JP2004199950A - Manufacturing method of positive electrode plate for lead-acid storage battery - Google Patents

Manufacturing method of positive electrode plate for lead-acid storage battery Download PDF

Info

Publication number
JP2004199950A
JP2004199950A JP2002365437A JP2002365437A JP2004199950A JP 2004199950 A JP2004199950 A JP 2004199950A JP 2002365437 A JP2002365437 A JP 2002365437A JP 2002365437 A JP2002365437 A JP 2002365437A JP 2004199950 A JP2004199950 A JP 2004199950A
Authority
JP
Japan
Prior art keywords
lead
positive electrode
electrode plate
slurry
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002365437A
Other languages
Japanese (ja)
Inventor
Keiichi Wada
圭一 和田
Takafumi Kondo
隆文 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2002365437A priority Critical patent/JP2004199950A/en
Publication of JP2004199950A publication Critical patent/JP2004199950A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a positive electrode plate for a lead storage battery without damaging chemical conversion efficiency and battery characteristics although a red lead is used. <P>SOLUTION: A positive electrode paste is manufactured by supplying the red lead and diluted sulfuric acid in a kneading mixer, and manufacturing a red lead slurry containing lead dioxide by kneading the red lead and the sulfuric acid, and drying the red lead slurry, and supplying the red lead slurry to the paste kneading device together with lead powder and kneading them. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、鉛丹を用いた鉛蓄電池用正極板の製造方法に関するものである。
【0002】
【従来の技術】
鉛丹を用いた正極板の製造では、鉛丹と希硫酸を混合した鉛丹スラリーを鉛粉と共にペースト練合機に供給し、該ペースト練合機で作られた正極ペーストが用いられていた(例えば、特許文献1参照。)。
【0003】
【特許文献1】
特開平5−13074号公報
【0004】
【発明が解決しようとする課題】
しかしながら、ペースト練合機中で鉛丹スラリーと鉛粉が接触すると、鉛丹スラリー中にある硫酸鉛と鉛粉が反応して三塩基性硫酸鉛の皮膜が鉛丹スラリーの周囲に形成される。このことにより直径約1mm以上の鉛丹スラリーの凝集粒子が正極ペースト中に存在することになる。この正極ペーストを用いて未化成正極板を完成させると、未化成活物質中に凝集した鉛丹スラリーが局部的に存在し、鉛丹スラリーの分布が不均一な未化成正極板ができあがる。このことは化成効率、電池製造に悪影響を及ぼす問題点がある。
【0005】
従来の鉛丹を用いた正極板の製造方法では、化成効率、電池性能を損なうことなく製造するのは難しかった。
【0006】
本発明の目的は、鉛丹を用いているにも拘らず、化成効率、電池性能を損なわないで製造できる鉛蓄電池用正極板の製造方法を提供することにある。
【0007】
【課題を解決するための手段】
上記の目的を達成するため本発明は、正極ペーストを格子体に充填し、熟成、乾燥して製造する鉛蓄電池用正極板の製造方法において、
正極ペーストの製造は、鉛丹及び希硫酸を混練ミキサーに供給し、両者を混合して二酸化鉛を含む鉛丹スラリーを製造し、該鉛丹スラリーを乾燥させ、その後、鉛粉と共にペースト練合機に供給し、混練して行うことを特徴とする。
【0008】
本発明では、鉛丹スラリーの製造後、この鉛丹スラリーを乾燥することで、鉛粉との接触時に三塩基性硫酸鉛の皮膜を形成しないようにする。このことにより、従来のように凝集した鉛丹スラリーが局部的に存在することがなくなり、正極未化成活物質中の鉛丹スラリーの分散を均一にすることができる。
【0009】
鉛丹スラリーが均一に分散した正極板は、充電が均一にはいるため、より効率よく充電が完成する。また、鉛丹スラリー中の鉛丹が均一に分散するため、鉛丹の特徴である充放電サイクル中の活物質の脱落の影響を最小限に抑え、寿命サイクルに強い正極板を得ることができる。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態の各例を比較例と共に説明する。
【0011】
(比較例1)
比較例1の鉛蓄電池は、次のようにして製造した。
【0012】
正極板を、次のようにして作った。まず、鉛丹15kgと希硫酸(比重1.26:20℃)110L(リットル)を混練ミキサー中に投入し、鉛丹スラリーを作った。この鉛丹スラリーと鉛粉850kgをペースト練合機に投入し、100Lの水とを混練して正極活物質ペーストを作った。次に、この正極活物質ペースト100gをカルシウム合金の格子体からなる集電体に充填してから、温度50℃、湿度95%中に18時間放置して熟成した後に、温度110℃中に2時間放置して乾燥して未化成正極板を作った。
【0013】
次に、負極板を、次のようにして作った。まず、鉛粉と、該鉛粉に対して15質量%の希硫酸(比重1.26:20℃)と、該鉛粉に対して12質量%の水とを混練して負極活物質ペーストを作った。次に、この負極活物質ペースト80gをカルシウム合金の格子体からなる集電体に充填してから、温度50℃、湿度95%中に18時間放置して熟成した後に、湿度110℃中に2時間放置して乾燥して未化成負極板を作った。
【0014】
次に、未化成負極板8枚と未化成正極板7枚とをセパレータを介して交互に積層して各極板群を作った。
【0015】
次に化成を、次のようにして行った。25℃の雰囲気で22.5A、12時間の定電流で充電を行った。充電に用いた硫酸の比重はs.g.1.240とし、各セルに700ml注入した。
【0016】
以上の手順により、定格電圧12V、定格容量(5時間率容量)55Ahである、比較例1の自動車用鉛蓄電池80D26(JISD5301記載)を完成した。
【0017】
(実施の形態1)
実施の形態1の鉛蓄電池は、次のようにして製造した。
【0018】
正極板を、次のようにして作った。まず、鉛丹15kgと希硫酸(比重1.26:20℃)110Lを混練ミキサー中に投入し、鉛丹スラリーを作った。この鉛丹スラリーを110℃の雰囲気に6時間放置し、水分を飛ばした。乾燥した鉛丹スラリーと鉛粉850kgをペースト練合機に投入し、200Lの水とを混練して正極活物質ペーストを作った。次に、この正極活物質ペースト100gをカルシウム合金からなる格子体に充填してから、温度50℃、湿度95%中に18時間放置して熟成した後に、温度110℃中に2時間放置して乾燥して未化成正極板を作った。
【0019】
次に負極板を、次のようにして作った。まず、鉛粉と、該鉛粉に対して15質量%の希硫酸(比重1.26:20℃)と、該鉛粉に対して12質量%の水とを混練して負極活物質ペーストを作った。次に、この負極活物質ペースト80gをカルシウム合金の格子体からなる集電体に充填してから、温度50℃、湿度95%中に18時間放置して熟成した後に、温度110℃中に2時間放置して乾燥して未化成負極板を作った。
【0020】
次に、未化成負極板8枚と未化成正極板7枚とをセパレータを介して交互に積層して各極板群を作った。
【0021】
次に化成を、次のようにして行った。25℃の雰囲気で22.5A、9時間の定電流で充電を行った。充電に用いた硫酸の比重はs.g.1.250とし、各セルに700ml注入した。
【0022】
以上の手順により、定格電圧12V、定格容量(5時間率容量)55Ahである、実施の形態1の自動車用鉛蓄電池80D26(JISD5301記載)を完成した。
【0023】
図1は、比較例1と実施の形態1の充電時間を変えたときの正極活物質中に存在する残存硫酸鉛量の変化を示した。
【0024】
比較例1は、約12時間以上で残存硫酸鉛量の変化がなくなり、充電が完了したと言える。このことから比較例1は、上記に示したように充電時間を12時間とした。
【0025】
実施の形態1は、約9時間以上で残存硫酸鉛量の変化がなくなり、充電が完了したと言える。このことから実施の形態1は、上記に示したように充電時間を9時間とした。
【0026】
図1から分かるように実施の形態1は鉛丹の分散性が均一であることから、比較例1に比べ充電性が良く、充電時間を短くすることができた。
【0027】
図2は、重負荷寿命試験のサイクル容量変化を示した。試験条件は、40℃の周囲温度で20A、1時間放電した後に、5Aで5時間充電する充放電を1サイクルとして充放電を繰り返し、25サイクル毎に20Aで端子電圧が10.2Vになるまで連続放電を行い、放電持続時間を測定した。寿命サイクル数は、容量が5時間率容量の半分、即ち22.5Ahとなる回数とした。
【0028】
比較例1に比べ実施の形態1は、サイクル後半の容量低下が少なく、寿命判定容量を切るまでのサイクル数が多かった。このことからサイクル特性についても実施の形態1は大きな効果が得られた。
【0029】
【発明の効果】
本発明に係る鉛蓄電池用正極板の製造方法では、鉛丹スラリーの製造後、この鉛丹スラリーを乾燥することで、鉛粉との接触時に三塩基性硫酸鉛の皮膜を形成しないようにし、このことにより正極未化成活物質中の鉛丹スラリーの分散を均一にすることができる。
【0030】
鉛丹スラリーが均一に分散した正極板は、充電が均一にはいるため、より効率よく充電が完成する。また、鉛丹スラリー中の鉛丹が均一に分散するため、鉛丹の特徴である充放電サイクル中の活物質の脱落の影響を最小限に抑え、寿命サイクルに強い正極板を得ることができる。
【図面の簡単な説明】
【図1】比較例1と実施の形態1の鉛蓄電池の充電時間と残存硫酸鉛量の変化を示す図である。
【図2】比較例1と実施の形態1の鉛蓄電池の重負荷寿命試験における容量変化を示す図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a positive electrode plate for a lead storage battery using lead tin.
[0002]
[Prior art]
In the production of a positive electrode plate using lead ginseng, a lead grit mixed with lead ginseng and dilute sulfuric acid was supplied to a paste kneading machine together with lead powder, and a positive electrode paste produced by the paste kneading machine was used. (For example, refer to Patent Document 1).
[0003]
[Patent Document 1]
JP-A-5-13074
[Problems to be solved by the invention]
However, when the lead-tan slurry and the lead powder come into contact in the paste kneading machine, the lead sulfate and lead powder in the lead-tan slurry react with each other to form a tribasic lead sulfate film around the lead-tan slurry. . As a result, agglomerated particles of the lead tin slurry having a diameter of about 1 mm or more are present in the positive electrode paste. When a non-chemically formed positive electrode plate is completed using this positive electrode paste, a non-chemically formed positive electrode plate is obtained in which the lead-iron slurry is locally present in the non-chemically-formed active material and the distribution of the lead-iron slurry is not uniform. This has a problem of adversely affecting the formation efficiency and battery production.
[0005]
With the conventional method of manufacturing a positive electrode plate using lead tin, it has been difficult to manufacture without impairing the chemical conversion efficiency and battery performance.
[0006]
An object of the present invention is to provide a method for producing a positive electrode plate for a lead-acid battery, which can be produced without impairing the chemical conversion efficiency and the battery performance despite using lead tin.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a method for producing a positive electrode plate for a lead-acid battery, which is prepared by filling a grid body with a positive electrode paste, aging, and drying.
In the production of the positive electrode paste, leadtan and dilute sulfuric acid are supplied to a kneading mixer, the two are mixed to produce a leadtan slurry containing lead dioxide, the leadtan slurry is dried, and then paste kneading with lead powder is performed. It is supplied to a kneader and kneaded.
[0008]
In the present invention, the lead-tan slurry is dried after production of the lead-tan slurry, so that a tribasic lead sulfate film is not formed at the time of contact with the lead powder. This eliminates the local presence of the agglomerated lead-tan slurry as in the prior art, making it possible to make the dispersion of the lead-tan slurry in the positive electrode unformed active material uniform.
[0009]
The positive electrode plate in which the lead-tin slurry is uniformly dispersed allows charging to be completed more efficiently because charging is uniform. In addition, since the red lead in the red lead slurry is uniformly dispersed, the effect of the active material falling off during the charge / discharge cycle, which is a characteristic of lead red, can be minimized, and a positive electrode plate that is strong in the life cycle can be obtained. .
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, examples of the embodiment of the present invention will be described together with comparative examples.
[0011]
(Comparative Example 1)
The lead storage battery of Comparative Example 1 was manufactured as follows.
[0012]
A positive electrode plate was made as follows. First, 15 kg of red lead and 110 L (liter) of dilute sulfuric acid (specific gravity 1.26: 20 ° C.) were charged into a kneading mixer to prepare a lead red slurry. This lead-tan slurry and 850 kg of lead powder were put into a paste kneading machine, and kneaded with 100 L of water to prepare a positive electrode active material paste. Next, 100 g of this positive electrode active material paste was filled in a current collector made of a lattice of calcium alloy, left to stand at a temperature of 50 ° C. and a humidity of 95% for 18 hours, and aged at 110 ° C. It was left to dry for a period of time to produce an unformed positive electrode plate.
[0013]
Next, a negative electrode plate was produced as follows. First, lead powder, 15% by mass of dilute sulfuric acid (specific gravity 1.26: 20 ° C.) with respect to the lead powder, and 12% by mass of water with respect to the lead powder are kneaded to form a negative electrode active material paste. Had made. Next, 80 g of the negative electrode active material paste was filled in a current collector made of a lattice of calcium alloy, left to stand at a temperature of 50 ° C. and a humidity of 95% for 18 hours, and then aged at 110 ° C. It was left to dry for a period of time to produce an unformed negative electrode plate.
[0014]
Next, eight unformed negative electrode plates and seven unformed positive electrode plates were alternately laminated with a separator interposed therebetween to form each electrode group.
[0015]
Next, chemical conversion was performed as follows. The battery was charged in a 25 ° C. atmosphere at a constant current of 22.5 A for 12 hours. The specific gravity of the sulfuric acid used for charging is s. g. It was 1.240, and 700 ml was injected into each cell.
[0016]
According to the above procedure, a lead-acid battery 80D26 (described in JISD5301) for a vehicle of Comparative Example 1 having a rated voltage of 12 V and a rated capacity (5 hour capacity) of 55 Ah was completed.
[0017]
(Embodiment 1)
The lead storage battery of the first embodiment was manufactured as follows.
[0018]
A positive electrode plate was made as follows. First, 15 kg of lead red and 110 L of dilute sulfuric acid (specific gravity: 1.26: 20 ° C.) were charged into a kneading mixer to prepare a lead red slurry. This lead-tan slurry was left in an atmosphere of 110 ° C. for 6 hours to remove moisture. The dried lead red slurry and 850 kg of lead powder were put into a paste kneading machine and kneaded with 200 L of water to prepare a positive electrode active material paste. Next, 100 g of this positive electrode active material paste was filled in a lattice made of a calcium alloy, left to age at 50 ° C. and 95% humidity for 18 hours, and then left at 110 ° C. for 2 hours. It dried and the unformed positive electrode plate was produced.
[0019]
Next, a negative electrode plate was produced as follows. First, lead powder, 15% by mass of dilute sulfuric acid (specific gravity 1.26: 20 ° C.) with respect to the lead powder, and 12% by mass of water with respect to the lead powder are kneaded to form a negative electrode active material paste. Had made. Next, 80 g of the negative electrode active material paste was filled in a current collector made of a lattice of calcium alloy, left to stand at a temperature of 50 ° C. and a humidity of 95% for 18 hours, and aged at 110 ° C. It was left to dry for a period of time to produce an unformed negative electrode plate.
[0020]
Next, eight unformed negative electrode plates and seven unformed positive electrode plates were alternately laminated with a separator interposed therebetween to form each electrode group.
[0021]
Next, chemical conversion was performed as follows. The battery was charged at a constant current of 22.5 A and 9 hours in an atmosphere of 25 ° C. The specific gravity of the sulfuric acid used for charging is s. g. It was set to 1.250, and 700 ml was injected into each cell.
[0022]
By the above procedure, the lead-acid battery 80D26 (described in JISD5301) for the vehicle of Embodiment 1 having a rated voltage of 12 V and a rated capacity (5 hour rate capacity) of 55 Ah was completed.
[0023]
FIG. 1 shows a change in the amount of residual lead sulfate present in the positive electrode active material when the charging time of Comparative Example 1 and Embodiment 1 was changed.
[0024]
In Comparative Example 1, there was no change in the amount of residual lead sulfate after about 12 hours or more, and it can be said that charging was completed. For this reason, in Comparative Example 1, the charging time was set to 12 hours as described above.
[0025]
In the first embodiment, it can be said that the charge has been completed since the change in the amount of residual lead sulfate disappeared in about 9 hours or more. For this reason, Embodiment 1 sets the charging time to 9 hours as described above.
[0026]
As can be seen from FIG. 1, in the first embodiment, since the dispersibility of the red lead was uniform, the chargeability was better and the charge time was shorter than in Comparative Example 1.
[0027]
FIG. 2 shows the cycle capacity change of the heavy load life test. The test conditions are as follows: charge and discharge are repeated at a cycle of charging and discharging at 20 A at an ambient temperature of 40 ° C. and discharging at 20 A for 1 hour and then charging at 5 A for 5 hours until the terminal voltage becomes 10.2 V at 20 A every 25 cycles. Continuous discharge was performed, and the discharge duration was measured. The number of life cycles was the number of times when the capacity was half of the 5-hour rate capacity, that is, 22.5 Ah.
[0028]
In the first embodiment, compared to Comparative Example 1, the capacity decrease in the latter half of the cycle was small, and the number of cycles until the life determination capacity was cut off was large. From this, the first embodiment also has a great effect on the cycle characteristics.
[0029]
【The invention's effect】
In the method for manufacturing a positive electrode plate for a lead storage battery according to the present invention, after manufacturing the lead-tan slurry, by drying the lead-tan slurry, a tribasic lead sulfate film is not formed at the time of contact with lead powder, This makes it possible to make the dispersion of the lead tin slurry in the positive electrode unformed active material uniform.
[0030]
The positive electrode plate in which the lead-tin slurry is uniformly dispersed allows charging to be completed more efficiently because charging is uniform. In addition, since the red lead in the red lead slurry is uniformly dispersed, the effect of the active material falling off during the charge / discharge cycle, which is a characteristic of lead red, can be minimized, and a positive electrode plate that is strong in the life cycle can be obtained. .
[Brief description of the drawings]
FIG. 1 is a diagram showing changes in the charging time and the amount of residual lead sulfate of the lead storage batteries of Comparative Example 1 and Embodiment 1.
FIG. 2 is a diagram showing a change in capacity in a heavy load life test of the lead storage batteries of Comparative Example 1 and Embodiment 1.

Claims (1)

正極ペーストを格子体に充填し、熟成、乾燥して製造する鉛蓄電池用正極板の製造方法において、
前記正極ペーストの製造は、鉛丹及び希硫酸を混練ミキサーに供給し、両者を混合して二酸化鉛を含む鉛丹スラリーを製造し、該鉛丹スラリーを乾燥させ、その後、鉛粉と共にペースト練合機に供給し、混練して行うことを特徴とする鉛蓄電池用正極板の製造方法。
Filling the grid with the positive electrode paste, aging, in a method of manufacturing a positive electrode plate for a lead storage battery manufactured by drying,
In the production of the positive electrode paste, lead red and dilute sulfuric acid are supplied to a kneading mixer, the two are mixed to produce a lead red slurry containing lead dioxide, the lead red slurry is dried, and thereafter, the paste is kneaded with lead powder. A method for producing a positive electrode plate for a lead-acid battery, wherein the positive electrode plate is supplied to a joint machine and kneaded.
JP2002365437A 2002-12-17 2002-12-17 Manufacturing method of positive electrode plate for lead-acid storage battery Pending JP2004199950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002365437A JP2004199950A (en) 2002-12-17 2002-12-17 Manufacturing method of positive electrode plate for lead-acid storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002365437A JP2004199950A (en) 2002-12-17 2002-12-17 Manufacturing method of positive electrode plate for lead-acid storage battery

Publications (1)

Publication Number Publication Date
JP2004199950A true JP2004199950A (en) 2004-07-15

Family

ID=32762989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002365437A Pending JP2004199950A (en) 2002-12-17 2002-12-17 Manufacturing method of positive electrode plate for lead-acid storage battery

Country Status (1)

Country Link
JP (1) JP2004199950A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8405147B2 (en) 2005-07-11 2013-03-26 Peregrine Semiconductor Corporation Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink
US8536636B2 (en) 2007-04-26 2013-09-17 Peregrine Semiconductor Corporation Tuning capacitance to enhance FET stack voltage withstand
US8559907B2 (en) 2004-06-23 2013-10-15 Peregrine Semiconductor Corporation Integrated RF front end with stacked transistor switch
US8583111B2 (en) 2001-10-10 2013-11-12 Peregrine Semiconductor Corporation Switch circuit and method of switching radio frequency signals
US8604864B2 (en) 2008-02-28 2013-12-10 Peregrine Semiconductor Corporation Devices and methods for improving voltage handling and/or bi-directionality of stacks of elements when connected between terminals
US8723260B1 (en) 2009-03-12 2014-05-13 Rf Micro Devices, Inc. Semiconductor radio frequency switch with body contact
US8742502B2 (en) 2005-07-11 2014-06-03 Peregrine Semiconductor Corporation Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink-harmonic wrinkle reduction
US8954902B2 (en) 2005-07-11 2015-02-10 Peregrine Semiconductor Corporation Method and apparatus improving gate oxide reliability by controlling accumulated charge
US9419565B2 (en) 2013-03-14 2016-08-16 Peregrine Semiconductor Corporation Hot carrier injection compensation
US9590674B2 (en) 2012-12-14 2017-03-07 Peregrine Semiconductor Corporation Semiconductor devices with switchable ground-body connection
US9831857B2 (en) 2015-03-11 2017-11-28 Peregrine Semiconductor Corporation Power splitter with programmable output phase shift
US9948281B2 (en) 2016-09-02 2018-04-17 Peregrine Semiconductor Corporation Positive logic digitally tunable capacitor
US10236872B1 (en) 2018-03-28 2019-03-19 Psemi Corporation AC coupling modules for bias ladders
US10505530B2 (en) 2018-03-28 2019-12-10 Psemi Corporation Positive logic switch with selectable DC blocking circuit
US10790390B2 (en) 2005-07-11 2020-09-29 Psemi Corporation Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink-harmonic wrinkle reduction
US10804892B2 (en) 2005-07-11 2020-10-13 Psemi Corporation Circuit and method for controlling charge injection in radio frequency switches
US10886911B2 (en) 2018-03-28 2021-01-05 Psemi Corporation Stacked FET switch bias ladders
USRE48965E1 (en) 2005-07-11 2022-03-08 Psemi Corporation Method and apparatus improving gate oxide reliability by controlling accumulated charge
US11476849B2 (en) 2020-01-06 2022-10-18 Psemi Corporation High power positive logic switch

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9225378B2 (en) 2001-10-10 2015-12-29 Peregrine Semiconductor Corpopration Switch circuit and method of switching radio frequency signals
US10812068B2 (en) 2001-10-10 2020-10-20 Psemi Corporation Switch circuit and method of switching radio frequency signals
US8583111B2 (en) 2001-10-10 2013-11-12 Peregrine Semiconductor Corporation Switch circuit and method of switching radio frequency signals
US10797694B2 (en) 2001-10-10 2020-10-06 Psemi Corporation Switch circuit and method of switching radio frequency signals
US10790820B2 (en) 2001-10-10 2020-09-29 Psemi Corporation Switch circuit and method of switching radio frequency signals
US8559907B2 (en) 2004-06-23 2013-10-15 Peregrine Semiconductor Corporation Integrated RF front end with stacked transistor switch
US8649754B2 (en) 2004-06-23 2014-02-11 Peregrine Semiconductor Corporation Integrated RF front end with stacked transistor switch
US9680416B2 (en) 2004-06-23 2017-06-13 Peregrine Semiconductor Corporation Integrated RF front end with stacked transistor switch
US9369087B2 (en) 2004-06-23 2016-06-14 Peregrine Semiconductor Corporation Integrated RF front end with stacked transistor switch
US9087899B2 (en) 2005-07-11 2015-07-21 Peregrine Semiconductor Corporation Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink-harmonic wrinkle reduction
US10680600B2 (en) 2005-07-11 2020-06-09 Psemi Corporation Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink
US8405147B2 (en) 2005-07-11 2013-03-26 Peregrine Semiconductor Corporation Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink
US10804892B2 (en) 2005-07-11 2020-10-13 Psemi Corporation Circuit and method for controlling charge injection in radio frequency switches
US9130564B2 (en) 2005-07-11 2015-09-08 Peregrine Semiconductor Corporation Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink
US10797172B2 (en) 2005-07-11 2020-10-06 Psemi Corporation Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink-harmonic wrinkle reduction
US10797691B1 (en) 2005-07-11 2020-10-06 Psemi Corporation Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink
US8954902B2 (en) 2005-07-11 2015-02-10 Peregrine Semiconductor Corporation Method and apparatus improving gate oxide reliability by controlling accumulated charge
US10790390B2 (en) 2005-07-11 2020-09-29 Psemi Corporation Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink-harmonic wrinkle reduction
US8742502B2 (en) 2005-07-11 2014-06-03 Peregrine Semiconductor Corporation Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink-harmonic wrinkle reduction
US10622990B2 (en) 2005-07-11 2020-04-14 Psemi Corporation Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink
US10818796B2 (en) 2005-07-11 2020-10-27 Psemi Corporation Method and apparatus improving gate oxide reliability by controlling accumulated charge
US9608619B2 (en) 2005-07-11 2017-03-28 Peregrine Semiconductor Corporation Method and apparatus improving gate oxide reliability by controlling accumulated charge
USRE48944E1 (en) 2005-07-11 2022-02-22 Psemi Corporation Method and apparatus for use in improving linearity of MOSFETS using an accumulated charge sink
USRE48965E1 (en) 2005-07-11 2022-03-08 Psemi Corporation Method and apparatus improving gate oxide reliability by controlling accumulated charge
US10951210B2 (en) 2007-04-26 2021-03-16 Psemi Corporation Tuning capacitance to enhance FET stack voltage withstand
US8536636B2 (en) 2007-04-26 2013-09-17 Peregrine Semiconductor Corporation Tuning capacitance to enhance FET stack voltage withstand
US9177737B2 (en) 2007-04-26 2015-11-03 Peregrine Semiconductor Corporation Tuning capacitance to enhance FET stack voltage withstand
US9024700B2 (en) 2008-02-28 2015-05-05 Peregrine Semiconductor Corporation Method and apparatus for use in digitally tuning a capacitor in an integrated circuit device
US9293262B2 (en) 2008-02-28 2016-03-22 Peregrine Semiconductor Corporation Digitally tuned capacitors with tapered and reconfigurable quality factors
US8669804B2 (en) 2008-02-28 2014-03-11 Peregrine Semiconductor Corporation Devices and methods for improving voltage handling and/or bi-directionality of stacks of elements when connected between terminals
US8604864B2 (en) 2008-02-28 2013-12-10 Peregrine Semiconductor Corporation Devices and methods for improving voltage handling and/or bi-directionality of stacks of elements when connected between terminals
US9197194B2 (en) 2008-02-28 2015-11-24 Peregrine Semiconductor Corporation Methods and apparatuses for use in tuning reactance in a circuit device
US9106227B2 (en) 2008-02-28 2015-08-11 Peregrine Semiconductor Corporation Devices and methods for improving voltage handling and/or bi-directionality of stacks of elements when connected between terminals
US8723260B1 (en) 2009-03-12 2014-05-13 Rf Micro Devices, Inc. Semiconductor radio frequency switch with body contact
US9590674B2 (en) 2012-12-14 2017-03-07 Peregrine Semiconductor Corporation Semiconductor devices with switchable ground-body connection
US9419565B2 (en) 2013-03-14 2016-08-16 Peregrine Semiconductor Corporation Hot carrier injection compensation
US9831857B2 (en) 2015-03-11 2017-11-28 Peregrine Semiconductor Corporation Power splitter with programmable output phase shift
US9948281B2 (en) 2016-09-02 2018-04-17 Peregrine Semiconductor Corporation Positive logic digitally tunable capacitor
US10505530B2 (en) 2018-03-28 2019-12-10 Psemi Corporation Positive logic switch with selectable DC blocking circuit
US10862473B2 (en) 2018-03-28 2020-12-08 Psemi Corporation Positive logic switch with selectable DC blocking circuit
US10886911B2 (en) 2018-03-28 2021-01-05 Psemi Corporation Stacked FET switch bias ladders
US10236872B1 (en) 2018-03-28 2019-03-19 Psemi Corporation AC coupling modules for bias ladders
US11018662B2 (en) 2018-03-28 2021-05-25 Psemi Corporation AC coupling modules for bias ladders
US11418183B2 (en) 2018-03-28 2022-08-16 Psemi Corporation AC coupling modules for bias ladders
US11870431B2 (en) 2018-03-28 2024-01-09 Psemi Corporation AC coupling modules for bias ladders
US11476849B2 (en) 2020-01-06 2022-10-18 Psemi Corporation High power positive logic switch

Similar Documents

Publication Publication Date Title
JP2004199950A (en) Manufacturing method of positive electrode plate for lead-acid storage battery
TWI539644B (en) Flooded lead-acid battery and method of making the same
JP2009048800A (en) Manufacturing method for paste type positive electrode plate
JP2000251896A (en) Lead-acid battery and its manufacture
JP4186197B2 (en) Positive electrode plate for lead acid battery
JP4441934B2 (en) Method for producing lead-acid battery
JP3575145B2 (en) Negative electrode plate for lead storage battery and method for producing the same
JP4488220B2 (en) Method for producing positive electrode plate for lead acid battery
JP2004055417A (en) Manufacturing method of pasty active material for positive electrode and lead storage battery using it
JP2004055309A (en) Manufacturing method of pasty active material for positive electrodes, and lead storage battery using it
JPH11162456A (en) Lead-acid battery
JP2004355942A (en) Lead-acid storage battery and its manufacturing method
JP2004199949A (en) Manufacturing method of electrode plate for lead-acid storage battery
JP4501246B2 (en) Control valve type stationary lead acid battery manufacturing method
JP2005044772A (en) Paste type positive electrode plate of lead-acid storage battery
JP2002231234A (en) Method of preparing paste active material for use in positive electrode
JP3284860B2 (en) Electrode for lead-acid battery and its manufacturing method
JPH1040907A (en) Manufacture of positive electrode plate for lead-acid battery
JP2000182615A (en) Lead-acid battery
JP2773311B2 (en) Manufacturing method of sealed lead-acid battery
JP3040718B2 (en) Lead storage battery
JP2002198039A (en) Negative electrode active material in paste form and its manufacturing method
JP2002042797A (en) Method for manufacturing paste-like active material
JP2002198041A (en) Manufacturing method of positive pole plate for lead acid battery
JPH11162455A (en) Lead-acid battery