JP3238949B2 - Activation method of alkaline storage battery - Google Patents

Activation method of alkaline storage battery

Info

Publication number
JP3238949B2
JP3238949B2 JP20543392A JP20543392A JP3238949B2 JP 3238949 B2 JP3238949 B2 JP 3238949B2 JP 20543392 A JP20543392 A JP 20543392A JP 20543392 A JP20543392 A JP 20543392A JP 3238949 B2 JP3238949 B2 JP 3238949B2
Authority
JP
Japan
Prior art keywords
powder
storage battery
nickel
positive electrode
metal cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20543392A
Other languages
Japanese (ja)
Other versions
JPH0652857A (en
Inventor
浩三 大槻
雅行 寺坂
卓也 玉川
正樹 樋口
謙二 有澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP20543392A priority Critical patent/JP3238949B2/en
Priority to US08/099,421 priority patent/US5405714A/en
Publication of JPH0652857A publication Critical patent/JPH0652857A/en
Application granted granted Critical
Publication of JP3238949B2 publication Critical patent/JP3238949B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、正極に金属コバルト粉
末とオキシ水酸化ニッケル粉末が添加された非焼結式ニ
ッケル正極を備えたアルカリ蓄電池の活性化法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for activating an alkaline storage battery provided with a non-sintered nickel positive electrode to which a metal cobalt powder and a nickel oxyhydroxide powder are added.

【0002】[0002]

【従来の技術】従来、非焼結式ニッケル正極を備えた
ルカリ蓄電池において、正極活物質を活性化することを
目的としてコバルト化合物粉末やその他の導電性粉末を
正極に添加することが行われている。このうち金属コバ
ルトは導電性とコバルト種特有の好適な作用効果を兼ね
備え、活物質の利用率を高めるのに極めて有効であるこ
とが知られている(特開昭53−51449など)。こ
の為、金属コバルト粉末はニッケル正極に活物質活性化
剤として添加することが広く行われるようになった。
2. Description of the Related Art Conventionally, in an alkaline storage battery provided with a non-sintered nickel positive electrode, a cobalt compound powder or other conductive powder is added to the positive electrode for the purpose of activating the positive electrode active material. That is being done. Among them, metallic cobalt is known to have both conductivity and suitable action and effects specific to cobalt species, and is extremely effective in increasing the utilization rate of the active material (JP-A-53-51449, etc.). For this reason, metal cobalt powder has been widely added to a nickel positive electrode as an active material activator.

【0003】ところで、正極の活物質の活性化を目的と
して添加される上記の金属コバルト粉末は、ニッケル正
極に添加してさえあれば十分に活物質活性化効果を発揮
できるというものではない。即ち、その効果を十分に発
揮させるためには、正極内の金属コバルト粉末自体が電
池内でスムーズに酸化され、その特有の効果を充分に発
揮できるような酸化状態となる必要がある。
By the way, the above-mentioned metallic cobalt powder added for the purpose of activating the active material of the positive electrode cannot sufficiently exert the active material activating effect as long as it is added to the nickel positive electrode. That is, in order to exert the effect sufficiently, it is necessary that the metal cobalt powder in the positive electrode itself is smoothly oxidized in the battery and is in an oxidized state in which the specific effect can be sufficiently exhibited.

【0004】このための方法として、コバルトのアノー
ド酸化が優先的に生じる充電初期において充電電流を低
く抑える方法が提案されている(特開昭64−2186
4)。しかしながら、この方法にしたがい電池充電の初
期に充電電流を低く抑えても、電極に添加された金属コ
バルト粉末の酸化を適正に進行させることができず、金
属コバルト粉末の活性化効果を充分に高めることができ
なかった。そこで、本発明者らは、先にニッケル正極に
金属コバルト粉末と共に予め調製したオキシ水酸化ニッ
ケル粉末を含有させることにより、前記金属コバルト粉
末の酸化反応を化学的に促進する方法を提案した(特開
平4−94058)。
As a method for this purpose, a method has been proposed in which the charging current is kept low in the initial stage of charging in which anodic oxidation of cobalt occurs preferentially (JP-A 64-2186).
4). However, even if the charging current is kept low at the beginning of battery charging according to this method, the oxidation of the metal cobalt powder added to the electrode cannot be properly advanced, and the activation effect of the metal cobalt powder is sufficiently enhanced. I couldn't do that. Accordingly, the present inventors have previously proposed a method of chemically promoting the oxidation reaction of the metal cobalt powder by adding a nickel oxyhydroxide powder prepared in advance together with the metal cobalt powder to the nickel positive electrode (particularly). Kaihei 4-94058).

【0005】上記方法は、金属コバルト粉末に対し酸化
剤的に作用すると共に自らは活物質として機能できるオ
キシ水酸化ニッケルを酸化促進剤として作用させて、化
学的に金属コバルト粉末の酸化反応を促進させようとす
るものである。
In the above method, nickel oxyhydroxide, which acts as an oxidizing agent on the metal cobalt powder and acts as an active material, acts as an oxidation promoter to chemically accelerate the oxidation reaction of the metal cobalt powder. It is to try to make it.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記方
法に基づいて構成された蓄電池においても、オキシ水酸
化ニッケル粉末の金属コバルト粉末に対する酸化促進効
果を適正に発揮させることができなかった為、コバルト
の正極活物質に対する活性化能を充分に高めることがで
きなかった。
However, even in the storage battery constructed based on the above method, the oxidation promoting effect of the nickel oxyhydroxide powder on the metal cobalt powder could not be properly exhibited, so that the cobalt The activation ability for the positive electrode active material could not be sufficiently increased.

【0007】本発明はこのような問題を解決するために
なされたものであって、ニッケル正極に添加された金属
コバルト粉末にオキシ水酸化ニッケル粉末を適正に作用
させることにより、該金属コバルト粉末が活物質に対す
る活性化効果を充分に発揮できるような状態に調整する
方法を提供し、もって正極活物質の利用率の向上を図
り、非焼結式ニッケル正極を備えたアルカリ蓄電池の電
池特性とくにその電池容量を高めることを目的としてい
る。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and by appropriately applying nickel oxyhydroxide powder to metal cobalt powder added to a nickel positive electrode, the metal cobalt powder can be used. It provides a method of adjusting the active material to a state where the activation effect can be sufficiently exhibited, thereby improving the utilization rate of the positive electrode active material, and particularly improving the battery characteristics of an alkaline storage battery equipped with a non-sintered nickel positive electrode. It aims to increase battery capacity.

【0008】[0008]

【課題を解決するための手段】本発明は上記目的を達成
するために、金属コバルト粉末とオキシ水酸化ニッケル
粉末を含み、且つオキシ水酸化ニッケルが前記金属コバ
ルト粉末に対し60重量%以下である非焼結式ニッケル
電極を正極とするアルカリ蓄電池において、蓄電池組立
後、正極電位がCo/Co(OH)2の平衡電位に相当す
る電位となるまで該蓄電池を放置したのち初回充放電を
行うことを特徴とする。
In order to achieve the above object, the present invention comprises a metal cobalt powder and a nickel oxyhydroxide powder, and the content of the nickel oxyhydroxide is 60% by weight or less based on the metal cobalt powder. In an alkaline storage battery having a non-sintered nickel electrode as a positive electrode, after assembling the storage battery, the storage battery is left until the positive electrode potential reaches a potential corresponding to the equilibrium potential of Co / Co (OH) 2 , and then the first charge / discharge is performed. It is characterized by.

【0009】[0009]

【作用】本発明は、上記の様に構成することにより以下
の様な作用を奏する。蓄電池組立後、該蓄電池を放置す
ることにより、正極に添加したオキシ水酸化ニッケルが
金属コバルト粉末の水酸化コバルトへの酸化を促進でき
る。また、前記放置を、正極の電位がCo/Co(O
H)2の平衡電位に相当する電位となるまでとしたことに
より、金属コバルト粉末が優先的に電気化学的酸化を受
け易い状態とすることができる。
The present invention has the following effects by being configured as described above. After the storage battery is assembled, the storage battery is allowed to stand, so that the nickel oxyhydroxide added to the positive electrode can promote the oxidation of the metal cobalt powder to cobalt hydroxide. In addition, the above-mentioned leaving is performed when the potential of the positive electrode is Co / Co (O
H) By setting the potential to the potential corresponding to the equilibrium potential of 2 , the metal cobalt powder can be preferentially subjected to electrochemical oxidation.

【0010】したがって上記構成により、蓄電池の初回
充電時に(初期コンデイショニング時)金属コバルト粉
末の電気化学的酸化反応が適正に進行し、金属コバルト
粉末の利用効率が向上して、活物質活性化能が充分に発
揮される。その結果ニッケル活物質の利用率が高まり、
ニッケル正極を備えたアルカリ蓄電池の電池特性とくに
電池容量を向上させる作用効果を奏することになる。
Therefore, according to the above configuration, the electrochemical oxidation reaction of the metal cobalt powder proceeds properly at the time of initial charging of the storage battery (at the time of initial conditioning), the utilization efficiency of the metal cobalt powder is improved, and the activation of the active material is improved. Noh is fully demonstrated. As a result, the utilization rate of nickel active material increases,
This has the effect of improving the battery characteristics of the alkaline storage battery provided with the nickel positive electrode, in particular, the battery capacity.

【0011】以上の作用を下記〔化1〕、〔化2〕に示
す金属コバルト粉末及びオキシ水酸化ニッケルの酸化反
応機構に基づいて説明する。〔化1〕に示したように、
金属コバルトは水酸化コバルトを経てオキシ水酸化コバ
ルトに酸化される。ここで、金属コバルト粉末の水酸化
コバルトへの酸化は、電解液に接触している金属コバル
ト粉末表面から徐々に進行する。他方、水酸化コバルト
からオキシ水酸化コバルトへの酸化反応は、水酸化コバ
ルト固相内のプロトン拡散反応であるため、金属コバル
トが一旦水酸化コバルトに酸化されると比較的容易に進
む。したがって金属コバルト粉末の酸化を急激に促進す
ると、金属コバルト粉末表面が酸化され水酸化コバルト
となり、粉末内部の酸化反応が充分進行する前に、先ず
この粉末表面の水酸化コバルトがオキシ水酸化コバルト
にまで酸化される。この為、粉末内部をとり残した状態
で該粉末表面にオキシ水酸化コバルト皮膜が生成され、
この皮膜が金属コバルトと電解液(OH- イオン)との
接触を妨げるバリアーとなってそれ以上の酸化反応の進
行を阻害することになる。 このような所謂金属コバル
トの不働態化が生じると、正極に添加された金属コバル
ト粉末の利用効率が低下し、その活性化効果を充分に発
揮できないことになる。このことから、電池コンデイシ
ョニング時の急激な酸化を避ける必要があるが、その一
方で金属コバルト粉末を初回充電において速やかに酸化
し、導電性に優れたオキシ水酸化コバルト(その活性化
能を充分に発揮できる形態)とする必要がある。
The above action will be described based on the oxidation reaction mechanism of metal cobalt powder and nickel oxyhydroxide shown in the following [Chemical Formula 1] and [Chemical Formula 2]. As shown in [Formula 1],
Metallic cobalt is oxidized to cobalt oxyhydroxide via cobalt hydroxide. Here, oxidation of the metal cobalt powder to cobalt hydroxide gradually proceeds from the surface of the metal cobalt powder in contact with the electrolytic solution. On the other hand, the oxidation reaction from cobalt hydroxide to cobalt oxyhydroxide is a proton diffusion reaction in the cobalt hydroxide solid phase, and therefore proceeds relatively easily once the metal cobalt is oxidized to cobalt hydroxide. Therefore, when the oxidation of the metal cobalt powder is rapidly promoted, the surface of the metal cobalt powder is oxidized to form cobalt hydroxide, and before the oxidation reaction inside the powder sufficiently proceeds, the cobalt hydroxide on the surface of the powder first becomes cobalt oxyhydroxide. Is oxidized to Therefore, a cobalt oxyhydroxide film is formed on the surface of the powder while leaving the inside of the powder,
This film acts as a barrier to prevent the contact between the metallic cobalt and the electrolyte (OH - ion), thereby inhibiting the further progress of the oxidation reaction. When such a so-called passivation of metallic cobalt occurs, the utilization efficiency of metallic cobalt powder added to the positive electrode decreases, and the activation effect thereof cannot be sufficiently exhibited. For this reason, it is necessary to avoid rapid oxidation during battery conditioning. On the other hand, cobalt oxyhydroxide having excellent conductivity is rapidly oxidized during the initial charge of the metallic cobalt powder (the activation ability of the cobalt oxyhydroxide is improved). (A form that can fully demonstrate).

【0012】[0012]

【化1】 Embedded image

【0013】したがって、上記したような電池内におけ
る金属コバルト粉末の酸化反応特性を考慮すると、予め
金属コバルト粉末の水酸化コバルトへの酸化を適正に進
めておき、その後初回充電で電気化学的酸化を進めるの
が望ましいといえる。そこで、本発明活性化法では、蓄
電池組立後(電解液の注液後)に該電池を放置すること
により、正極に添加されたオキシ水酸化ニッケル粉末を
金属コバルト粉末に作用せしめ、金属コバルト粉末の酸
化を促進できるようにしてある。
Therefore, in consideration of the oxidation reaction characteristics of the metal cobalt powder in the battery as described above, the oxidation of the metal cobalt powder to cobalt hydroxide is appropriately advanced in advance, and then the electrochemical oxidation is performed by the first charge. It is desirable to proceed. Therefore, in the activation method of the present invention, the nickel oxyhydroxide powder added to the positive electrode is allowed to act on the metal cobalt powder by leaving the battery after assembling the storage battery (after injecting the electrolytic solution), thereby obtaining the metal cobalt powder. To promote the oxidation of

【0014】ところで、この正極内に添加されたオキシ
水酸化ニッケル粉末は、酸化剤的役割を担うものであっ
て、金属コバルト粉末と十分に混合された状態で配合さ
れてありその近傍の金属コバルト粉末を化学的に酸化す
ることができるものである。したがって、電気化学的に
酸化を促進させる場合と異なり正極内各部位の導電性の
良し悪しによる影響を受けず、正極内全体で均一に酸化
反応を促進できることになるが、このオキシ水酸化ニッ
ケルによる酸化促進であっても、その酸化を適正におこ
なわないと、その後の電気化学的酸化を適正に進めるこ
とができない。よって、本発明活性化法では金属コバル
ト粉末に対するオキシ水酸化ニッケル粉末の含有比率を
60重量%以下に規定し、前記蓄電池組立後の放置を、
正極の電位がCo/Co(OH)2の平衡電位に相当する
電位となるまでとしてある。これにより、金属コバルト
粉末が優先的に電気化学的酸化を受けやすい状態に調整
し、放置後の初回充電により効率的に金属コバルト粉末
の酸化反応を促進させることができることになる。
The nickel oxyhydroxide powder added to the positive electrode serves as an oxidizing agent, and is mixed in a sufficiently mixed state with the metal cobalt powder. The powder can be chemically oxidized. Therefore, unlike the case where electrochemical oxidation is promoted, the oxidation reaction can be uniformly promoted throughout the positive electrode without being affected by the conductivity of each part in the positive electrode. Even if the oxidation is promoted, if the oxidation is not properly performed, the subsequent electrochemical oxidation cannot be properly advanced. Therefore, in the activation method of the present invention, the content ratio of the nickel oxyhydroxide powder to the metal cobalt powder is regulated to 60% by weight or less,
This is until the potential of the positive electrode reaches a potential corresponding to the equilibrium potential of Co / Co (OH) 2 . Thereby, the metal cobalt powder is preferentially adjusted to be easily susceptible to electrochemical oxidation, and the oxidation reaction of the metal cobalt powder can be efficiently promoted by the first charge after being left.

【0015】[0015]

【化2】 Embedded image

【0016】なお、『正極がCo/Co(OH)2 の平
衡電位に相当する電位となるまで蓄電池を放置する』と
いうのは、正極の電極電位が、主として下記〔化3〕に
示す反応式で表される平衡電極電位になるまで蓄電池を
放置することを意味するが、正極の電極電位は下記反応
式に基づくもの以外にも依存し、混成電位として現れて
いる為、その正確な値は確定しがたい。従って、概略平
衡電位の値に相当する電池電圧となればよい。
The phrase "leave the storage battery until the positive electrode has a potential corresponding to the equilibrium potential of Co / Co (OH) 2 " means that the electrode potential of the positive electrode is mainly represented by the following reaction formula (3): It means that the storage battery is left until the equilibrium electrode potential represented by the formula, but the electrode potential of the positive electrode depends on other than the one based on the following reaction formula, and since it appears as a mixed potential, its exact value is It is difficult to determine. Therefore, the battery voltage should be approximately equivalent to the value of the equilibrium potential.

【0017】[0017]

【化3】 以上に説明したように本発明活性化法は、蓄電池内でい
わば化学的酸化処理と電気化学的酸化処理とを行なわせ
るよう構成してあり、この両者の酸化作用の組合わせに
より一層金属コバルト粉末の利用効率を向上させ、その
活性化効果を十分に発揮させることができる。そして、
これによってニッケル活物質を活性化でき、ニッケル
極を備えたアルカリ蓄電池の電池特性とくに電池容量を
顕著に向上させる作用効果を奏することになる。
Embedded image As described above, the activation method of the present invention is configured to perform so-called chemical oxidation treatment and electrochemical oxidation treatment in a storage battery. It is possible to improve the utilization efficiency of the compound and sufficiently exert its activating effect. And
This can activate the nickel active material, nickel positive
This has the effect of significantly improving the battery characteristics of the alkaline storage battery having the poles, especially the battery capacity.

【0018】[0018]

〔実施例〕〔Example〕

[オキシ水酸化ニッケル粉末の作製]水酸化ニッケル粉
末(フィシャーサブシーブサイザーサイズFSS:9.0
μm)100gに、10重量%の次亜塩素酸ナトリウム
水溶液2lを加え、常温で約3時間攪拌することによ
り、水酸化ニッケル粉末の酸化処理を行った。そして、
この処理粉末を十分に洗浄したのち乾燥して、オキシ水
酸化ニッケル粉末を作製した。 なお、この処理済粉末
は、X線回折分析法によりオキシ水酸化ニッケル粉末で
あることを確認した。
[Production of nickel oxyhydroxide powder] Nickel hydroxide powder (Fisher sub-sieve sizer FSS: 9.0
2 μl of a 10% by weight aqueous solution of sodium hypochlorite was added to 100 g of μm), and the mixture was stirred at room temperature for about 3 hours to oxidize the nickel hydroxide powder. And
The treated powder was sufficiently washed and then dried to produce a nickel oxyhydroxide powder. The treated powder was confirmed to be a nickel oxyhydroxide powder by X-ray diffraction analysis.

【0019】[水酸化ニッケル正極板の作製]水酸化ニ
ッケル粉末(FSS:9.0μm )とオキシ水酸化ニッケ
ル粉末(上記で作製したもの)を所定割合で混合し、更
にこの混合末90重量%に金属コバルト粉末(FSS:
1.0μm )10重量%を加えて混合し、正極用の活物質
粉末を調製した。次いで1重量%メチルセルロース水溶
液を該粉末に対し50重量%加え、混練してスラリーと
する。このスラリーを、発泡ニッケル基体に充填し乾燥
・成形を行い、水酸化ニッケル正極板を作製した。
[Preparation of Nickel Hydroxide Positive Plate] Nickel hydroxide powder (FSS: 9.0 μm) and nickel oxyhydroxide powder (prepared above) were mixed at a predetermined ratio, and the mixed powder was further reduced to 90% by weight. Metallic cobalt powder (FSS:
1.0 μm) 10% by weight was added and mixed to prepare an active material powder for a positive electrode. Next, 50% by weight of a 1% by weight aqueous solution of methylcellulose is added to the powder and kneaded to form a slurry. This slurry was filled in a nickel foam substrate, dried and molded to produce a nickel hydroxide positive electrode plate.

【0020】ここで前記『所定割合』とは、オキシ水酸
化ニッケル粉末の配合量を前記10重量%の金属コバル
ト粉末に対し120重量%以下の範囲で数段階(5、2
0、30、40、50、60、90、120重量%)に
変化させたため、これに対応して水酸化ニッケル粉末配
合量が変動したことを意味する(図1参照)。 [ニッケルカドミウム蓄電池の作製] 上記で作製した水酸化ニッケル正極板と、下記方法で作
製した非焼結式カドミウム負極板とをポリプロピレン不
布セパレータを介して電極体に巻き上げ、30重量%
水酸化カリウム水溶液を注液後封口し、密閉型ニッケル
−カドミウム蓄電池(JIS.KR−Aサイズ、公称容
量:1.2AH)を作製した。
Here, the "predetermined ratio" means that the compounding amount of the nickel oxyhydroxide powder is set in several steps (5, 2
0, 30, 40, 50, 60, 90, 120% by weight), which means that the amount of the nickel hydroxide powder was changed correspondingly (see FIG. 1). [Production of Nickel Cadmium Storage Battery] The nickel hydroxide positive electrode plate produced above and the non-sintered cadmium negative electrode plate produced by the following method were made of polypropylene.
Hoisting the electrode body via a woven fabric separator, 30 wt%
An aqueous potassium hydroxide solution was injected and sealed, to produce a sealed nickel-cadmium storage battery (JIS. KR-A size, nominal capacity: 1.2 AH).

【0021】本明細書においては、この蓄電池の作製完
了時を『蓄電池組立後』と称する。なお、前記の非焼結
式カドミウム負極板は以下の方法で作製した。所定量の
酸化カドミウム粉末と金属カドミウム粉末とを公知の糊
料液と混合しペースト状とし、このペーストをパンチン
グメタルに塗布し、乾燥・圧延を行なう。次いでこの極
板を公称容量(1.2 AH)に対して0.2Cの電流で2
40%まで充電し、0.2Cの電流で放電することによ
り化成した後、水洗・乾燥して作製した。
In this specification, the time when the storage battery is completed is referred to as "after the storage battery is assembled". The non-sintered cadmium negative electrode plate was manufactured by the following method. A predetermined amount of cadmium oxide powder and metal cadmium powder are mixed with a known paste liquid to form a paste, and this paste is applied to a punching metal, followed by drying and rolling. The plate is then applied to the nominal capacity (1.2 AH) with a current of 0.2C for 2 hours.
The battery was formed by charging to 40%, forming a chemical by discharging with a current of 0.2 C, washing with water and drying.

【0022】[電池の活性化] 上記で作製した密閉型ニッケル−カドミウム蓄電池を、
Co/Co(OH)2の平衡電位に相当する電位(電池
電圧として約0.1V)になるまで室温で放置した後、
公称容量(1.2H)に対し0.1Cレートで200
%充電し、1.0Cレートで放電する処理を施して、活
性化処理済密閉型ニッケル−カドミウム蓄電池を作製し
た。
[Activation of Battery] The sealed nickel-cadmium storage battery prepared above was
After being left at room temperature until the potential corresponding to the equilibrium potential of Co / Co (OH) 2 (about 0.1 V as the battery voltage),
200 0.1C rate to the nominal capacity (1.2 A H)
% And discharged at a rate of 1.0 C to produce an activated nickel-cadmium sealed battery.

【0023】この様に処理する方法を以下、本発明活性
化法と称し、本発明活性化法により活性化処理を施した
蓄電池を本発明例電池(A)と称する。 〔比較例〕上記実施例で使用したと同様の密閉型ニッケ
ルーカドミウム蓄電池について、Co/Co(OH)2
平衡電位に相当する電位(電池電圧:約0.1V)にな
る前に放置を止め、上記本発明活性化法の場合と同じ条
件で充放電を行った。
The method for treating in this manner is hereinafter referred to as the activation method of the present invention, and the storage battery that has been activated by the activation method of the present invention is referred to as the battery (A) of the present invention. [Comparative Example] A sealed nickel-cadmium storage battery similar to that used in the above embodiment was left to stand before reaching a potential corresponding to the equilibrium potential of Co / Co (OH) 2 (battery voltage: about 0.1 V). The charge and discharge were performed under the same conditions as in the case of the activation method of the present invention.

【0024】この様に処理する方法を以下、比較例法と
称し、この方法で処理した蓄電池を比較例電池(X)と
称する。 〔実験〕オキシ水酸化ニッケル粉末の配合量を多水準に
変化させた、上記実施例の製造方法により作製した各種
蓄電池を、それぞれ上記した2つの蓄電池処理法を用い
て処理し、それら蓄電池の電池容量を測定した。
The method for treating in this manner is hereinafter referred to as Comparative Example Method, and the storage battery treated in this manner is referred to as Comparative Example Battery (X). [Experiment] Various storage batteries manufactured by the manufacturing method of the above embodiment in which the blending amount of the nickel oxyhydroxide powder was changed to multiple levels were respectively processed using the two storage battery processing methods described above, and the batteries of the storage batteries were processed. The capacity was measured.

【0025】その結果を図1に示す。 尚、図1はオキ
シ水酸化ニッケル粉末を配合していない蓄電池の電池容
量を100とし、これを基準にして表示した。図1から
明らかなように、本発明活性化法により処理した蓄電池
(A)(○−○)は、比較例法で処理した蓄電池(X)
(●−●)に比べ、有意に電池容量が高くなっている。
但し、オキシ水酸化ニッケル粉末が金属コバルト粉末
に対し60重量%以上配合されている蓄電池について
は、本発明活性化法が適用できなかった。これは次の理
由に基づく。
FIG. 1 shows the result. In FIG. 1, the battery capacity of a storage battery containing no nickel oxyhydroxide powder is set to 100, and the values are shown based on this. As is clear from FIG. 1, the storage battery (A) (○-○) treated by the activation method of the present invention is the storage battery (X) treated by the comparative example method.
The battery capacity is significantly higher than (●-●).
However, the activation method of the present invention could not be applied to a storage battery containing nickel oxyhydroxide powder in an amount of 60% by weight or more based on the metal cobalt powder. This is based on the following reasons.

【0026】オキシ水酸化ニッケル粉末が金属コバルト
粉末に対し60重量%以上配合された蓄電池は、該オキ
シ水酸化ニッケル粉末自体に起因する電位が支配的とな
るため、放置しても電池電圧が0.1Vまで低下せず、
従って該蓄電池をCo/Co(OH)2の平衡電位に相当
する電位とすることができなくなるためである。上記実
験結果から、本発明活性化法は、金属コバルト粉末とオ
キシ水酸化ニッケル粉末を含み、且つオキシ水酸化ニッ
ケル粉末が金属コバルト粉末に対し60重量%以下であ
る非焼結式水酸化ニッケル極板を正極とするアルカリ蓄
電池において、ニッケル正極活物質を活性化し、該蓄電
池の電池容量を顕著に向上できることが判る。
In a storage battery containing nickel oxyhydroxide powder in an amount of 60% by weight or more based on the metal cobalt powder, the potential attributable to the nickel oxyhydroxide powder itself becomes dominant. .1V
Therefore, the storage battery cannot have a potential corresponding to the equilibrium potential of Co / Co (OH) 2 . From the above experimental results, the activation method of the present invention provides a non-sintered nickel hydroxide electrode comprising a metal cobalt powder and a nickel oxyhydroxide powder, wherein the nickel oxyhydroxide powder is 60% by weight or less based on the metal cobalt powder. It can be seen that, in an alkaline storage battery having a plate as a positive electrode, the nickel positive electrode active material can be activated to significantly improve the battery capacity of the storage battery.

【0027】ここで、上記実施例では、アルカリ蓄電池
としてニッケル─カドミウム蓄電池を使用したが、本発
明はこれに限定されるものではなく、例えば、ニッケル
─水素蓄電池、ニッケル─鉄蓄電池 ニッケル─亜鉛蓄
電池などであってもよい。これらの蓄電池のCo/Co
(OH)2 の平衡電位に相当する電極電圧は概略下表の
様である。
In the above embodiment, a nickel-cadmium storage battery was used as an alkaline storage battery. However, the present invention is not limited to this. For example, a nickel-hydrogen storage battery, a nickel-iron storage battery, a nickel-zinc storage battery And so on. Co / Co of these storage batteries
The electrode voltage corresponding to the equilibrium potential of (OH) 2 is roughly as shown in the table below.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【発明の効果】以上に説明したように本発明によれば、
金属コバルト粉末とオキシ水酸化ニッケルが添加された
非焼結式ニッケル極板を正極とするアルカリ蓄電池の活
性化を図ることができ、該蓄電池の電池容量を高めるこ
とができる。
According to the present invention as described above,
It is possible to activate an alkaline storage battery using a non-sintered nickel electrode plate to which metal cobalt powder and nickel oxyhydroxide are added as a positive electrode, and to increase the battery capacity of the storage battery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明活性化法における、ニッケル正極中のオ
キシ水酸化ニッケル粉末の添加割合と該ニッケル正極を
備えたアルカリ蓄電池の電池容量との関係を示すグラフ
である。
In the invention, FIG activation method, the addition ratio and the nickel positive electrode of the nickel oxyhydroxide powder of the nickel positive electrode
4 is a graph showing a relationship between a battery capacity of a provided alkaline storage battery.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 樋口 正樹 守口市京阪本通2丁目18番地 三洋電機 株式会社内 (72)発明者 有澤 謙二 守口市京阪本通2丁目18番地 三洋電機 株式会社内 (56)参考文献 特開 昭61−138454(JP,A) 特開 昭60−254564(JP,A) 特開 昭59−51463(JP,A) 特開 平3−105856(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/24 - 4/34 H01M 4/52 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masaki Higuchi 2-18-18 Keihanhondori Moriguchi City Sanyo Electric Co., Ltd. (72) Inventor Kenji Arisawa 2-18-18 Keihanhondori Moriguchi City Sanyo Electric Co., Ltd. ( 56) References JP-A-61-138454 (JP, A) JP-A-60-254564 (JP, A) JP-A-59-51463 (JP, A) JP-A-3-105856 (JP, A) (58) ) Surveyed field (Int.Cl. 7 , DB name) H01M 4/24-4/34 H01M 4/52

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属コバルト粉末とオキシ水酸化ニッケ
ルを含み、且つオキシ水酸化ニッケルが前記金属コバル
ト粉末に対し60重量%以下である非焼結式ニッケル電
極を正極とするアルカリ蓄電池において、 蓄電池組立後、正極電位がCo/Co(OH)2の平衡電
位に相当する電位となるまで該蓄電池を放置したのち初
回充放電を行うことを特徴とするアルカリ蓄電池の活性
化法。
1. An alkaline storage battery comprising a non-sintered nickel electrode containing a metal cobalt powder and nickel oxyhydroxide and having a nickel oxyhydroxide content of 60% by weight or less based on the metal cobalt powder as a positive electrode. A method for activating an alkaline storage battery, comprising: after the storage battery is left standing until the positive electrode potential becomes a potential corresponding to the equilibrium potential of Co / Co (OH) 2 , and then performing initial charge and discharge.
JP20543392A 1992-07-31 1992-07-31 Activation method of alkaline storage battery Expired - Fee Related JP3238949B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP20543392A JP3238949B2 (en) 1992-07-31 1992-07-31 Activation method of alkaline storage battery
US08/099,421 US5405714A (en) 1992-07-31 1993-07-30 Method for activating an alkaline storage cell employing a non-sintered type nickel positive electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20543392A JP3238949B2 (en) 1992-07-31 1992-07-31 Activation method of alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH0652857A JPH0652857A (en) 1994-02-25
JP3238949B2 true JP3238949B2 (en) 2001-12-17

Family

ID=16506790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20543392A Expired - Fee Related JP3238949B2 (en) 1992-07-31 1992-07-31 Activation method of alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3238949B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7393612B2 (en) 1996-12-17 2008-07-01 Toshiba Battery Co., Ltd. Electrodes, alkaline secondary battery, and method for manufacturing alkaline secondary battery
CN107946547A (en) * 2017-11-16 2018-04-20 燕山大学 A kind of in-situ preparation method of high-energy-density cobalt hydroxide film electrode

Also Published As

Publication number Publication date
JPH0652857A (en) 1994-02-25

Similar Documents

Publication Publication Date Title
US8043748B2 (en) Pasted nickel hydroxide electrode for rechargeable nickel-zinc batteries
JP2993886B2 (en) Anode and cathode for alkaline storage battery and method for producing the same
US5405714A (en) Method for activating an alkaline storage cell employing a non-sintered type nickel positive electrode
JPH07122271A (en) Manufacture of nickel hydroxide for nickel pole, manufacture of nickel pole using the nickel hydroxide and alkaline secondary battery incorporating the nickel pole
US6740450B2 (en) Hydrogen-absorbing alloy for battery, method for producing the same, and alkaline storage battery using the same
JP3238949B2 (en) Activation method of alkaline storage battery
JP3238950B2 (en) Activation method of alkaline storage battery
JP2899849B2 (en) Surface treatment method of hydrogen storage alloy for alkaline secondary battery and alkaline secondary battery equipped with hydrogen storage alloy subjected to the surface treatment as electrode
JP3433008B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JP2558759B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JP3239743B2 (en) Method for producing positive electrode for alkaline storage battery
JP3238986B2 (en) Activation method of alkaline storage battery
JPH0410181B2 (en)
JP2931316B2 (en) Manufacturing method of alkaline zinc storage battery
JPH03272563A (en) Alkali zinc storage battery
JP2529308B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JPH05190175A (en) Surface treatment of hydrogen storage alloy for alkaline secondary battery
JPH1186860A (en) Nickel hydroxide active material for alkaline storage battery and paste-type nickel hydroxide positive electrode with it
WO2001075993A1 (en) Nickel positive electrode plate and alkaline storage battery
JP2773253B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JPH079806B2 (en) Zinc electrode for alkaline storage battery
JP2638055B2 (en) Manufacturing method of paste-type cadmium negative electrode for alkaline storage battery
JPS5929364A (en) Manufacture of electrode for lead storage battery
JPH0724216B2 (en) Non-sintered cadmium cathode for alkaline storage batteries
JPH1074510A (en) Manufacture of hydrogen absorbing alloy for alkali storage battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees