JPH1167515A - Rare earth magnet - Google Patents

Rare earth magnet

Info

Publication number
JPH1167515A
JPH1167515A JP10167420A JP16742098A JPH1167515A JP H1167515 A JPH1167515 A JP H1167515A JP 10167420 A JP10167420 A JP 10167420A JP 16742098 A JP16742098 A JP 16742098A JP H1167515 A JPH1167515 A JP H1167515A
Authority
JP
Japan
Prior art keywords
magnet
rare earth
powder
iron
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10167420A
Other languages
Japanese (ja)
Other versions
JP3391704B2 (en
Inventor
Itaru Okonogi
格 小此木
Mitsuru Sakurai
充 桜井
Yukihiko Shiobara
幸彦 塩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP16742098A priority Critical patent/JP3391704B2/en
Publication of JPH1167515A publication Critical patent/JPH1167515A/en
Application granted granted Critical
Publication of JP3391704B2 publication Critical patent/JP3391704B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly efficient isotropic magnet, by a method wherein the magnet powder, containing rare earth metal, iron and boron, is bonded by an organic resin bonding material, and the magnet powder is used in the specific weight percent or higher. SOLUTION: A compositional alloy consisting of Nd and B and the remaining part of Fe and inevitable impurities is fused in a high frequency dissolving furnace, and ribbon-like thin band powder is obtained by a super-quenching method. Then, raw material is crushed in a ball mill, and it is powdered in an attritor mill. Then, the thermosetting resin of epoxy resin and phenol resin are selected as a binder, magnet powder of 85 wt.% or more is mixed, and they are mixed by an automatic kneading machine. Then, the material is put in a metal mold, and it is molded by a uniaxial oilhydraulic press using a diefloating system. Also, a part of iron is replaced with the transition metal of cobalt, manganese, nickel, niobium or chrome.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は磁石の基本組成が
R、Fe、Bからなり樹脂結合法でつくられた希土類磁
石に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth magnet having a basic composition of R, Fe, and B and made by a resin bonding method.

【0002】[0002]

【従来の技術】希土類金属、鉄、ボロンからなる希土類
金属間化合物の磁石化の試みは、例えばクーン等は(F
e.82.B.18).9Rb.05Da.05の超急
冷法リボンをアニールするとiHc=9kOe、Br=
5kG、但し(BH)maxが低い。(N.C.Koo
n他Apll.Phys.Leter39.(10),
1981.840−842)希土類・鉄・ボロン系超急
冷アモルファスリボンは粉末状でその諸特性を測定する
ことによって磁石化の可能性を論じている。実用材料と
しての評価は見当たらない。
2. Description of the Related Art Attempts to magnetize rare earth intermetallic compounds composed of rare earth metals, iron and boron have been made, for example, by Kuhn et al.
e. 82. B. 18). 9Rb. 05Da. When the super-quenched ribbon of Example 05 was annealed, iHc = 9 kOe, Br =
5 kG, but (BH) max is low. (NC Koo
n et al. Phys. Letter39. (10),
1981.840-842) Rare earth / iron / boron super-quenched amorphous ribbons are in powder form and their properties are measured to discuss the possibility of magnetizing them. No evaluation as a practical material is found.

【0003】[0003]

【発明が解決しようとする課題】本発明は超急冷法で製
迄された、R.Fe.B粉末と結合材である有機物樹脂
(熱可塑性、熱硬化性樹脂のいずれかを用いる)からな
るボンド磁石である。
SUMMARY OF THE INVENTION The present invention relates to an R.R. Fe. This is a bonded magnet made of B powder and an organic resin (using either thermoplastic or thermosetting resin) as a binder.

【0004】従未は、超急冷法の例えばNdFeB、P
rFe、YFe、NdDyFeB等の組成物の磁石物性
に関する研究例が主体的であった。
[0004] Conventionally, the rapid quenching method such as NdFeB, P
Research examples on the magnet physical properties of compositions such as rFe, YFe, and NdDyFeB have been mainly conducted.

【0005】また実用材料としてとらえれば基本組成が
鉄なので、大変酸化(錆)しやすい問題があった。
[0005] In addition, since the basic composition is iron when considered as a practical material, there has been a problem that it is very easy to oxidize (rust).

【0006】また、実用永久磁石としてみれば、形状の
つくりやすさ、精度、量産性、磁石性など所望の特性が
得られていない。
[0006] Further, if it is considered as a practical permanent magnet, desired characteristics such as easiness of forming a shape, accuracy, mass productivity, and magnetism are not obtained.

【0007】本発明は前記問題を解決するもので、等方
性の高性能磁石を提供することを目的とする。
The present invention has been made to solve the above problems, and has as its object to provide an isotropic high-performance magnet.

【0008】[0008]

【課題を解決するための手段】本発明における組成物
は、R.Fe.Bで超急冷法でつくられた微結晶からな
る粉末を用いる。その粉未の大きさは170μm以下こ
のましくは50μmから3μmの範囲である。微粉末化
は、へキサン、トルエンなどの有機溶剤を加えたボール
ミル又はアトライターミルなどで行う。
Means for Solving the Problems The composition according to the present invention comprises R.R. Fe. In B, a powder composed of microcrystals produced by a rapid quenching method is used. The size of the powder is 170 μm or less, preferably in the range of 50 μm to 3 μm. The pulverization is performed by a ball mill or an attritor mill to which an organic solvent such as hexane or toluene is added.

【0009】バインダーの有機物樹脂は、熱可塑性樹
脂、熱硬化性樹脂いずれかを選択すれば良い。
As the organic resin of the binder, either a thermoplastic resin or a thermosetting resin may be selected.

【0010】熱可塑性樹脂は、ナイロン6、66、12
など、PP(ポリプロピレン)、EVA、PPS、PE
EK等を磁石粉末と共に混練機などを用いて混練物(コ
ンパウンド)をつくる。その量は、成形方式にもよる
が、15重量%以下である。好ましくは10%〜5%の
範囲である。一方熱硬化性樹脂は、エポキシ、ポリエス
テル、フェノール、ケイ素等の有機物樹脂が適応され
る。その配合量は最大15%であり、成形方法によって
好ましい範囲が選定される。
The thermoplastic resin is nylon 6, 66, 12
Such as PP (polypropylene), EVA, PPS, PE
A kneaded material (compound) is prepared by using a kneader or the like together with EK or the like and magnet powder. The amount is 15% by weight or less, depending on the molding method. Preferably it is in the range of 10% to 5%. On the other hand, as the thermosetting resin, an organic resin such as epoxy, polyester, phenol, and silicon is used. The compounding amount is up to 15%, and a preferable range is selected depending on a molding method.

【0011】本発明法では、金型を用いる加圧成形法で
は、圧縮圧力が1〜7トン/cm2と比較的高圧にし
て、高密度化すなわち高性能化を目的とするので樹脂量
は、0.5〜5%が適用される。また、射出成形、押出
成形カレンダーロール成形などは、混合物の流動性が重
要になるので、樹脂は5〜15%と多くする。
In the method of the present invention, in the pressure molding method using a mold, the compression pressure is set to a relatively high pressure of 1 to 7 ton / cm 2 to increase the density, that is, to increase the performance. , 0.5-5% apply. In injection molding, extrusion calender roll molding, and the like, the fluidity of the mixture is important, so the resin content is increased to 5 to 15%.

【0012】[0012]

【発明の実施の形態】以下に本発明の効果を具体的に実
施例に従って詳述する。
BEST MODE FOR CARRYING OUT THE INVENTION The effects of the present invention will be described below in detail with reference to examples.

【0013】(実施例−1)Nd29.8%,B0.8
%,残部Feおよび不可避の不純物からなる組成合金を
高周波溶解炉で溶解、水冷銅ロール上に吐出し超急冷法
によってリボン状薄帯粉末を得た。その、大きさは10
〜30μmであった。次に素原料は、以下の手順で実用
永久磁石材料とした。
(Example 1) Nd 29.8%, B0.8
%, The balance of Fe and inevitable impurities was melted in a high-frequency melting furnace, discharged onto a water-cooled copper roll, and a ribbon-shaped ribbon powder was obtained by a super-quenching method. Its size is 10
3030 μm. Next, the raw material was made into a practical permanent magnet material by the following procedure.

【0014】 粉末粒度177μm以下に粉砕した。
もちろん、Arガス零囲気下で、ボールミル中で行っ
た。
The powder was pulverized to a particle size of 177 μm or less.
Of course, the test was performed in a ball mill under an atmosphere of no Ar gas.

【0015】 有機溶媒のダイフロン113(ダイキ
ン工業製)を加えアトライターミル中で約10分間粉砕
した。粉末の量は、10kg、ダイフロン1135k
g、ス一チールボール20kgの量を容器内に投入して
行った。
An organic solvent, Daiflon 113 (manufactured by Daikin Industries, Ltd.), was added and pulverized in an attritor mill for about 10 minutes. The amount of powder is 10kg, Daiflon 1135k
g, 20 kg of steel balls were charged into the container.

【0016】 FSSS、(フィフシャーサブシーブ
サイザー)法による平均粒度を測定した。
The average particle size was measured by the FSSS (Fifshire sub-sieve sizer) method.

【0017】 バインダー(結合材)にエポキシ樹
脂、フェノール樹脂の熱硬化性樹脂を遅定、表1に示す
磁石粉末との混合比率のサンプルについて、自動混練機
にて行った。
A thermosetting resin such as an epoxy resin or a phenol resin was used as a binder (binder), and a sample having a mixing ratio with the magnet powder shown in Table 1 was used in an automatic kneader.

【0018】 金型はφ12×10lmm円柱状試料
とした。
The mold was a φ12 × 10 lmm cylindrical sample.

【0019】成形圧力は表1に示す条件で行った。この
時のプレスは、一軸油圧プレスで、ダイフローティング
方式によるもので成形した。
The molding pressure was set under the conditions shown in Table 1. The press at this time was a uniaxial hydraulic press and was formed by a die floating method.

【0020】 次に成形体は、加熱焼成固化させた
が、温度は、100〜180℃×1時間、N2ガス中で
行った。
Next, the molded body was heated and baked and solidified, and the temperature was 100 to 180 ° C. × 1 hour in N 2 gas.

【0021】 JIS、C2501に準拠した自動自
記磁束計で、有効磁場25kOeを加え磁気性能を測定
した。
The magnetic performance was measured by applying an effective magnetic field of 25 kOe with an automatic recording magnetometer based on JIS, C2501.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】ここで比較例は、Sm(Cobal Cu
0.07 Fe0.2 Zr0.028.0組成から
なる2−17系希土類金属間化合物磁石粉末である。本
実施例は圧縮成形法で等方性磁石をつくった例である
が、比較例に比べ高性能磁石を得られた。等方性磁石で
これだけ高性能の希土類樹脂結合磁石は知られていな
い。
Here, the comparative example is Sm (Co bal Cu
A 0.07 Fe 0.2 Zr 0.02) 8.0 2-17 rare earth intermetallic compounds magnet powder having the composition. In this example, an isotropic magnet was made by a compression molding method, but a high-performance magnet was obtained as compared with the comparative example. There is no known rare earth resin-bonded magnet having such a high performance in isotropic magnets.

【0025】これだけ磁気性能が高い等方性磁石は、多
極着磁によって、高い磁束密度を得ることができ、スピ
ーカ、モータの高性能化に極めて有効となる。
An isotropic magnet having such a high magnetic performance can obtain a high magnetic flux density by multipolar magnetization, which is extremely effective for improving the performance of a speaker and a motor.

【0026】(実施例−2)実施例1と同一組成のNd
FeB磁石粉未を用いて、射出成形によって永久磁石を
つくった。試料.形状は、φ80×φ25×6mmのリ
ング状である。表3に製造条件と諸特性を示す。
Example 2 Nd having the same composition as in Example 1
Permanent magnets were made by injection molding using FeB magnet powder. sample. The shape is a ring shape of φ80 × φ25 × 6 mm. Table 3 shows the manufacturing conditions and various characteristics.

【0027】バインダーは、ナイロン12を使用し磁石
粉末との混練は、280℃に加熱しながらスクリュー式
混練機でコンパウンドをつくった。
As a binder, nylon 12 was used, and kneading with a magnet powder was made with a screw-type kneader while heating to 280 ° C.

【0028】なお比較例の2−17系Sm(Co Cu
Fe Zr)合金粉末は実施例1と同様のものを使用
した。
In the comparative example, the 2-17 series Sm (Co Cu
The same FeZr) alloy powder as in Example 1 was used.

【0029】比較例と本発明法により得られた射出成形
法での比較でもやはり高い性能が得られた。
In comparison between the comparative example and the injection molding method obtained by the method of the present invention, high performance was also obtained.

【0030】[0030]

【表3】 [Table 3]

【0031】このことは、Nd Fe B粉未の高い磁
気性能がそのまま、現出させることができた。
This means that the high magnetic performance of the NdFeB powder was able to appear as it was.

【0032】このようにリング状の磁石でも、(BH)
max4〜6MGOe級の等方性磁石を得られた。この
ように、精密複雑形状の等方性磁石の登場は、モータ、
スピーカなどの小型、高性能化に有効となるであろう。
As described above, even with a ring-shaped magnet, (BH)
max4-6MGOe grade isotropic magnet was obtained. Thus, the emergence of isotropic magnets of precise complex shape
This will be effective for miniaturization and high performance of speakers and the like.

【0033】本実施例は、ナイロン12を用いたが、熱
可塑性の樹脂であれば、PPS,PEEK,PPなど同
様の効果を得られるものである。
In this embodiment, nylon 12 is used. However, if a thermoplastic resin is used, similar effects such as PPS, PEEK, and PP can be obtained.

【0034】[0034]

【発明の効果】以上述べたように本発明によれば、基本
組成が希土類金属、鉄、ボロンからなる超急冷法でつく
られた、磁石粉末と有機物樹脂からボンド型磁石は、従
未の希土類コバルト磁石に比べ高い磁気性能を有する等
方性磁石を得られた。これを用いた機器は、例えばモー
タの高出力化、小型化、ロッドレスシリンダー、スピー
カ等へ低コスト、高性能を実現できるなど多大の効果を
もたらす実用性の高い材料である。
As described above, according to the present invention, a bond type magnet made of a magnet powder and an organic resin, whose basic composition is made of a rare earth metal, iron and boron by an ultra-quenching method, is an unusual rare earth element. An isotropic magnet having higher magnetic performance than a cobalt magnet was obtained. A device using this is a highly practical material that brings great effects such as high output and small size of a motor, low cost and high performance for a rodless cylinder, a speaker, and the like.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成10年7月15日[Submission date] July 15, 1998

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0008】[0008]

【課題を解決するための手段】本発明は、超急冷法によ
り得られ希土類金属、鉄、ボロンを含有する磁石粉末
が、有機物樹脂結合材により結合されてなり、前記磁石
粉末は、重量比で85%以上であることを特徴とする。
また、前記鉄の一部は、コバルト、マンガン、ニッケ
ル、ニオブ、またはクロムの遷移金属で置換されてなる
ことを特徴とする。本発明における組成物は、R.F
e.Bで超急冷法でつくられた微結晶からなる粉末を用
いる。その粉末の大きさは170μm以下、好ましくは
50μmから3μmの範囲である。微粉末化は、ヘキサ
ン、トルエンなどの有機溶剤を加えたボールミル又はア
トライターミルなどで行う。
According to the present invention, a magnet powder obtained by a super-quenching method and containing a rare earth metal, iron and boron is bound by an organic resin binder, and the magnet powder is contained in a weight ratio. 85% or more.
Further, a part of the iron is replaced with a transition metal of cobalt, manganese, nickel, niobium, or chromium. The composition according to the present invention comprises R.I. F
e. In B, a powder composed of microcrystals produced by a rapid quenching method is used. The size of the powder is 170 μm or less, preferably in the range of 50 μm to 3 μm. The pulverization is performed by a ball mill or an attritor mill to which an organic solvent such as hexane or toluene is added.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0017】 バインダー(結合材)にエポキシ樹
脂、フェノール樹脂の熱硬化性樹脂を選定し、表1に示
す磁石粉末との混合比率のサンプルについて自動混練機
にて行った。
A thermosetting resin such as an epoxy resin or a phenol resin was selected as a binder (binder), and a sample having a mixing ratio with a magnet powder shown in Table 1 was used in an automatic kneader.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】希土類金属(R)、鉄(Fe)、ボロン
(B)からなり超急冷法で作られた磁石粉末を重量比で
85%以上、残部有機物樹脂結合材からなる樹脂ボンド
(結合)法で成形して製造されたことを特徴とする希土
類磁石。
1. A resin bond made of a rare earth metal (R), iron (Fe) and boron (B) and made by a super-quenching method in a weight ratio of 85% or more, and a balance of an organic resin binder. A rare earth magnet characterized by being manufactured by the method of (1).
【請求項2】前記鉄の一部をコバルト(Co)マンガン
(Mn)ニッケル(Ni)ニオブ(Nb)クロム(C
r)などの遷移金属で置換した特許請求の範囲第1項に
記載の希土類磁石。
2. A method according to claim 1, wherein part of said iron is cobalt (Co) manganese (Mn) nickel (Ni) niobium (Nb) chromium (C
The rare earth magnet according to claim 1, wherein the rare earth magnet is substituted with a transition metal such as r).
JP16742098A 1998-06-15 1998-06-15 Rare earth magnet Expired - Lifetime JP3391704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16742098A JP3391704B2 (en) 1998-06-15 1998-06-15 Rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16742098A JP3391704B2 (en) 1998-06-15 1998-06-15 Rare earth magnet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP7255320A Division JPH08181011A (en) 1995-10-02 1995-10-02 Rare earth magnet

Publications (2)

Publication Number Publication Date
JPH1167515A true JPH1167515A (en) 1999-03-09
JP3391704B2 JP3391704B2 (en) 2003-03-31

Family

ID=15849377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16742098A Expired - Lifetime JP3391704B2 (en) 1998-06-15 1998-06-15 Rare earth magnet

Country Status (1)

Country Link
JP (1) JP3391704B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1115127A2 (en) * 2000-01-06 2001-07-11 Seiko Epson Corporation Magnetic powder and isotropic bonded magnet
EP1115126A3 (en) * 2000-01-06 2002-05-15 Seiko Epson Corporation Magnetic powder and isotropic bonded magnet
US6852246B2 (en) 1999-06-11 2005-02-08 Seiko Epson Corporation Magnetic powder and isotropic bonded magnet
US6855265B2 (en) 2000-01-07 2005-02-15 Seiko Epson Corporation Magnetic powder and isotropic bonded magnet
US6951625B2 (en) 2000-01-07 2005-10-04 Seiko Epson Corporation Magnetic powder and isotropic bonded magnet
CN115466859A (en) * 2022-09-07 2022-12-13 中国科学院赣江创新研究院 Method for selectively leaching rare earth and cobalt from iron tailings obtained by neodymium iron boron waste hydrochloric acid optimum solution method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6852246B2 (en) 1999-06-11 2005-02-08 Seiko Epson Corporation Magnetic powder and isotropic bonded magnet
EP1115127A2 (en) * 2000-01-06 2001-07-11 Seiko Epson Corporation Magnetic powder and isotropic bonded magnet
EP1115126A3 (en) * 2000-01-06 2002-05-15 Seiko Epson Corporation Magnetic powder and isotropic bonded magnet
EP1115127A3 (en) * 2000-01-06 2002-05-15 Seiko Epson Corporation Magnetic powder and isotropic bonded magnet
US6855265B2 (en) 2000-01-07 2005-02-15 Seiko Epson Corporation Magnetic powder and isotropic bonded magnet
US6951625B2 (en) 2000-01-07 2005-10-04 Seiko Epson Corporation Magnetic powder and isotropic bonded magnet
CN115466859A (en) * 2022-09-07 2022-12-13 中国科学院赣江创新研究院 Method for selectively leaching rare earth and cobalt from iron tailings obtained by neodymium iron boron waste hydrochloric acid optimum solution method

Also Published As

Publication number Publication date
JP3391704B2 (en) 2003-03-31

Similar Documents

Publication Publication Date Title
EP0239031B2 (en) Method of manufacturing magnetic powder for a magnetically anisotropic bond magnet
EP0898778B1 (en) Bonded magnet with low losses and easy saturation
US4898625A (en) Method for producing a rare earth metal-iron-boron permanent magnet by use of a rapidly-quenched alloy powder
JP2746818B2 (en) Manufacturing method of rare earth sintered permanent magnet
JPWO2002103719A1 (en) Rare earth permanent magnet material
JPH0319296B2 (en)
JPH0232761B2 (en)
JPH0316761B2 (en)
JP2000234151A (en) Rare earth-iron-boron system rare earth permanent magnet material
JPH04184901A (en) Rare earth iron based permanent magnet and its manufacture
JPH1167515A (en) Rare earth magnet
EP0414645B2 (en) Permanent magnet alloy having improved resistance to oxidation and process for production thereof
US5514224A (en) High remanence hot pressed magnets
JP2016066675A (en) Rare earth isotropic bond magnet
JPH0474426B2 (en)
JPH066775B2 (en) Rare earth permanent magnet
JPH09237708A (en) Rare earth fen group sintered magnet and manufacture thereof
JPH068488B2 (en) Permanent magnet alloy
JPH01103806A (en) Rare-earth magnet
JPH044386B2 (en)
JPH0467322B2 (en)
JPS6386502A (en) Rare earth magnet and manufacture thereof
JPH0653882B2 (en) Alloy powder for bonded magnet and manufacturing method thereof
JP2002217010A (en) Anisotropic magnetic powder improved in magnetization factor and anisotropic bonded magnet
JPH0474425B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080124

Year of fee payment: 5