JP4066487B2 - Method for producing lead-acid battery - Google Patents

Method for producing lead-acid battery Download PDF

Info

Publication number
JP4066487B2
JP4066487B2 JP00563698A JP563698A JP4066487B2 JP 4066487 B2 JP4066487 B2 JP 4066487B2 JP 00563698 A JP00563698 A JP 00563698A JP 563698 A JP563698 A JP 563698A JP 4066487 B2 JP4066487 B2 JP 4066487B2
Authority
JP
Japan
Prior art keywords
lead
battery
discharge
sulfuric acid
life
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00563698A
Other languages
Japanese (ja)
Other versions
JPH11204132A (en
Inventor
勝弘 高橋
剛 畑中
芳明 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP00563698A priority Critical patent/JP4066487B2/en
Publication of JPH11204132A publication Critical patent/JPH11204132A/en
Application granted granted Critical
Publication of JP4066487B2 publication Critical patent/JP4066487B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は鉛蓄電池の製造方法に関するものである。
【0002】
【従来の技術】
鉛蓄電池は正極に二酸化鉛,負極に鉛を活物質として用い電解液に希硫酸を用いる電池である。これらの極板は主として鉛粉,硫酸,水を主成分として練合して作製したペ−ストを鉛合金のグリットに充填し、熟成,乾燥して未化成状態の極板(未化成板)を構成し,これを希硫酸中で化成充電して、反応に適切な多孔室の活物質とする。化成充電は極板を電池とは別の電槽で行う極板化成と,未化成板をセパレータと共に極板群を構成して電槽に収納し、電池の形で行う電槽化成がある。電池の極板は放電すると両極とも硫酸鉛を生成し,充電ではもとの二酸化鉛と鉛に戻る。
【0003】
このような充放電の繰り返しによる物質変化のために、一般には正極活物質の構造が崩れ、特に正極では活物質粒子の脱落や導電性の低下によって、サイクルに伴う放電容量の低下がおこり,これが寿命劣化の一因になる。
【0004】
【発明が解決しようとする課題】
とくに放電状態で放置すると硫酸鉛の結晶が肥大し、充電が困難となって、容量が低下するだけでなく、硫酸鉛の蓄積によって極板が脆弱化し、寿命特性が低下するので放電後は速やかに充電することが望ましいとされている。
【0005】
このような寿命要素の改善には耐酸性の樹脂結着剤を活物質に添加する等の方法が考えられるが、この場合は多孔体中の硫酸の通路が結着剤の粒子によって狭められ、利用率や電圧特性が低下する傾向を示す。
【0006】
本発明は、上記課題を解決するものであり、硫酸の拡散を前提とする鉛電池において利用率や電圧特性の低下を回避することにより、放電容量を低下させない寿命改善方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明は化成充電後の極板または極板群を、マンノースと硫酸ヒドラジンを含む希硫酸中で所定の電気量を放電し、これを放電状態のままで所定時間開路放置する放電放置工程を備えることを特徴とするものである。
【0008】
本発明は特に正極板をマンノースと硫酸ヒドラジンという鉛イオン溶解度調整剤を含む希硫酸中で放電状態を形成したまま開路状態を所定の時間保つことによって、放電に好ましく結合力の優れた活物質構造を形成させるものである。
【0009】
本発明の寿命改善効果には、放電深さおよび開路放置される時間が関与する。しかもこの効果は上記鉛イオンの溶解度調整剤の存在しない希硫酸中では得られない。このことは、活物質が一旦硫酸鉛の形態を経由することと、溶解度調整剤の存在の下で溶解析出を繰り返す時間が必要であることを意味する。
【0010】
上記溶解度調整剤を添加した電解液中で化成した極板については、上記鉛イオンの溶解度調整剤を添加しない電解液中で放電放置操作を行っても類似の効果が得られる。これは化成充電時に結晶中に吸着等により取り込まれた鉛イオンの溶解度調整剤が溶出し有効に作用するものである。
【0011】
以上の如く本発明は希硫酸中における鉛イオンの溶解度調整剤の存在、所定量の放電、放電状態における開路放置の少なくとも3つの条件がもたらす極板構造の変化によるものである。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態の一例を以下に述べる。
【0013】
図1は鉛蓄電池の断面図である。
1は電槽、2は電槽蓋、3は正極板、4は負極板、5は正極端子、6は負極端子、7はセパレータ、8は安全弁である。電解液の希硫酸はセパレータに含浸した構造である。
【0014】
この電池は極板として理論充填量がそれぞれ3Ah/枚の正極2枚と2Ah/枚の負極3枚を用い、公称容量3Ahの電池としたものである。
【0015】
未化成板を用いて上記の電池を構成し、化成充電工程、放電工程、開路放置工程を経由し、改めて充電して鉛電池としての製造工程を終結した。
【0016】
本発明の実施の形態は、上記工程においてマンノースと硫酸ヒドラジンという鉛イオンの溶解度調整剤を加えた希硫酸中において所定の放電と、上記放電状態を保ち、開路放置を行うものである。
【0017】
ンノースはキレート剤ではないが、希硫酸中でも鉛イオン配位して、鉛イオンの溶解度や活量を変化させる作用がある。
【0019】
硫酸ヒドラジンは二酸化鉛の分解を促進し,鉛の溶解度を増加させる化合物である。
【0020】
上記成分を適用することによって本発明の効果が得られる。放電放置による寿命特性改善の効果は上記添加物については数ppmから数%の間で広く効果があり、特に100ppmから500ppmの間がよい。
【0021】
【実施例】
以下実施例によって本発明の実施形態の特徴と効果を述べる。
【0022】
参考例
未化成板を用いて電池に構成し、比重1.15の希硫酸中で化成し電解液比重を1.3に調整した後に、電解液中に300ppmのマニトールを添加した。この電池を2.3Aで公称容量に対して0%から300%定電流で各種放電深さに放電し、そのまま1時間から100時間の所定時間開路状態で放置した。これらの電池に対して改めて公称容量の300%を充電して、電池を作成した。
【0023】
これらの電池に対して2.3Aで15分の放電と設定電流2.3A設定電圧2.45Vの定電流充電60分の定電流定電圧充電を1サイクルとして15分放電時の電圧が1Vに達するまでのサイクル数をこの電池の寿命として求め、放電深さおよび放置時間と寿命の関係を求めた。これらの電池をAおよびCとする。
【0024】
比較として放電放置する電解液中にマニトールを添加しない場合の寿命を求めた。この電池をBおよびDとする。
【0025】
(実施例
鉛イオン溶解度調整剤としてE:マンノース300ppmと硫酸ヒドラジン300ppmを添加した場合、F:マンノース300ppm、G:キレート剤としてエチレンジアミンテトラアセテートを300ppm添加した場合について放電の深さを公称容量の100%、放電後の開路放置時間を20時間とした場合の寿命をもとめた。
【0026】
図2は参考例における放置時間20時間とした場合の放電深さと寿命の関係を示したものである。図では寿命は放電放置操作を加えない電池の寿命を100%とし、これに対する相対値を示した(以下同じ)。この図から明らかなように、鉛イオン溶解度調整剤であるマンニトールを添加しない電解液中で放電し開路放置を行った従来例の電池Bでは、放電の深さが大きくなるに従って寿命が低下した。これに比べてAでは放電後開路放置を行うことによって寿命は増加した。
【0027】
このときの放電深さは50%以上が効果的であった。100%以上放電して開路放置すると従来の電解液中では寿命が低下するが、本の場合は寿命特性が向上する。
【0028】
図3は参考例における放電の深さを公称容量の100%とし、開路放置の時間と寿命の関係を示したものである。この結果は、放置時間5〜10時間で寿命特性は急速に上昇し、その後の上昇は緩やかに飽和しており、少なくとも5時間以上放置することで効果が現れる。
【0029】
図4は実施例の電池についての寿命特性を示したものである。この図は図2の結果と対比して見ると、マンノースと硫酸ヒドラジンを共存させると単独よりも優れた効果が得られることを示している。
【0030】
【発明の効果】
以上の如く、本発明は、鉛イオン溶解度調整を添加した希硫酸電解液中で放電し開路放置することによって電池の寿命を著しく改善するものである。
【図面の簡単な説明】
【図1】本発明の一実施例による電池の模式断面図
【図2】電池Aと電池Bの放電深さによる相対寿命比を示す図
【図3】電池Cと電池Dの放電時間による相対寿命比を示す図
【図4】電池Bを100とした場合の電池E、F、Gの相対寿命比を示す図
【符号の説明】
1 電槽
2 電槽蓋
3 正極板
4 負極板
5 正極端子
6 負極端子
7 セパレータ
8 安全弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a lead storage battery.
[0002]
[Prior art]
Lead-acid batteries are batteries that use lead dioxide as the positive electrode, lead as the negative electrode as the active material, and dilute sulfuric acid as the electrolyte. These electrode plates are filled with paste made of lead powder, sulfuric acid, and water as the main components in a lead alloy grit, aged and dried to form an unformed electrode plate (unformed plate). Is formed and charged by chemical conversion in dilute sulfuric acid to obtain a porous chamber active material suitable for the reaction. Chemical charging includes electrode plate formation in which the electrode plate is formed in a separate battery case from the battery, and battery case formation in which the unformed plate is combined with a separator to form an electrode plate group and housed in the battery case. When the battery plate is discharged, both electrodes produce lead sulfate, and when charged, the original lead dioxide and lead are restored.
[0003]
Due to such material changes due to repeated charge and discharge, the structure of the positive electrode active material generally collapses. Particularly, in the positive electrode, the active material particles fall off and the conductivity decreases, resulting in a decrease in discharge capacity accompanying the cycle. It contributes to life deterioration.
[0004]
[Problems to be solved by the invention]
Especially when left in a discharged state, the lead sulfate crystals are enlarged, making charging difficult and lowering the capacity. In addition, lead sulfate is weakened by the accumulation of lead sulfate and the life characteristics are reduced. It is desirable to charge the battery.
[0005]
To improve such a life factor, a method such as adding an acid-resistant resin binder to the active material is conceivable. In this case, the sulfuric acid passage in the porous body is narrowed by the binder particles, It shows a tendency that the utilization factor and voltage characteristics decrease.
[0006]
The present invention solves the above-described problems, and an object of the present invention is to provide a life improvement method that does not decrease the discharge capacity by avoiding a decrease in utilization rate and voltage characteristics in a lead battery premised on diffusion of sulfuric acid. And
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is an electrode plate or electrode assembly after conversion charge, to discharge the predetermined quantity of electricity in dilute sulfuric acid containing mannose and sulfuric acid hydrazine, given these batteries in a discharged state this It is characterized by having a discharge leaving step of leaving the circuit open for a time.
[0008]
The present invention is an active material structure excellent in binding force, preferably for discharge, by maintaining the open circuit state for a predetermined time while the discharge state is formed in dilute sulfuric acid containing a lead ion solubility modifier, particularly mannose and hydrazine sulfate, in particular. Is formed.
[0009]
The life improvement effect of the present invention involves the discharge depth and the time for which the circuit is left open. Moreover, this effect cannot be obtained in dilute sulfuric acid in which the above-mentioned solubility adjuster for lead ions is not present. This means that the active material once passes through the form of lead sulfate and requires time to repeat dissolution and precipitation in the presence of the solubility modifier.
[0010]
For the electrode plate formed in the electrolytic solution to which the solubility modifier is added, a similar effect can be obtained even if the discharge is left in the electrolytic solution to which the lead ion solubility modifier is not added. This is because the solubility adjusting agent of lead ions taken into the crystal by adsorption or the like at the time of chemical charging is eluted and acts effectively.
[0011]
As described above, the present invention is based on the change in the electrode plate structure caused by the presence of the solubility adjusting agent for lead ions in dilute sulfuric acid, the predetermined amount of discharge, and the open circuit in the discharged state.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an example of the embodiment of the present invention will be described below.
[0013]
FIG. 1 is a cross-sectional view of a lead storage battery.
1 is a battery case, 2 is a battery case lid, 3 is a positive electrode plate, 4 is a negative electrode plate, 5 is a positive electrode terminal, 6 is a negative electrode terminal, 7 is a separator, and 8 is a safety valve. The separator is impregnated with dilute sulfuric acid in the electrolytic solution.
[0014]
This battery is a battery having a nominal capacity of 3 Ah using two positive electrodes each having a theoretical filling amount of 3 Ah / sheet and three negative electrodes having 2 Ah / sheet as the electrode plates.
[0015]
The above-described battery was constructed using an unformed sheet, and charged again through the chemical charging process, the discharging process, and the open circuit leaving process, and the manufacturing process as a lead battery was terminated.
[0016]
In the embodiment of the present invention, a predetermined discharge is maintained in the dilute sulfuric acid to which the solubility adjusting agent of lead ions such as mannose and hydrazine sulfate is added in the above process, and the open circuit is left open.
[0017]
Ma N'no scan is not a chelating agent, and a lead ion coordinated even in dilute sulfuric acid, has the effect of changing the solubility and activity of lead ions.
[0019]
Hydrazine sulfate promotes the degradation of the secondary lead oxide, a compound that increases the solubility of lead.
[0020]
Effect of the present invention by apply the above components is obtained. The effect of improving the life characteristics by leaving the discharge is widely effective in the range of several ppm to several percent for the above-mentioned additives, and particularly good in the range of 100 ppm to 500 ppm.
[0021]
【Example】
The features and effects of the embodiments of the present invention will be described below by way of examples.
[0022]
( Reference example )
A battery was formed using an unformed plate, formed in dilute sulfuric acid having a specific gravity of 1.15 and adjusted to a specific gravity of 1.3, and then 300 ppm of mannitol was added to the electrolytic solution. This battery was discharged at various discharge depths at a constant current of 0% to 300% with respect to the nominal capacity at 2.3 A, and left in an open state for a predetermined time of 1 hour to 100 hours. These batteries were again charged with 300% of the nominal capacity to produce batteries.
[0023]
For these batteries, discharging at 15 A for 15 minutes and constant current charging at a setting current of 2.3 A setting voltage of 2.45 V and a constant current at a constant voltage of 60 minutes as one cycle, the voltage at the time of discharging for 15 minutes to 1 V The number of cycles to reach was determined as the lifetime of the battery, and the relationship between the discharge depth and the standing time and the lifetime was determined. These batteries are designated as A and C.
[0024]
As a comparison, the lifetime when no mannitol was added to the electrolytic solution left to discharge was determined. Let this battery be B and D.
[0025]
(Example 1 )
When E: Mannose 300 ppm and hydrazine sulfate 300 ppm are added as lead ion solubility adjusters, F: Mannose 300 ppm, G: Ethylenediaminetetraacetate 300 ppm as a chelating agent, discharge depth is 100% of nominal capacity, discharge The lifetime was determined when the subsequent open time was 20 hours.
[0026]
FIG. 2 shows the relationship between the discharge depth and the life when the standing time is 20 hours in the reference example . In the figure, the life is shown as a relative value with respect to the life of the battery not subjected to the discharge leaving operation as 100% (the same applies hereinafter). As is clear from this figure, the battery B of the conventional example discharged in an electrolytic solution not added with mannitol, which is a lead ion solubility modifier, and left in the open circuit, had a reduced life as the depth of discharge increased. Compared with this, in A , the lifetime was increased by leaving the circuit open after discharging.
[0027]
At this time, the discharge depth was effectively 50% or more. If the battery is discharged for 100% or more and left open, the life of the conventional electrolyte is reduced, but in this example , the life characteristics are improved.
[0028]
FIG. 3 shows the relationship between the open circuit leaving time and the life when the discharge depth in the reference example is 100% of the nominal capacity. As a result, the life characteristics rapidly rise after 5 to 10 hours of standing, and the subsequent rise gradually saturates, and the effect appears when left for at least 5 hours.
[0029]
FIG. 4 shows the life characteristics of the battery of Example 1 . This figure when viewed in contrast with the results of FIG. 2 shows that the coexistence of mannose and hydrazine sulfate superior effect than either alone obtained.
[0030]
【The invention's effect】
As described above, the present invention remarkably improves the battery life by discharging in a dilute sulfuric acid electrolytic solution to which lead ion solubility adjustment is added and leaving the circuit open.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a battery according to an embodiment of the present invention. FIG. 2 is a diagram showing a relative life ratio according to discharge depths of batteries A and B. FIG. Fig. 4 shows the life ratio. Fig. 4 shows the relative life ratio of the batteries E, F and G when the battery B is 100.
DESCRIPTION OF SYMBOLS 1 Battery case 2 Battery case lid 3 Positive electrode plate 4 Negative electrode plate 5 Positive electrode terminal 6 Negative electrode terminal 7 Separator 8 Safety valve

Claims (1)

化成充電後の極板または極板群を、マンノースと硫酸ヒドラジンを含む電解液中で放電し、この放電された状態で開路放置する工程を備えることを特徴とする鉛蓄電池の製造方法。An electrode plate or electrode plate group after conversion charge and discharge in an electrolyte containing mannose and sulfuric acid hydrazine, manufacturing method of a lead-acid battery, characterized in that it comprises the step of leaving open at a discharge state.
JP00563698A 1998-01-14 1998-01-14 Method for producing lead-acid battery Expired - Fee Related JP4066487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00563698A JP4066487B2 (en) 1998-01-14 1998-01-14 Method for producing lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00563698A JP4066487B2 (en) 1998-01-14 1998-01-14 Method for producing lead-acid battery

Publications (2)

Publication Number Publication Date
JPH11204132A JPH11204132A (en) 1999-07-30
JP4066487B2 true JP4066487B2 (en) 2008-03-26

Family

ID=11616640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00563698A Expired - Fee Related JP4066487B2 (en) 1998-01-14 1998-01-14 Method for producing lead-acid battery

Country Status (1)

Country Link
JP (1) JP4066487B2 (en)

Also Published As

Publication number Publication date
JPH11204132A (en) 1999-07-30

Similar Documents

Publication Publication Date Title
US20020132166A1 (en) Nickel electrode active material for alkaline storage batteries and nickel positive electrode using the same
JP2003123760A (en) Negative electrode for lead-acid battery
JP5168893B2 (en) Lead acid battery
JP3936157B2 (en) Manufacturing method for sealed lead-acid batteries
US7166391B2 (en) Cobalt compound for use in alkaline storage battery, method for manufacturing the same, and positive electrode plate of alkaline storage battery employing the same
JP3505972B2 (en) Lead-acid battery and method of manufacturing lead-acid battery
JP4066487B2 (en) Method for producing lead-acid battery
JP4356321B2 (en) Lead acid battery
Rogachev et al. Influence of cycling on the nature of the positive active mass of lead/acid batteries and effect of CaSO4 on the behaviour of the positive plates
JPH11126604A (en) Sealed lead-acid battery and manufacture thereof
JP3764978B2 (en) Manufacturing method of lead acid battery
KR100329885B1 (en) Lead acid bettery
JP3091167B2 (en) Lead storage battery
JP4404447B2 (en) Method for producing alkaline storage battery
JP2949839B2 (en) Negative gas absorption sealed lead-acid battery
JP3183073B2 (en) Active material for nickel electrode and method for producing the same
JP2004079198A (en) Lead accumulator
JPH10189029A (en) Manufacture for sealed lead storage battery
JP3987998B2 (en) Unformed positive electrode plate for lead acid battery
JP4742424B2 (en) Control valve type lead acid battery
JPH09199119A (en) Alkaline storage battery
JPH1012233A (en) Manufacture of hydrogen storage alloy for alkaline storage battery
JPH1040907A (en) Manufacture of positive electrode plate for lead-acid battery
JP2002198041A (en) Manufacturing method of positive pole plate for lead acid battery
JPH01176661A (en) Lead-acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041207

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050113

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071231

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees