールと硫酸ヒドラジン
を添加した希硫酸中で行うと相乗効果が得られる。
Furthermore, a synergistic effect can be obtained when the production method by overdischarge is performed in the above-mentioned mannitol or dilute sulfuric acid to which mannitol and hydrazine sulfate are added.

【0020】[0020]

【発明の実施の形態】まず従来の処方に基づいて正極用
又は負極用原料として重量比で金属鉛25%、一酸化鉛
75%(酸化度75%)からなる平均粒径3μmの鉛粉
を用い、負極にはこの他、重量比2%の硫酸バリウムと
1%の炭素粉末、0.5%のリグニンを添加して混合材
を調製した。ちなみに、正極用の添加剤としては上記の
ほかに、鉛丹や塩基性硫酸鉛や二酸化鉛などの鉛化合物
の添加が可能である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, a lead powder having an average particle diameter of 3 .mu.m consisting of 25% by weight of metallic lead and 75% of lead monoxide (degree of oxidation: 75%) is used as a raw material for a positive electrode or a negative electrode based on a conventional recipe. In addition, a mixture was prepared by adding 2% by weight of barium sulfate, 1% of carbon powder, and 0.5% of lignin to the negative electrode. Incidentally, as the additive for the positive electrode, in addition to the above, a lead compound such as lead red, basic lead sulfate, and lead dioxide can be added.

【0021】未化成板として次の3種類を使用した。 <未化成板1> 上記の原料粉末に、比重1.40の希
硫酸と水を加え練合したペーストをエキスパンド格子に
充填した後、熟成・乾燥して未化成極板を得た。 <未化成板2> 未化成極板1に対し、添加する水の量
を30%増加したペーストを用いて作製した。 <未化成板3> 平均粒径が1μmの鉛粉を使用し、上
記未化成板1と同様の手法で作製した。
The following three types were used as unformed plates. <Unformed plate 1> A paste obtained by adding dilute sulfuric acid having a specific gravity of 1.40 and water to the above raw material powder and kneading the mixture was filled in an expand lattice, and then aged and dried to obtain an unformed electrode plate. <Non-chemical conversion plate 2> It manufactured using the paste which added 30% of the amount of water added to the non-chemical conversion plate 1. <Unformed plate 3> A lead powder having an average particle size of 1 μm was used, and was produced in the same manner as the above-mentioned unformed plate 1.

【0022】それぞれの未化成板の乾燥後の重量はいず
れも同じとし、正極2枚、負極3枚で公称容量3Ah相
当の電池を構成した。またこれらの電池は正極容量制限
である。
The weight of each unformed plate after drying was the same, and a battery having a nominal capacity of 3 Ah was composed of two positive electrodes and three negative electrodes. These batteries also have a positive electrode capacity limitation.

【0023】また化成液として次の2種類を用いた <化成液1> 比重1.20に調整した希硫酸。 <化成液2> 比重1.20に調整した希硫酸にマンニ
トールを100mg/lと硫酸ヒドラジンを500mg/lの割
合で添加した化成液。
The following two chemical conversion solutions were used. <Chemical conversion solution 1> Dilute sulfuric acid adjusted to a specific gravity of 1.20. <Chemical solution 2> A chemical solution in which mannitol and hydrazine sulfate are added at a ratio of 100 mg / l and 500 mg / l to dilute sulfuric acid adjusted to a specific gravity of 1.20.

【0024】本実施例1では未化成極板1と化成液2を
用いて電池を作製した。また、本実施例1と比較するた
め、従来例1として未化成極板1と化成液1を用いたも
の、従来例2として未化成極板2と化成液1を用いたも
の、従来例3として未化成極板3と化成液1を用いた電
池を作製した。
In Example 1, a battery was produced using the unformed electrode plate 1 and the chemical solution 2. Further, in order to compare with the present embodiment 1, the conventional example 1 uses the unformed electrode plate 1 and the chemical liquid 1, the conventional example 2 uses the unformed electrode plate 2 and the chemical liquid 1, and the conventional example 3 As a result, a battery using the unformed electrode plate 3 and the chemical conversion solution 1 was produced.

【0025】なお、化成は各電池とも同一条件で行い、
化成電流は公称容量換算で0.2Cの定電流で17時間
電槽化成を行った。
The formation was performed under the same conditions for each battery.
The battery formation was performed at a constant current of 0.2 C in terms of nominal capacity for 17 hours.

【0026】図3に本実施例1の細孔構造4および従来
例1、2、3の細孔構造5、6、7を示す。図からそれ
ぞれの極板が異なった細孔構造を有していることがわか
る。この中で本実施例1による正極細孔構造の特徴は、
他の極板に比べ細孔Bが非常に発達し、細孔Aが少ない
ことである。
FIG. 3 shows the pore structure 4 of the first embodiment and the pore structures 5, 6, and 7 of the conventional examples 1, 2, and 3. From the figure, it can be seen that each electrode plate has a different pore structure. Among them, the feature of the positive electrode pore structure according to the first embodiment is as follows.
The pores B are much more developed and the pores A are less than those of other electrode plates.

【0027】図4にこれらの極板を公称容量換算で0.
2Cの放電率で放電した結果を、図5に同じく3Cで放
電した結果を示す。
FIG. 4 shows these electrodes in a nominal capacity of 0.3.
FIG. 5 shows the result of discharging at a discharge rate of 2C, and FIG. 5 shows the result of discharging at a rate of 3C.

【0028】図4から、低率放電での本実施例1の優位
性がわかる。本実施例1の細孔構造は従来例に比べ細孔
Bは非常に多い構造となっている。この放電レートは前
記の放電の第1領域に相当しており、放電は細孔Bが硫
酸鉛に覆われ反応面が消失することで終了すると思われ
る。このため細孔Bの少ない従来例1,2,3に比べ本
実施例1は放電容量が大きくなる。
FIG. 4 shows the superiority of the first embodiment in low-rate discharge. The pore structure of the first embodiment has a very large number of pores B as compared with the conventional example. This discharge rate corresponds to the first region of the discharge, and it is considered that the discharge ends when the pores B are covered with lead sulfate and the reaction surface disappears. Therefore, the discharge capacity of the first embodiment is larger than that of the conventional examples 1, 2, and 3 having a small number of pores B.

【0029】図5から、高率放電においても本実施例1
が優位性を示すことがわかる。この放電率は前記の放電
の第2領域に相当する。従来例では、この領域において
は硫酸の拡散が制限されることによって放電が終了する
ことから、細孔Aを増加させることによって高容量化す
る手法が中心であった。その意味で細孔Aの体積が大き
な従来例2,3は従来例1に比べ確かに効果が見られ
る。しかしながら、細孔Aの体積を適正な範囲にバラン
スさせた本実施例1は、細孔Aのみを増加させる従来例
よりはるかに高い特性を示すことがわかった。この理由
はいまだ明白ではないが次のように考えることができ
る。
From FIG. 5, it can be seen that the first embodiment can be applied to a high-rate discharge.
Shows superiority. This discharge rate corresponds to the second region of the discharge. In the conventional example, since the discharge is terminated by restricting the diffusion of sulfuric acid in this region, the method of increasing the capacity by increasing the pores A has been mainly used. In that sense, Conventional Examples 2 and 3 in which the volume of the pores A is large have a certain effect compared to Conventional Example 1. However, it was found that Example 1 in which the volume of the pores A was balanced in an appropriate range exhibited much higher characteristics than the conventional example in which only the pores A were increased. The reason for this is not yet clear, but can be considered as follows.

【0030】細孔Bが多いということは反応面積が大き
いことを意味し、放電率が同じであれば反応面積が大き
くなるほど電流密度は小さくなる。よって本実施例1で
は従来例1,2,3に比べ細孔B1つあたりのPb2+
オンの溶解量が少いため、細孔BからAへのPb2+イオ
ンの拡散量も少量であると考えられる。すると細孔Aが
硫酸鉛の析出によって塞がれるのが遅れ、結果として放
電容量が向上することになる。
The large number of pores B means that the reaction area is large. If the discharge rate is the same, the current density decreases as the reaction area increases. Therefore, in Example 1, the amount of Pb 2+ ions dissolved per pore B is smaller than that in Conventional Examples 1, 2, and 3, and the diffusion amount of Pb 2+ ions from pores B to A is also small. it is conceivable that. Then, the pore A is delayed from being blocked by the precipitation of lead sulfate, and as a result, the discharge capacity is improved.

【0031】さらに、サイクル寿命を評価するため、本
実施例1と従来例1,2,3の電池をそれぞれ1C放電
(1.7Vcut)、1C定電流・2.35V定電圧充
電(1.5時間)の条件でサイクル寿命を検討した。サ
イクル寿命は放電容量が初期容量の50%まで低下した
時点を終点とした。その結果を表1に示す。
Further, in order to evaluate the cycle life, the batteries of Example 1 and Conventional Examples 1, 2 and 3 were each discharged at 1 C (1.7 V cut), charged at 1 C constant current and charged at 2.35 V constant voltage (1.5 V). Cycle time). The cycle life was defined as the end point when the discharge capacity decreased to 50% of the initial capacity. Table 1 shows the results.

【0032】[0032]

【表1】 [Table 1]

【0033】表1から本実施例1の正極を用いた電池は
サイクル寿命が従来品に比べ優位に立つことがわかる。
このような特性差が現れる理由は次のように考えられ
る。
From Table 1, it can be seen that the battery using the positive electrode of Example 1 has a superior cycle life as compared with the conventional product.
The reason why such a characteristic difference appears is considered as follows.

【0034】サイクル寿命に大きな影響を与える要因の
一つに極板の機械的強度が上げられる。この強度は極板
の全細孔体積が大きいほど弱くなる傾向がある。極板の
全細孔体積は径の大きな細孔の体積に左右されることか
ら、細孔Aが多すぎるとサイクル寿命が短くなることが
予想される。本発明の電池のサイクル寿命が優れている
のは以上のように考えている。
One of the factors greatly affecting the cycle life is the mechanical strength of the electrode plate. This strength tends to decrease as the total pore volume of the electrode plate increases. Since the total pore volume of the electrode plate depends on the volume of pores having a large diameter, it is expected that if the pores A are too large, the cycle life will be shortened. It is thought that the cycle life of the battery of the present invention is excellent.

【0035】これらのことを総合的に検討した結果、細
孔Aの体積が0.13cm3/g以下で、細孔Bの体積が0.
02cm3/g以上であれば従来例に対して放電特性でもサ
イクル特性でも優位性を持つことがわかった。
As a result of comprehensive examination of these facts, the volume of the pore A was 0.13 cm3 / g or less and the volume of the pore B was 0.13 cm3 / g.
It was found that when the density was not less than 02 cm3 / g, both the discharge characteristics and the cycle characteristics were superior to the conventional example.

【0036】次に本発明の適正構造を実現させるために
過放電による構造制御法について述べる。この方法は未
化成板1と化成液1を使い常法に従って作製した電池あ
るいは正極板を、Hg/Hg2SO4標準極に対して−
1.1Vから−1.6Vの電位になるまで過放電し、再び
充電する工程を含むものである。
Next, a description will be given of a structure control method using overdischarge to realize an appropriate structure according to the present invention. According to this method, a battery or a positive electrode plate prepared according to an ordinary method using an unformed chemical plate 1 and a chemical conversion solution 1 is applied to a Hg / Hg 2 SO 4 standard electrode.
It includes a step of overdischarging from 1.1V to -1.6V potential and charging again.

【0037】また、未化成板1と化成液2を用いて化成
した正極を、上記と同様に過放電処理しても同様の効果
が得られる。この効果は放電のレートを第1領域、第2
領域のいずれで行っても得られる。この発明の効果を明
らかにするために実施例2および3を作製し従来例1と
比較した。
The same effect can be obtained even if the positive electrode formed by using the unformed plate 1 and the chemical conversion liquid 2 is overdischarged in the same manner as described above. This effect reduces the rate of discharge to the first region, the second
It can be obtained in any of the regions. In order to clarify the effects of the present invention, Examples 2 and 3 were produced and compared with Conventional Example 1.

【0038】実施例2として上記従来例1で得られた電
池を正極の電位がHg/Hg2SO4基準で−1.4Vに
なるまで放電したのち、再び1Cで公称容量の120%
以上を充電した。
In Example 2, the battery obtained in Conventional Example 1 was discharged until the potential of the positive electrode became -1.4 V on the basis of Hg / Hg 2 SO 4 , and then again at 1 C at 120% of the nominal capacity.
The above was charged.

【0039】実施例3として、上記実施例2の電解液に
電池の電解液にマンニトールを100mg/lと硫酸ヒドラジ
ン500mg/lを添加し、従来例2と同様の過放電処理を行
った。
As Example 3, 100 mg / l of mannitol and 500 mg / l of hydrazine sulfate were added to the electrolyte of the above-mentioned Example 2 and the same overdischarge treatment as in Conventional Example 2 was performed.

【0040】図6に本発明の実施例2および実施例3と
従来例1の3Cでの放電結果を示す。この図から明らか
なように、同じ従来例1の電池を用いながら高率放電が
向上することができる。さらにマンニトールはこの効果
を向上させる相乗効果があることがわかる。
FIG. 6 shows the discharge results of Example 2 and Example 3 of the present invention and 3C of Conventional Example 1. As is clear from this figure, high-rate discharge can be improved using the same battery of Conventional Example 1. Further, it can be seen that mannitol has a synergistic effect to improve this effect.

【0041】過放電による効果が現れる理由は明らかで
はないが次のように考えることができる。過放電によっ
て正極では硫酸鉛の一部が鉛に還元されるが、そのとき
に起こる体積減少によって微細な細孔が生成される。こ
の状態で充電すると前記の微細細孔を保持したまま酸化
され優れた特性を持つ極板が得られる。このため過放電
電位は硫酸鉛の還元電位である−1.1V以下にしなけ
ればならない。しかし−1.6V以下になると電解液の
分解が激しくなり製造上好ましくない。この場合のマン
ニトールの作用は活物質を部分的に分解して細孔構造を
再構築するのに貢献していると思われる。
The reason why the effect of overdischarge appears is not clear, but can be considered as follows. In the positive electrode, a part of lead sulfate is reduced to lead in the positive electrode, and fine pores are generated due to a decrease in volume at that time. When charged in this state, the electrode plate is oxidized while maintaining the fine pores, and an electrode plate having excellent characteristics is obtained. For this reason, the overdischarge potential must be less than or equal to -1.1 V, which is the reduction potential of lead sulfate. However, when the voltage is -1.6 V or less, the decomposition of the electrolytic solution becomes severe, which is not preferable in production. It is considered that the action of mannitol in this case contributes to partially decomposing the active material and reconstructing the pore structure.

【0042】[0042]

【発明の効果】以上のように本発明によれば、優れた放
電特性とサイクル寿命を兼ね備えた鉛蓄電池を得ること
ができる
As described above, according to the present invention, a lead storage battery having both excellent discharge characteristics and cycle life can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一般的な鉛蓄電池用正極の細孔径の分布を示す
FIG. 1 is a view showing a distribution of pore diameters of a general positive electrode for a lead storage battery.

【図2】細孔A,Bのモデルを示す図FIG. 2 shows a model of pores A and B.

【図3】実施例1および従来例の細孔径の分布を示す図FIG. 3 is a diagram showing the distribution of pore diameters in Example 1 and a conventional example.

【図4】実施例1および従来例を用いた電池の0.2C放電
における放電カーブを示す図
FIG. 4 is a diagram showing a discharge curve at 0.2 C discharge of batteries using Example 1 and a conventional example.

【図5】実施例1および従来例を用いた電池の3.0C放電
における放電カーブを示す図
FIG. 5 is a diagram showing a discharge curve at 3.0 C discharge of batteries using Example 1 and a conventional example.

【図6】実施例2,3および従来例1を用いた電池の3.
0C放電における放電カーブを示す図
FIG. 6 shows the battery using Examples 2 and 3 and Conventional Example 1.
Diagram showing discharge curve in 0C discharge

【符号の説明】 1 活物質粒子 2 細孔A 3 細孔B[Description of Signs] 1 Active material particles 2 Pores A 3 Pores B

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 正極板における全細孔体積が0.14〜
0.18cm3/gであって、直径が0.01以上0.1μm未
満である細孔の体積の合計が0.02cm3/g以上であり、
直径が0.1以上4.0μm以下である細孔の体積の合計
が0.13cm3/g以上であることを特徴とした鉛蓄電池。
The total pore volume of the positive electrode plate is 0.14 to 1.
A 0.18 cm 3 / g, and the total volume of pores less than 0.1μm is 0.01 or more in diameter is 0.02 cm 3 / g or more,
A lead-acid battery characterized in that the total volume of pores having a diameter of 0.1 or more and 4.0 μm or less is 0.13 cm 3 / g or more.
【請求項2】 鉛粉を主成分とし、これに硫酸と水を加
え練合したペーストを集電体に充填し、これを熟成・乾
燥する極板の化成充電工程において、マンニトールある
いはマンニトールと硫酸ヒドラジンが含まれている希硫
酸中で化成充電することを特徴とする鉛蓄電池の製造
法。
2. A process for charging a current collector containing a lead powder containing a main component, sulfuric acid and water, kneading the paste, and aging and drying the paste. A method for producing a lead-acid battery, wherein the battery is formed and charged in dilute sulfuric acid containing hydrazine.
【請求項3】 鉛粉を主成分とし、これに硫酸と水を加
え練合したペーストを集電体に充填した極板を、化成充
電した後、Hg/Hg2SO4基準で-1.10V〜-1.6
0Vの範囲にまで過放電し、その後再び充電する工程を
少なくとも一回以上行うことを特徴とする鉛蓄電池の製
造法。
3. An electrode plate containing a lead powder as a main component, a paste obtained by adding sulfuric acid and water to the current collector, and filling the current collector is subjected to formation charge, and thereafter, is charged to −1.% Based on Hg / Hg 2 SO 4 . 10V ~ -1.6
A method for producing a lead storage battery, comprising performing at least one step of overdischarging to a range of 0 V and then recharging at least once.
【請求項4】 化成充電するときに用いる溶液は、マン
ニトールあるいはマンニトールと硫酸ヒドラジンを含む
硫酸溶液であることを特徴とする請求項3に記載の鉛蓄
電池の製造法。
4. The method for producing a lead-acid battery according to claim 3, wherein the solution used for the formation charge is a mannitol or a sulfuric acid solution containing mannitol and hydrazine sulfate.
JP23207397A 1997-08-28 1997-08-28 Lead-acid battery and method of manufacturing lead-acid battery Expired - Fee Related JP3505972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23207397A JP3505972B2 (en) 1997-08-28 1997-08-28 Lead-acid battery and method of manufacturing lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23207397A JP3505972B2 (en) 1997-08-28 1997-08-28 Lead-acid battery and method of manufacturing lead-acid battery

Publications (2)

Publication Number Publication Date
JPH1173950A true JPH1173950A (en) 1999-03-16
JP3505972B2 JP3505972B2 (en) 2004-03-15

Family

ID=16933575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23207397A Expired - Fee Related JP3505972B2 (en) 1997-08-28 1997-08-28 Lead-acid battery and method of manufacturing lead-acid battery

Country Status (1)

Country Link
JP (1) JP3505972B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109585A (en) * 2001-09-28 2003-04-11 Furukawa Battery Co Ltd:The Chemical treatment method of positive electrode plate and lead storage battery
JP2004079198A (en) * 2002-08-09 2004-03-11 Japan Storage Battery Co Ltd Lead accumulator
JP2009158286A (en) * 2007-12-26 2009-07-16 Gs Yuasa Corporation Lead-acid battery and method of manufacturing the same
JP4949553B2 (en) * 1998-04-30 2012-06-13 サントル・ナショナル・ドゥ・ラ・レシェルシュ・サイエンティフィーク−セ・エン・エール・エス− Improved lead acid battery
WO2013046499A1 (en) * 2011-09-30 2013-04-04 パナソニック株式会社 Lead acid storage battery for energy storage
WO2017013822A1 (en) * 2015-07-21 2017-01-26 株式会社Gsユアサ Lead acid storage battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4949553B2 (en) * 1998-04-30 2012-06-13 サントル・ナショナル・ドゥ・ラ・レシェルシュ・サイエンティフィーク−セ・エン・エール・エス− Improved lead acid battery
JP2003109585A (en) * 2001-09-28 2003-04-11 Furukawa Battery Co Ltd:The Chemical treatment method of positive electrode plate and lead storage battery
JP2004079198A (en) * 2002-08-09 2004-03-11 Japan Storage Battery Co Ltd Lead accumulator
JP2009158286A (en) * 2007-12-26 2009-07-16 Gs Yuasa Corporation Lead-acid battery and method of manufacturing the same
WO2013046499A1 (en) * 2011-09-30 2013-04-04 パナソニック株式会社 Lead acid storage battery for energy storage
JP5190562B1 (en) * 2011-09-30 2013-04-24 パナソニック株式会社 Lead-acid battery for energy storage
WO2017013822A1 (en) * 2015-07-21 2017-01-26 株式会社Gsユアサ Lead acid storage battery

Also Published As

Publication number Publication date
JP3505972B2 (en) 2004-03-15

Similar Documents

Publication Publication Date Title
JP2008098009A (en) Cathode plate for lead-acid battery
JPH1173950A (en) Manufacture of lead-acid battery
JP4186197B2 (en) Positive electrode plate for lead acid battery
CN1292580A (en) Alkaline storage battery and manufacturing method thereof
JP3267075B2 (en) Manufacturing method of electrode plate for lead-acid battery
JPH09289020A (en) Positive plate for lead-acid battery and its manufacture
JPH11162456A (en) Lead-acid battery
JP2004079198A (en) Lead accumulator
JPH11329420A (en) Manufacture of lead-acid battery
JP4066487B2 (en) Method for producing lead-acid battery
JP3238949B2 (en) Activation method of alkaline storage battery
JPH10247491A (en) Lead-acid battery and its manufacture
JPH1012233A (en) Manufacture of hydrogen storage alloy for alkaline storage battery
JPH1064530A (en) Manufacture of electrode plate for lead-acid battery
JPH1173951A (en) Manufacture of lead-acid battery
JPH1040907A (en) Manufacture of positive electrode plate for lead-acid battery
JP3414941B2 (en) Electrode plate for lead storage battery and method of manufacturing the same
JP3316946B2 (en) Sintered cadmium cathode plate for alkaline storage battery and method of manufacturing the same
JP3475650B2 (en) Manufacturing method of current collector for lead-acid battery
JPS63126163A (en) Alkaline storage battery
JPH05205732A (en) Manufacture of anode plate for lead-acid battery
JPH01176661A (en) Lead-acid battery
JPH0254871A (en) Lead battery
JP3238950B2 (en) Activation method of alkaline storage battery
JP2004355942A (en) Lead-acid storage battery and its manufacturing method

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091226

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091226

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101226

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101226

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees