JP2004355942A - Lead-acid storage battery and its manufacturing method - Google Patents

Lead-acid storage battery and its manufacturing method Download PDF

Info

Publication number
JP2004355942A
JP2004355942A JP2003151967A JP2003151967A JP2004355942A JP 2004355942 A JP2004355942 A JP 2004355942A JP 2003151967 A JP2003151967 A JP 2003151967A JP 2003151967 A JP2003151967 A JP 2003151967A JP 2004355942 A JP2004355942 A JP 2004355942A
Authority
JP
Japan
Prior art keywords
lead
barium sulfate
negative electrode
storage battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003151967A
Other languages
Japanese (ja)
Inventor
Michiko Honbo
享子 本棒
Eiji Hoshi
星  栄二
Yasushi Uraoka
靖 浦岡
Takayuki Arai
孝之 新井
Tatsufumi Kasaishi
樹史 笠石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Resonac Corp
Original Assignee
Hitachi Ltd
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Shin Kobe Electric Machinery Co Ltd filed Critical Hitachi Ltd
Priority to JP2003151967A priority Critical patent/JP2004355942A/en
Publication of JP2004355942A publication Critical patent/JP2004355942A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a lead-acid storage battery in which dispersibility of barium sulfate in a negative electrode active material paste can be enhanced. <P>SOLUTION: In the lead-acid storage battery having a negative electrode plate containing barium sulfate in the negative electrode active material, the primary particle diameter of barium sulfate is made 0.1 μm or less and a minimum particle size or more capable of forming. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は鉛蓄電池及びその製造方法に関するものである。
【0002】
【従来の技術】
負極活物質に硫酸バリウムが含まれている鉛蓄電池が提案されている(例えば、特許文献1参照。)。
【0003】
このような鉛蓄電池では、硫酸バリウムは放電時に硫酸鉛粒子生成の中心核となる。
【0004】
【特許文献1】
特開平8−236119号公報
【0005】
【発明が解決しようとする課題】
しかしながら、負極活物質ペーストの作製時に、粉末状の硫酸バリウムを添加した場合、この硫酸バリウムの平均粒子径が大きく、分散しにくいため、放電時、電気化学的に硫酸鉛化されにくく、不動態層ができ、放電反応を阻害するという問題があった。また、硫酸バリウムには、サイクルによる負極活物質の収縮を抑制する防縮効果があるが、硫酸バリウムが均一に分散されていないため、サイクルによる活物質の収縮が不均一になり、サイクル特性が悪くなるという問題があった。
【0006】
本発明の目的は、硫酸バリウムの負極活物質ペースト中での分散性を高めることができる鉛蓄電池及びその製造方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明は、上記の目的を達成するためになされたものであって、下記のような構成となっている。
【0008】
本発明は、負極活物質に硫酸バリウムを含む負極板を有する鉛蓄電池及びその製造方法を改良するものである。
【0009】
本発明に係る鉛蓄電池では、硫酸バリウムの一次粒子径が0.1 μm以下で、形成可能な最小粒子径以上のものであることを特徴とする。
【0010】
このように硫酸バリウムの一次粒子径を0.1 μm以下で、形成可能な最小粒子径以上にすると、硫酸バリウムの負極活物質ペースト中での分散性が高まり、放電反応時における硫酸鉛結晶生成を容易に行うことができ、高率放電特性及びサイクル特性を向上させた鉛蓄電池を得ることができる。硫酸バリウムの一次粒子径が0.1 μmより大きいと、硫酸バリウムの分散がしにくく好ましくない。硫酸バリウムの一次粒子径が形成可能な最小粒子径より小さいものは入手できない。
【0011】
本発明に係る鉛蓄電池の製造方法では、一次粒子径が0.1 μm以下で、形成可能な最小粒子径以上の硫酸バリウムを、スラリー状態で負極活物質に添加することを特徴とする。
【0012】
このように一次粒子径が0.1 μm以下で、形成可能な最小粒子径以上の硫酸バリウムを、スラリー状態で負極活物質に添加すると、硫酸バリウムの一次粒子径が小さくなっているため、硫酸バリウムの負極活物質ペースト中での分散性が高まり、放電反応時における硫酸鉛結晶生成を容易に行うことができ、高率放電特性及びサイクル特性を向上させた鉛蓄電池の製造を行うことができる。硫酸バリウムの一次粒子径が0.1 μmより大きいと、硫酸バリウムの分散がしにくく好ましくない。硫酸バリウムの一次粒子径が形成可能な最小粒子径より小さいものは入手できない。
【0013】
【発明の実施の形態】
以下、本発明に係る鉛蓄電池の実施の形態1の例を説明する。本例の鉛蓄電池は、次のようにして製造した。
【0014】
まず、鉛粉と、該鉛粉に対して13質量%の希硫酸(比重1.26:20℃)と、該鉛粉に対して12質量%の水とを混練して正極活物質ペーストを作った。Pb−Ca系合金製のエキスパンド格子体上に、前述した正極活物質ペーストを102 g充填してから、温度50℃、湿度95%中に18時間放置して熟成した後、温度110 ℃中に2時間放置し、乾燥させて未化成正極板を作った。
【0015】
次に、負極板を作った。まず、鉛粉、該鉛粉に対して0.2 質量%のリグニンと、該鉛粉に対して0.2 質量%のカーボンと、該鉛粉に対して1.0 質量%の硫酸バリウムスラリーと、該鉛粉に対して13質量%の希硫酸(比重1.26:20℃)と、該鉛粉に対して12質量%の水とを混練して負極活物質ペーストを作った。なお、硫酸バリウムスラリーは、水分0.6 %、水溶分0.1 %、硫酸バリウム(一次粒子径:0.1 μm以下で、形成可能な最小粒子径以上)97%の配合比のスラリーを用いた。次に、得られた負極活物質ペースト73gを格子体からなる集電体に充填し、温度50℃、湿度95%中に18時間放置して熟成した後、温度110 ℃中に2時間放置し、乾燥させて未化成負極板を作った。
【0016】
また、比較例として、まず鉛粉、該鉛粉に対して0.2 質量%のリグニンと、該鉛粉に対して0.2 質量%のカーボンと、該鉛粉に対して1.0 質量%の硫酸バリウムと、該鉛粉に対して13質量%の希硫酸(比重1.26:20℃)と、該鉛粉に対して12質量%の水とを混練して負極活物質ペーストを作った。なお、硫酸バリウムは一次粒子径が0.2 μmのものを用いた。次に、得られた負極活物質ペースト73gを格子体からなる集電体に充填し、温度50℃、湿度95%中に18時間放置して熟成した後、温度110 ℃中に2時間放置し、乾燥させて未化成負極板を作った。
【0017】
次に、未化成正極板7枚と未化成負極板8枚とを、各負極板に袋セパレータを被せて積層して各極板群を作った。そして、各極板群を電槽内に配置してから、電槽内に電解液を注液して各未化成鉛蓄電池を作った。なお、電解液は比重1.225 (20℃)の希硫酸である。
【0018】
次に、未化成鉛蓄電池を9Aで42時間化成して鉛蓄電池を完成した。
【0019】
完成した各鉛蓄電池を25℃の周囲温度で11A、終止電圧10.5Vで、容量確認(5時間率)を行った。容量確認後、満充電状態になるまで充電を行った後、周囲温度−15±1 ℃の槽に16時間放置した。その後、300 A、放電終止電圧6.0 Vの放電を行い、低温高率放電特性の測定を行った。
【0020】
図1に比較例の鉛蓄電池と、実施の形態1の鉛蓄電池の、低温高率放電持続時間の結果を示す。その結果、比較例の鉛蓄電池と比較して、実施の形態1の鉛蓄電池は、持続時間が大きく向上していることがわかった。
【0021】
次に、これら比較例の鉛蓄電池と、実施の形態1の鉛蓄電池を、75℃の周囲温度で、25Aで4分間放電した後に14.8Vで10分間充電する充放電を1サイクルとして、充放電を繰り返し、480 サイクル毎に56時間放置した。その後、582 Aで、30秒間放電して、その電圧を測定し、引き続き同様のサイクルを繰り返した。寿命回数は582 Aで、30秒目の電圧が7.2 Vになる回数とした。
【0022】
図2に比較例の鉛蓄電池と、実施の形態1の鉛蓄電池の、サイクル寿命回数の結果を示す。その結果、実施の形態1の鉛蓄電池は、比較例の鉛蓄電池と比較して、サイクル特性が向上していることがわかった。
【0023】
【発明の効果】
本発明に係る鉛蓄電池では、硫酸バリウムの一次粒子径を0.1 μm以下で、形成可能な最小粒子径以上にしているので、硫酸バリウムの負極活物質ペースト中での分散性が高まり、放電反応時における硫酸鉛結晶生成を容易に行うことができ、高率放電特性及びサイクル特性を向上させた鉛蓄電池を得ることができる。硫酸バリウムの一次粒子径が0.1 μmより大きいと、硫酸バリウムの分散がしにくく好ましくない。硫酸バリウムの一次粒子径が形成可能な最小粒子径より小さいものは入手できない。
【0024】
本発明に係る鉛蓄電池の製造方法では、一次粒子径が0.1 μm以下で、形成可能な最小粒子径以上の硫酸バリウムを、スラリー状態で負極活物質に添加しているので、硫酸バリウムの一次粒子径が小さくなって、硫酸バリウムの負極活物質ペースト中での分散性が高まり、放電反応時における硫酸鉛結晶生成を容易に行うことができ、高率放電特性及びサイクル特性を向上させた鉛蓄電池の製造を行うことができる。硫酸バリウムの一次粒子径が0.1 μmより大きいと、硫酸バリウムの分散がしにくく好ましくない。硫酸バリウムの一次粒子径が形成可能な最小粒子径より小さいものは入手できない。
【図面の簡単な説明】
【図1】比較例の鉛蓄電池と、実施の形態1の鉛蓄電池の低温高率放電持続時間の比較図である。
【図2】比較例の鉛蓄電池と、実施の形態1の鉛蓄電池の充放電サイクルを繰り返したときの寿命サイクルの比較図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a lead storage battery and a method for manufacturing the same.
[0002]
[Prior art]
A lead storage battery in which barium sulfate is contained in a negative electrode active material has been proposed (for example, see Patent Document 1).
[0003]
In such a lead-acid battery, barium sulfate serves as a central nucleus for generating lead sulfate particles during discharge.
[0004]
[Patent Document 1]
JP-A-8-236119
[Problems to be solved by the invention]
However, when barium sulfate in powder form is added during the preparation of the negative electrode active material paste, the barium sulfate has a large average particle size and is difficult to disperse. There is a problem that a layer is formed and a discharge reaction is inhibited. In addition, barium sulfate has a shrinkage-preventing effect of suppressing shrinkage of the negative electrode active material due to cycling, but since barium sulfate is not uniformly dispersed, shrinkage of the active material due to cycling becomes uneven, resulting in poor cycle characteristics. There was a problem of becoming.
[0006]
An object of the present invention is to provide a lead storage battery capable of improving the dispersibility of barium sulfate in a negative electrode active material paste, and a method for manufacturing the same.
[0007]
[Means for Solving the Problems]
The present invention has been made to achieve the above object, and has the following configuration.
[0008]
The present invention improves a lead storage battery having a negative electrode plate containing barium sulfate as a negative electrode active material, and a method for manufacturing the same.
[0009]
The lead storage battery according to the present invention is characterized in that the primary particle size of barium sulfate is 0.1 μm or less and is not less than the minimum particle size that can be formed.
[0010]
If the primary particle size of barium sulfate is 0.1 μm or less and the minimum particle size that can be formed, the dispersibility of barium sulfate in the negative electrode active material paste is increased, and the formation of lead sulfate crystals during the discharge reaction is increased. Can be easily performed, and a lead storage battery having improved high-rate discharge characteristics and cycle characteristics can be obtained. If the primary particle size of barium sulfate is larger than 0.1 μm, barium sulfate is not easily dispersed, which is not preferable. Barium sulfate having a primary particle size smaller than the minimum particle size that can be formed is not available.
[0011]
The method for producing a lead storage battery according to the present invention is characterized in that barium sulfate having a primary particle diameter of 0.1 μm or less and a minimum particle diameter that can be formed is added to the negative electrode active material in a slurry state.
[0012]
When barium sulfate having a primary particle size of 0.1 μm or less and a minimum particle size that can be formed or more is added to the negative electrode active material in a slurry state, the primary particle size of barium sulfate is reduced. Dispersibility of barium in the negative electrode active material paste is increased, and lead sulfate crystals can be easily generated during a discharge reaction, and a lead-acid battery with improved high-rate discharge characteristics and cycle characteristics can be manufactured. . If the primary particle size of barium sulfate is larger than 0.1 μm, barium sulfate is not easily dispersed, which is not preferable. Barium sulfate having a primary particle size smaller than the minimum particle size that can be formed is not available.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an example of Embodiment 1 of the lead storage battery according to the present invention will be described. The lead storage battery of this example was manufactured as follows.
[0014]
First, lead powder, 13% by mass of dilute sulfuric acid (specific gravity 1.26: 20 ° C.) with respect to the lead powder, and 12% by mass of water with respect to the lead powder are kneaded to form a positive electrode active material paste. Had made. After filling 102 g of the above-mentioned cathode active material paste on an expanded lattice body made of a Pb-Ca-based alloy, the mixture was left to stand at a temperature of 50 ° C. and a humidity of 95% for 18 hours and aged. It was left for 2 hours and dried to produce an unformed positive electrode plate.
[0015]
Next, a negative electrode plate was made. First, lead powder, 0.2 mass% lignin based on the lead powder, 0.2 mass% carbon based on the lead powder, and 1.0 mass% barium sulfate slurry based on the lead powder. Then, 13% by mass of dilute sulfuric acid (specific gravity 1.26: 20 ° C.) with respect to the lead powder and 12% by mass of water with respect to the lead powder were kneaded to prepare a negative electrode active material paste. The barium sulfate slurry is a slurry having a mixing ratio of 0.6% water, 0.1% water content, and 97% barium sulfate (primary particle size: 0.1 μm or less, minimum particle size that can be formed). Using. Next, 73 g of the obtained negative electrode active material paste was filled in a current collector formed of a lattice, left to stand at 50 ° C. and 95% humidity for 18 hours for aging, and then left at 110 ° C. for 2 hours. And dried to form an unformed negative electrode plate.
[0016]
As a comparative example, first, lead powder, 0.2% by mass of lignin with respect to the lead powder, 0.2% by mass of carbon with respect to the lead powder, and 1.0% by mass with respect to the lead powder % Barium sulfate, 13% by mass of dilute sulfuric acid (specific gravity: 1.26: 20 ° C.) with respect to the lead powder, and 12% by mass of water with respect to the lead powder to form a negative electrode active material paste. Had made. Barium sulfate having a primary particle diameter of 0.2 μm was used. Next, 73 g of the obtained negative electrode active material paste was filled in a current collector formed of a lattice, left to stand at 50 ° C. and 95% humidity for 18 hours for aging, and then left at 110 ° C. for 2 hours. And dried to form an unformed negative electrode plate.
[0017]
Next, seven non-formed positive electrode plates and eight unformed negative electrode plates were laminated with a bag separator placed over each negative electrode plate to form each electrode plate group. Then, after disposing each electrode plate group in the battery case, an electrolytic solution was injected into the battery case to produce each unformed lead storage battery. The electrolytic solution was diluted sulfuric acid having a specific gravity of 1.225 (20 ° C.).
[0018]
Next, the lead-acid storage battery was completed by forming the unformed lead-acid storage battery at 9A for 42 hours.
[0019]
The capacity of each completed lead storage battery was confirmed at an ambient temperature of 25 ° C. at 11 A and a final voltage of 10.5 V (5 hour rate). After confirming the capacity, the battery was charged until it was fully charged, and then left in a bath at an ambient temperature of -15 ± 1 ° C. for 16 hours. Thereafter, discharge was performed at 300 A and a discharge end voltage of 6.0 V, and low-temperature high-rate discharge characteristics were measured.
[0020]
FIG. 1 shows the results of the low-temperature high-rate discharge duration of the lead storage battery of the comparative example and the lead storage battery of the first embodiment. As a result, it was found that the lead-acid battery of Embodiment 1 had a significantly improved duration compared to the lead-acid battery of the comparative example.
[0021]
Next, the lead-acid battery of these comparative examples and the lead-acid battery of Embodiment 1 were charged and discharged at 25 A at an ambient temperature of 75 ° C. for 4 minutes and then charged at 14.8 V for 10 minutes as one cycle. The discharge was repeated and left for 480 cycles for 56 hours. Thereafter, the battery was discharged at 582 A for 30 seconds, the voltage was measured, and the same cycle was subsequently repeated. The number of lifespan was 582 A, and the number of times when the voltage at 30 seconds became 7.2 V was used.
[0022]
FIG. 2 shows the results of the cycle life times of the lead storage battery of the comparative example and the lead storage battery of the first embodiment. As a result, it was found that the lead storage battery of Embodiment 1 had improved cycle characteristics as compared with the lead storage battery of the comparative example.
[0023]
【The invention's effect】
In the lead storage battery according to the present invention, the primary particle diameter of barium sulfate is 0.1 μm or less, and is not less than the minimum particle size that can be formed, so that the dispersibility of barium sulfate in the negative electrode active material paste is increased, and Lead sulfate crystals can be easily formed during the reaction, and a lead storage battery with improved high-rate discharge characteristics and cycle characteristics can be obtained. If the primary particle size of barium sulfate is larger than 0.1 μm, barium sulfate is not easily dispersed, which is not preferable. Barium sulfate having a primary particle size smaller than the minimum particle size that can be formed is not available.
[0024]
In the method for manufacturing a lead storage battery according to the present invention, barium sulfate having a primary particle diameter of 0.1 μm or less and a minimum formable particle diameter or more is added to the negative electrode active material in a slurry state. The primary particle diameter is reduced, the dispersibility of barium sulfate in the negative electrode active material paste is increased, lead sulfate crystals can be easily generated during the discharge reaction, and the high rate discharge characteristics and cycle characteristics have been improved. Lead-acid batteries can be manufactured. If the primary particle diameter of barium sulfate is larger than 0.1 μm, barium sulfate is not easily dispersed, which is not preferable. Barium sulfate having a primary particle size smaller than the minimum particle size that can be formed is not available.
[Brief description of the drawings]
FIG. 1 is a comparison diagram of a low-temperature high-rate discharge duration of a lead storage battery of a comparative example and a lead storage battery of the first embodiment.
FIG. 2 is a comparison diagram of life cycles when a charge / discharge cycle of a lead storage battery of a comparative example and a lead storage battery of Embodiment 1 is repeated.

Claims (2)

負極活物質に硫酸バリウムを含む負極板を有する鉛蓄電池であって、
前記硫酸バリウムの一次粒子径が0.1 μm以下で、形成可能な最小粒子径以上のものであることを特徴とする鉛蓄電池。
A lead-acid battery having a negative electrode plate containing barium sulfate as a negative electrode active material,
The lead-acid battery according to claim 1, wherein the barium sulfate has a primary particle diameter of 0.1 μm or less and a particle diameter of at least the minimum formable particle diameter.
負極活物質に硫酸バリウムを含む負極板を有する鉛蓄電池の製造方法であって、
一次粒子径が0.1 μm以下で、形成可能な最小粒子径以上の硫酸バリウムを、スラリー状態で負極活物質に添加することを特徴とした鉛蓄電池の製造方法。
A method for producing a lead storage battery having a negative electrode plate containing barium sulfate as a negative electrode active material,
A method for producing a lead-acid battery, comprising adding barium sulfate having a primary particle size of 0.1 μm or less and a particle size not less than the minimum formable particle size to a negative electrode active material in a slurry state.
JP2003151967A 2003-05-29 2003-05-29 Lead-acid storage battery and its manufacturing method Pending JP2004355942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003151967A JP2004355942A (en) 2003-05-29 2003-05-29 Lead-acid storage battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003151967A JP2004355942A (en) 2003-05-29 2003-05-29 Lead-acid storage battery and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004355942A true JP2004355942A (en) 2004-12-16

Family

ID=34047302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003151967A Pending JP2004355942A (en) 2003-05-29 2003-05-29 Lead-acid storage battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004355942A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013046499A1 (en) * 2011-09-30 2013-04-04 パナソニック株式会社 Lead acid storage battery for energy storage
WO2018100635A1 (en) * 2016-11-29 2018-06-07 日立化成株式会社 Lead storage battery and production method therefor
WO2018100639A1 (en) * 2016-11-29 2018-06-07 日立化成株式会社 Lead storage battery and production method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013046499A1 (en) * 2011-09-30 2013-04-04 パナソニック株式会社 Lead acid storage battery for energy storage
JP5190562B1 (en) * 2011-09-30 2013-04-24 パナソニック株式会社 Lead-acid battery for energy storage
WO2018100635A1 (en) * 2016-11-29 2018-06-07 日立化成株式会社 Lead storage battery and production method therefor
WO2018100639A1 (en) * 2016-11-29 2018-06-07 日立化成株式会社 Lead storage battery and production method therefor
JPWO2018100639A1 (en) * 2016-11-29 2019-10-17 日立化成株式会社 Lead-acid battery and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP2004199950A (en) Manufacturing method of positive electrode plate for lead-acid storage battery
JP2009048800A (en) Manufacturing method for paste type positive electrode plate
JP2004355942A (en) Lead-acid storage battery and its manufacturing method
JPS6060A (en) Positive electrode active substance for lead storage battery and battery utilizing said active substance
JP2008071717A (en) Method of chemical conversion of lead-acid battery
JP4186197B2 (en) Positive electrode plate for lead acid battery
JP4441934B2 (en) Method for producing lead-acid battery
JP3575145B2 (en) Negative electrode plate for lead storage battery and method for producing the same
JP2004199949A (en) Manufacturing method of electrode plate for lead-acid storage battery
JP5839988B2 (en) Lead acid battery
JPH1040907A (en) Manufacture of positive electrode plate for lead-acid battery
JP2004055309A (en) Manufacturing method of pasty active material for positive electrodes, and lead storage battery using it
JPH11162456A (en) Lead-acid battery
JP2773312B2 (en) Manufacturing method of positive electrode plate for lead-acid battery
JP3435796B2 (en) Method of manufacturing paste-type positive electrode plate for sealed lead-acid battery
JP3284860B2 (en) Electrode for lead-acid battery and its manufacturing method
JP4501246B2 (en) Control valve type stationary lead acid battery manufacturing method
JP2002231234A (en) Method of preparing paste active material for use in positive electrode
JP2002260642A (en) Manufacturing method of lead-acid battery, and negative electrode plate thereof
JPS61264675A (en) Positive plate of clad type lead-acid battery
JP2002198039A (en) Negative electrode active material in paste form and its manufacturing method
JP2000182615A (en) Lead-acid battery
JP2004031040A (en) Lead-acid battery
JP3040718B2 (en) Lead storage battery
JPS61161660A (en) Lead-acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100202