JPH08181011A - Rare earth magnet - Google Patents

Rare earth magnet

Info

Publication number
JPH08181011A
JPH08181011A JP7255320A JP25532095A JPH08181011A JP H08181011 A JPH08181011 A JP H08181011A JP 7255320 A JP7255320 A JP 7255320A JP 25532095 A JP25532095 A JP 25532095A JP H08181011 A JPH08181011 A JP H08181011A
Authority
JP
Japan
Prior art keywords
magnet
resin
rare earth
powder
magnet powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7255320A
Other languages
Japanese (ja)
Inventor
Itaru Okonogi
格 小此木
Mitsuru Sakurai
充 桜井
Yukihiko Shiobara
幸彦 塩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP7255320A priority Critical patent/JPH08181011A/en
Publication of JPH08181011A publication Critical patent/JPH08181011A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE: To obtain an isotropic magnet with a high magnetic performance by forming it with a magnet powder which consists of rare earth metal, iron, and boron and is manufactured by the quenching method and a thermosetting resin. CONSTITUTION: In a resin-coupling type rare earth magnet which consists of a magnet powder which mainly consists of rare earth element, iron, and boron, and is manufactured by the quenching method and a resin-coupling material and which becomes isotropic magnetically by compressing and forming the magnet powder and the resin-coupling material within a non-magnetic field, the content of magnet powder is 95-99.5wt.%, the resin-coupling material is constituted of the thermosetting resin and the content is 0.5-5wt.%, and the magnetic energy product (BH) max is 6.2MGOe or more. Then, the particle diameter of the magnet powder is 3-50μm, thus obtaining an isotropic magnet with high magnetic characteristics and increasing the output of a motor, miniaturizing the motor and reducing the cost and improving the performance of a rodless cylinder and a speaker using the magnet.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は磁石の基本組成が
R、Fe、Bからなり樹脂結合法でつくられた希土類磁
石に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth magnet whose basic composition is R, Fe and B and which is produced by a resin bonding method.

【0002】[0002]

【従来の技術】希土類金属、鉄、ボロンからなる希土類
金属間化合物の磁石化の試みは、例えばクーン等は(F
e.82.B.18).9Rb.05Da.05の超急
冷法リボンをアニールするとiHc=9kOe、Br=
5kG、但し(BH)maxが低い。(N.C.Koo
n他Apll.Phys.Leter39.(10),
1981.840−842)希土類・鉄・ボロン系超急
冷アモルファスリボンは粉末状でその諸特性を測定する
ことによって磁石化の可能性を論じている。実用材料と
しての評価は見当たらない。
2. Description of the Related Art Attempts to magnetize rare earth intermetallic compounds composed of rare earth metals, iron, and boron have been reported in, for example, Kuhn et al.
e. 82. B. 18). 9Rb. 05 Da. When the 05 quenching ribbon is annealed, iHc = 9 kOe, Br =
5kG, but (BH) max is low. (NC Koo
n et al. Appl. Phys. Letter 39. (10),
1981.840-842) The ultra-quenched amorphous ribbon of rare earth / iron / boron system is in powder form and discusses the possibility of magnetization by measuring its properties. No evaluation as a practical material is found.

【0003】[0003]

【発明が解決しようとする課題】本発明は超急冷法で製
迄された、R.Fe.B粉末と結合材である有機物樹脂
(熱可塑性、熱硬化性樹脂のいずれかを用いる)からな
るボンド磁石である。
SUMMARY OF THE INVENTION The present invention has been made by R.K. Fe. It is a bond magnet made of B powder and an organic resin (using either thermoplastic or thermosetting resin) as a binder.

【0004】従未は、超急冷法の例えばNdFeB、P
rFe、YFe、NdDyFeB等の組成物の磁石物性
に関する研究例が主体的であった。
Conventionally, for example, NdFeB, P of the ultra-quenching method is used.
The main examples of research were on the physical properties of magnets of compositions such as rFe, YFe, and NdDyFeB.

【0005】また実用材料としてとらえれば基本組成が
鉄なので、大変酸化(錆)しやすい問題があった。
Further, since it has a basic composition of iron when it is regarded as a practical material, there is a problem that it is easily oxidized (rusted).

【0006】また、実用永久磁石としてみれば、形状の
つくりやすさ、精度、量産性、磁石性など所望の特性が
得られていない。
[0006] Further, as a practical permanent magnet, desired characteristics such as easiness of forming a shape, accuracy, mass productivity, and magnetism have not been obtained.

【0007】本発明は前記問題を解決するもので、等方
性の高性能磁石を提供することを目的とする。
The present invention solves the above problems, and an object thereof is to provide a high-performance isotropic magnet.

【0008】[0008]

【課題を解決するための手段】本発明における組成物
は、R.Fe.Bで超急冷法でつくられた微結晶からな
る粉末を用いる。その粉未の大きさは170μm以下こ
のましくは50μmから3μmの範囲である。微粉末化
は、へキサン、トルエンなどの有機溶剤を加えたボール
ミル又はアトライターミルなどで行う。
The composition according to the present invention comprises: Fe. A powder consisting of crystallites prepared by the ultraquenching method in B is used. The size of the powder is 170 μm or less, preferably 50 μm to 3 μm. The fine powder is formed by a ball mill or an attritor mill to which an organic solvent such as hexane or toluene is added.

【0009】バインダーの有機物樹脂は、熱可塑性樹
脂、熱硬化性樹脂いずれかを選択すれば良い。
As the organic resin for the binder, either a thermoplastic resin or a thermosetting resin may be selected.

【0010】熱可塑性樹脂は、ナイロン6、66、12
など、PP(ポリプロピレン)、EVA、PPS、PE
EK等を磁石粉末と共に混練機などを用いて混練物(コ
ンパウンド)をつくる。その量は、成形方式にもよる
が、15重量%以下である。好ましくは10%〜5%の
範囲である。一方熱硬化性樹脂は、エポキシ、ポリエス
テル、フェノール、ケイ素等の有機物樹脂が適応され
る。その配合量は最大15%であり、成形方法によって
好ましい範囲が選定される。
The thermoplastic resin is nylon 6, 66, 12
Etc., PP (polypropylene), EVA, PPS, PE
A kneaded material (compound) is prepared by using EK and the like together with magnet powder by using a kneading machine or the like. The amount is 15% by weight or less, depending on the molding method. It is preferably in the range of 10% to 5%. On the other hand, as the thermosetting resin, organic resins such as epoxy, polyester, phenol and silicon are applicable. The blending amount is up to 15%, and a preferable range is selected depending on the molding method.

【0011】本発明法では、金型を用いる加圧成形法で
は、圧縮圧力が1〜7トン/cm2と比較的高圧にし
て、高密度化すなわち高性能化を目的とするので樹脂量
は、0.5〜5%が適用される。また、射出成形、押出
成形カレンダーロール成形などは、混合物の流動性が重
要になるので、樹脂は5〜15%と多くする。
In the method of the present invention, in the pressure molding method using a die, the compression pressure is set to a relatively high pressure of 1 to 7 ton / cm 2 for the purpose of achieving high density, that is, high performance. , 0.5-5% is applied. Further, in injection molding, extrusion molding calender roll molding and the like, since the fluidity of the mixture is important, the resin content is increased to 5 to 15%.

【0012】[0012]

【発明の実施の形態】以下に本発明の効果を具体的に実
施例に従って詳述する。
BEST MODE FOR CARRYING OUT THE INVENTION The effects of the present invention will be described in detail below with reference to specific examples.

【0013】(実施例一1)Nd29.8%B0.8%
残部Feおよび不可避の不純物からなる組成合金を高周
波溶解炉で溶解、水冷銅ロール上に吐出し超急冷法によ
ってリボン状薄帯粉末を得た。その、大きさは10〜3
0μmであった。次に素原料は、以下の手順で実用永久
磁石材料とした。
Example 1 Nd 29.8% B 0.8%
A composition alloy consisting of the balance Fe and inevitable impurities was melted in a high-frequency melting furnace, discharged onto a water-cooled copper roll, and a ribbon-shaped ribbon powder was obtained by a super-quenching method. The size is 10-3
It was 0 μm. Next, the raw material was made into a practical permanent magnet material by the following procedure.

【0014】 粉末粒度177μm以下に粉砕した。
もちろん、Arガス零囲気下で、ボールミル中で行っ
た。
The powder was pulverized to a particle size of 177 μm or less.
Of course, it was performed in a ball mill under an atmosphere of zero Ar gas.

【0015】 有機溶媒のダイフロン113(ダイキ
ン工業製)を加えアトライターミル中で約10分間粉砕
した。粉末の量は、10kg、ダイフロン1135k
g、ス一チールボール20kgの量を容器内に投入して
行った。
An organic solvent, Daiflon 113 (manufactured by Daikin Industries, Ltd.) was added and the mixture was pulverized in an attritor mill for about 10 minutes. The amount of powder is 10 kg, Daiflon 1135k
g and 20 kg of steel balls were put into the container.

【0016】 FSSS、(フィフシャーサブシーブ
サイザー)法による平均粒度を測定した。
The average particle size was measured by the FSSS (Fifthier Subsieve Sizer) method.

【0017】 バインダー(結合材)にエポキシ樹
脂、フェノール樹脂の熱硬化性樹脂を遅定、表1に示す
磁石粉末との混合比率のサンプルについて、自動混練機
にて行った。
A thermosetting resin such as an epoxy resin or a phenol resin was delayed as a binder (binding material), and a sample having a mixing ratio with the magnetic powder shown in Table 1 was subjected to an automatic kneading machine.

【0018】 金型はφ12×10lmm円柱状試料
とした。
The mold was a cylindrical sample of φ12 × 10 lmm.

【0019】成形圧力は表1に示す条件で行った。この
時のプレスは、一軸油圧プレスで、ダイフローティング
方式によるもので成形した。
The molding pressure was set under the conditions shown in Table 1. The press at this time was a uniaxial hydraulic press and was formed by a die floating method.

【0020】 次に成形体は、加熱焼成固化させた
が、温度は、100〜180℃×1時間、N2ガス中で
行った。
Next, the molded body was heated and solidified by heating, and the temperature was 100 to 180 ° C. for 1 hour in N 2 gas.

【0021】 JIS、C2501に準拠した自動自
記磁束計で、有効磁場25kOeを加え磁気性能を測定
した。
The magnetic performance was measured by applying an effective magnetic field of 25 kOe with an automatic self-recording magnetometer based on JIS, C2501.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】ここで比較例は、Sm(Cobal Cu
0.07 Fe0.2 Zr 0.02)8.0組成か
らなる2−17系希土類金属間化合物磁石粉末である。
本実施例は圧縮成形法で等方性磁石をつくった例である
が、比較例に比べ高性能磁石を得られた。等方性磁石で
これだけ高性能の希土類樹脂結合磁石は知られていな
い。
Here, the comparative example is Sm (Cobal Cu
It is a 2-17 series rare earth intermetallic compound magnet powder having a composition of 0.07 Fe0.2 Zr 0.02) 8.0.
This example is an example of producing an isotropic magnet by the compression molding method, but a high performance magnet was obtained as compared with the comparative example. Rare earth resin-bonded magnets that are isotropic magnets and have such high performance are not known.

【0025】これだけ磁気性能が高い等方性磁石は、多
極着磁によって、高い磁束密度を得ることができ、スピ
ーカ、モータの高性能化に極めて有効となる。
The isotropic magnet having such a high magnetic performance can obtain a high magnetic flux density by the multi-pole magnetization, and is extremely effective for improving the performance of the speaker and the motor.

【0026】(実施例−2)実施例1と同一組成のNd
FeB磁石粉未を用いて、射出成形によって永久磁石を
つくった。試料.形状は、φ80×φ25×6mmのリ
ング状である。表3に製造条件と諸特性を示す。
(Example-2) Nd having the same composition as in Example-1
A permanent magnet was produced by injection molding using FeB magnet powder. sample. The shape is a ring shape of φ80 × φ25 × 6 mm. Table 3 shows manufacturing conditions and various characteristics.

【0027】バインダーは、ナイロン12を使用し磁石
粉末との混練は、280℃に加熱しながらスクリュー式
混練機でコンパウンドをつくった。
Nylon 12 was used as a binder, and kneading with magnet powder was carried out by heating at 280 ° C. to form a compound with a screw type kneader.

【0028】なお比較例の2−17系Sm(Co Cu
Fe Zr)合金粉末は実施例1と同様のものを使用
した。
The 2-17 type Sm (Co Cu
The Fe Zr) alloy powder used was the same as in Example 1.

【0029】比較例と本発明法により得られた射出成形
法での比較でもやはり高い性能が得られた。
High performance was also obtained in the comparison between the comparative example and the injection molding method obtained by the method of the present invention.

【0030】[0030]

【表3】 [Table 3]

【0031】このことは、Nd Fe B粉未の高い磁
気性能がそのまま、現出させることができた。
This means that the high magnetic performance of the NdFeB powder, which has not been achieved, can be realized as it is.

【0032】このようにリング状の磁石でも、(BH)
max4〜6MGOe級の等方性磁石を得られた。この
ように、精密複雑形状の等方性磁石め登場は、モータ、
スピーカなどの小型、高性能化に有効となるであろう。
Even with a ring-shaped magnet as described above, (BH)
An isotropic magnet of max 4-6 MGOe grade was obtained. In this way, the appearance of isotropic magnets with precision complicated shapes
It will be effective for miniaturization and high performance of speakers.

【0033】本実施例は、ナイロン12を用いたが、熱
可塑性の樹脂であれば、PPS,PEEK,PPなど同
様の効果を得られるものである。
In this embodiment, nylon 12 is used, but if it is a thermoplastic resin, similar effects such as PPS, PEEK and PP can be obtained.

【0034】[0034]

【発明の効果】以上述べたように本発明によれば、基本
組成が希土類金属、鉄、ボロンからなる超急冷法でつく
られた、磁石粉末と有機物樹脂からボンド型磁石は、従
未の希土類コバルト磁石に比べ高い磁気性能を有する等
方性磁石を得られた。これを用いた機器は、例えばモー
タの高出力化、小型化、ロッドレスシリンダー、スピー
カ等へ低コスト、高性能を実現できるなど多大の効果を
もたらす実用性の高い材料である。
As described above, according to the present invention, a bond-type magnet made of a magnet powder and an organic resin, which has a basic composition made of a rare earth metal, iron, and boron by a superquenching method, is a rare earth metal which has not been used yet. An isotropic magnet having higher magnetic performance than the cobalt magnet was obtained. A device using this is a highly practical material that brings great effects such as high output of a motor, miniaturization, low cost and high performance for a rodless cylinder, a speaker and the like.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年11月1日[Submission date] November 1, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0002[Name of item to be corrected] 0002

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0002】[0002]

【従来の技術】希土類金属、鉄、ボロンからなる希土類
金属間化合物の磁石化の試みは、例えばクーン等は(F
e.82.B.18).9Rb.05Da.05の超急
冷法リボンをアニールするとiHc=9kOe、Br=
5kG、但し(BH)maxが低い。(N.C.Koo
n他Appl.Phys.Lett.39(10),8
40−842(1981))希土類・鉄・ボロン系超急
冷アモルファスリボンは粉末状でその諸特性を測定する
ことによって磁石化の可能性を論じている。実用材料と
しての評価は見当たらない。
2. Description of the Related Art Attempts to magnetize rare earth intermetallic compounds composed of rare earth metals, iron, and boron have been reported in, for example, Kuhn et al.
e. 82. B. 18). 9Rb. 05 Da. When the 05 quenching ribbon is annealed, iHc = 9 kOe, Br =
5kG, but (BH) max is low. (NC Koo
n et al . Appl. Phys. Lett. 39 (10), 8
40-842 (1981) ) The rare-earth / iron / boron-based ultra-quenched amorphous ribbon is in powder form and the possibility of magnetization is discussed by measuring its properties. No evaluation as a practical material is found.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0008】[0008]

【課題を解決するための手段】本発明は、希土類元素、
鉄、ボロンを主成分とし超急冷法で製造された磁石粉末
と、樹脂結合材とからなり、前記磁石粉末と前記樹脂結
合材とを無磁場中で圧縮成形して磁気的に等方化してな
る樹脂結合型希土類磁石において、前記磁石粉末の含有
量が95〜99.5wt%であり、前記樹脂結合材は、熱
硬化性樹脂で構成され、その含有量が0.5〜5wt%で
あり、磁気エネルギー積(BH)maxが6.2MGOe
以上であることを特徴とする。また、前記磁石粉末の粒
径は、3〜50μmであることを特徴とする。本発明に
おける組成物は、R.Fe.Bで超急冷法でつくられた
微結晶からなる粉末を用いる。その粉未の大きさは17
0μm以下このましくは50μmから3μmの範囲であ
る。微粉末化は、へキサン、トルエンなどの有機溶剤を
加えたボールミル又はアトライターミルなどで行う。
The present invention is directed to a rare earth element,
Magnet powder mainly composed of iron and boron and manufactured by the ultra-quenching method
And a resin binder, the magnet powder and the resin binder.
Do not compress the composite material in a magnetic field to make it magnetically isotropic.
Resin-bonded rare earth magnets containing the above-mentioned magnet powder
The amount of the resin binder is 95-99.5 wt%,
It is composed of curable resin and its content is 0.5-5wt%.
Yes, the magnetic energy product (BH) max is 6.2 MGOe
The above is characterized. Also, the particles of the magnet powder
The diameter is 3 to 50 μm. The composition of the present invention has a composition of R. Fe. A powder consisting of crystallites prepared by the ultraquenching method in B is used. The size of the powder is 17
0 μm or less This is preferably in the range of 50 μm to 3 μm. The fine powder is formed by a ball mill or an attritor mill to which an organic solvent such as hexane or toluene is added.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】削除[Correction method] Delete

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0010】硬化性樹脂は、エポキシ、ポリエステ
ル、フェノール、ケイ素等の有機物樹脂が適応される。
その配合量は最大15%であり、成形方法によって好ま
しい範囲が選定される。
[0010] Thermosetting resins, epoxy, polyester, phenolic, organic resins such as silicon is adapted.
The blending amount is up to 15%, and a preferable range is selected depending on the molding method.

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】本発明法では、金型を用いる加圧成形法で
は、圧縮圧力が1〜7トン/cm2と比較的高圧にし
て、高密度化すなわち高性能化を目的とするので樹脂量
は、0.5〜5%が適用される
In the method of the present invention, in the pressure molding method using a die, the compression pressure is set to a relatively high pressure of 1 to 7 ton / cm 2 for the purpose of achieving high density, that is, high performance. , 0.5-5% is applied .

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0017】 バインダー(結合材)にエポキシ樹
脂、フェノール樹脂の熱硬化性樹脂を定、表1に示す
磁石粉末との混合比率のサンプルについて、自動混練機
にて行った。
The binder (binder) in an epoxy resin, a thermosetting resin selected constant of the phenolic resin, the samples of the mixing ratio of the magnet powder shown in Table 1, was carried out in an automatic kneader.

【手続補正8】[Procedure Amendment 8]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0026[Correction target item name] 0026

【補正方法】削除[Correction method] Delete

【手続補正9】[Procedure Amendment 9]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0027[Name of item to be corrected] 0027

【補正方法】削除[Correction method] Delete

【手続補正10】[Procedure Amendment 10]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0028[Correction target item name] 0028

【補正方法】削除[Correction method] Delete

【手続補正11】[Procedure Amendment 11]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0029[Name of item to be corrected] 0029

【補正方法】削除[Correction method] Delete

【手続補正12】[Procedure Amendment 12]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0030[Name of item to be corrected] 0030

【補正方法】削除[Correction method] Delete

【手続補正13】[Procedure Amendment 13]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0031[Correction target item name] 0031

【補正方法】削除[Correction method] Delete

【手続補正14】[Procedure Amendment 14]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0032[Name of item to be corrected] 0032

【補正方法】削除[Correction method] Delete

【手続補正15】[Procedure Amendment 15]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0033[Correction target item name] 0033

【補正方法】削除[Correction method] Delete

【手続補正16】[Procedure Amendment 16]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0034[Correction target item name] 0034

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0034】[0034]

【発明の効果】以上述べたように本発明によれば、基本
組成が希土類金属、鉄、ボロンからなる超急冷法でつく
られた、磁石粉末と有機物樹脂からボンド型磁石は、従
の希土類コバルト磁石に比べ高い磁気性能を有する等
方性磁石を得られた。これを用いた機器は、例えばモー
タの高出力化、小型化、ロッドレスシリンダー、スピー
カ等へ低コスト、高性能を実現できるなど多大の効果を
もたらす実用性の高い材料である。
As described above, according to the present invention, a bond-type magnet made of a magnet powder and an organic resin, which has a basic composition of a rare earth metal, iron, and boron by an ultraquenching method, is
The resulting isotropic magnet with high magnetic performance compared to come of the rare earth cobalt magnets. A device using this is a highly practical material that brings great effects such as high output of a motor, miniaturization, low cost and high performance for a rodless cylinder, a speaker and the like.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】希土類元素、鉄、ボロンを主成分とし超急
冷法で製造された磁石粉末と、樹脂結合材とからなり、
前記磁石粉末と前記樹脂結合材との混合物を無磁場中で
圧縮成形して磁気的に等方化してなる樹脂結合型希土類
磁石であって、 前記磁石粉末の粒径が3〜50μm、前記磁石粉末の含
有量が95〜99.5wt%であり、 前記樹脂結合材は、熱硬化性樹脂で構成され、その含有
量が0.5〜5wt%であり、 磁気エネルギー積(BH)maxが6.2MGOe以上で
あることを特徴とする希土類磁石。
1. A magnet powder containing a rare earth element, iron, and boron as main components, which is manufactured by a superquenching method, and a resin binder,
A resin-bonded rare-earth magnet obtained by compression-molding a mixture of the magnet powder and the resin binder in a magnetic field and magnetically isotropic, wherein the particle size of the magnet powder is 3 to 50 μm. The powder content is 95-99.5 wt%, the resin binder is composed of a thermosetting resin, the content is 0.5-5 wt%, and the magnetic energy product (BH) max is 6 A rare earth magnet characterized in that it is 2 MGOe or more.
JP7255320A 1995-10-02 1995-10-02 Rare earth magnet Pending JPH08181011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7255320A JPH08181011A (en) 1995-10-02 1995-10-02 Rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7255320A JPH08181011A (en) 1995-10-02 1995-10-02 Rare earth magnet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62261208A Division JP2619653B2 (en) 1987-10-16 1987-10-16 Rare earth magnet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP16742098A Division JP3391704B2 (en) 1998-06-15 1998-06-15 Rare earth magnet

Publications (1)

Publication Number Publication Date
JPH08181011A true JPH08181011A (en) 1996-07-12

Family

ID=17277151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7255320A Pending JPH08181011A (en) 1995-10-02 1995-10-02 Rare earth magnet

Country Status (1)

Country Link
JP (1) JPH08181011A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59211549A (en) * 1983-05-09 1984-11-30 ゼネラル・モ−タ−ズ・コ−ポレ−シヨン Adhered rare earth element-iron magnet
JPS60207302A (en) * 1984-03-08 1985-10-18 ゼネラル モーターズ コーポレーシヨン Rare earth element-iron magnet coupled with epoxy resin
JPS62263612A (en) * 1986-05-12 1987-11-16 Matsushita Electric Ind Co Ltd Resin magnet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59211549A (en) * 1983-05-09 1984-11-30 ゼネラル・モ−タ−ズ・コ−ポレ−シヨン Adhered rare earth element-iron magnet
JPS60207302A (en) * 1984-03-08 1985-10-18 ゼネラル モーターズ コーポレーシヨン Rare earth element-iron magnet coupled with epoxy resin
JPS62263612A (en) * 1986-05-12 1987-11-16 Matsushita Electric Ind Co Ltd Resin magnet

Similar Documents

Publication Publication Date Title
EP0239031B2 (en) Method of manufacturing magnetic powder for a magnetically anisotropic bond magnet
EP0898778B1 (en) Bonded magnet with low losses and easy saturation
JP3741597B2 (en) Multi-element rare earth-iron lattice intrusion-type permanent magnet material, permanent magnet comprising the same, and method for producing them
KR960008185B1 (en) Rare earth-iron system permanent magnet and process for producing the same
JP2731150B2 (en) Magnetic anisotropic bonded magnet, magnetic anisotropic magnetic powder used therefor, method for producing the same, and magnetic anisotropic powder magnet
JP3391704B2 (en) Rare earth magnet
JPH08181011A (en) Rare earth magnet
JP2739860B2 (en) MAGNETIC MATERIAL, MAGNET COMPRISING THE SAME, AND PROCESS FOR PRODUCING THEM
JP2708578B2 (en) Bonded magnet
JP2619653B2 (en) Rare earth magnet
JPS61179801A (en) Alloy powder for bond magnet and its production
JPH044386B2 (en)
JPH06279915A (en) Rare earth magnet material and rare earth bonded magnet
JP2000173810A (en) Magnetic anisotropic bond magnet and its manufacture
KR940003340B1 (en) Magnetic materials
JPH044383B2 (en)
JP2746111B2 (en) Alloy for permanent magnet
JPH08203714A (en) Iron-based permanent magnet, manufacture thereof and iron-based permanent magnet alloy powder for bonded magnet and iron-based bonded magnet
JPH07176417A (en) Iron based bonded magnet and its manufacture
JPH044384B2 (en)
JP2739329B2 (en) Method for producing alloy powder for polymer composite type rare earth magnet
JPH0620815A (en) Manufacture of rare earth bonded magnet
JP3795056B2 (en) Iron-based bonded magnet and iron-based permanent magnet alloy powder for bonded magnet
JPH03115501A (en) Alloy powder composition for permanent magnet
JPH02109305A (en) Manufacture of polymer complex type rare earth magnet