JPS62263612A - Resin magnet - Google Patents

Resin magnet

Info

Publication number
JPS62263612A
JPS62263612A JP61107907A JP10790786A JPS62263612A JP S62263612 A JPS62263612 A JP S62263612A JP 61107907 A JP61107907 A JP 61107907A JP 10790786 A JP10790786 A JP 10790786A JP S62263612 A JPS62263612 A JP S62263612A
Authority
JP
Japan
Prior art keywords
isocyanate
magnet
oligoether
oligomer
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61107907A
Other languages
Japanese (ja)
Other versions
JPH0642409B2 (en
Inventor
Fumitoshi Yamashita
文敏 山下
Masami Wada
正美 和田
Shuichi Kitayama
北山 修一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61107907A priority Critical patent/JPH0642409B2/en
Priority to US06/937,424 priority patent/US4689163A/en
Priority to DE3642228A priority patent/DE3642228C2/en
Priority to FR878700277A priority patent/FR2595001B1/en
Priority to KR1019870001418A priority patent/KR900003477B1/en
Publication of JPS62263612A publication Critical patent/JPS62263612A/en
Publication of JPH0642409B2 publication Critical patent/JPH0642409B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Hard Magnetic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain a resin magnet capable of continuing and ensuring high reliability efficiently by using an oligomer having an alcoholic hydroxyl group in a molecule and an isocyanate regenerated body as the binder components of a liquid quenching Fe-B-R group (where R represents Nd or/and Pr) magnet blank. CONSTITUTION:An oligomer having an alcoholic hydroxyl group in at least a molecule and an isocyanate regenerated body are employed as the binder of a liquid quenching Fe-B-R group (where R represents R or Nd or/and Pr) magnet blank. Oligoether or oligoether ester or the like represented by formulae 1, 2 can be illustrated as the oligomer having the alcoholic hydroxyl group in the molecule. n and m in formulae represent integers, R1 an aliphatic residue, R2 hydrogen or an alkyl group and R3 an aliphatic, aromatic or alicyclic residue. The active hydrogen compound adduct of diisocyanate is used as the isocyanate regenerated body, and the isocyanate regenerated body, such as phenol, m-cresol, xylenol, etc., the temperature of thermal dissociation of which is kept within a comparatively low temperature range, is preferable.

Description

【発明の詳細な説明】 産業上の利用分l!f 本発明はパルスモータ、サーボモータ、アクチュエータ
などの部材としてメカトロニクス分野で幅広く使用され
る樹脂磁石に関する。更に詳しくは液体急冷法によって
得られるF F! −Fl −R系(RはNdまたは/
およびPr)磁石素材と結合剤とから構成される樹脂磁
石に関するものである。
[Detailed description of the invention] Industrial applications! f The present invention relates to a resin magnet that is widely used in the mechatronics field as a member of pulse motors, servo motors, actuators, etc. For more details, see FF! obtained by liquid quenching method. -Fl -R system (R is Nd or/
and Pr) relates to a resin magnet composed of a magnet material and a binder.

従来の技術 希土類コバルト焼結磁石、例えばSm(Co。Conventional technology Rare earth cobalt sintered magnets, such as Sm(Co.

CIJ、Fe、M)n (但しMは周期律表のIV族。CIJ, Fe, M)n (However, M is Group IV of the periodic table.

V族、■族、■族に属する元素の1種または2種以上、
の組み合わせであり、nは一般に5〜9の整数)は筒状
に形成し、該形状の半径方向へ磁気異方化させることが
極ぬて雑しい。その主な理由は焼結過程において異方1
1に基づく膨張率に差が生じるためであり、該膨張率の
差は磁気異方化の稈度や形状にt)影響されるが、一般
には等方性にて対応するほかない。
One or more elements belonging to group V, group ■, group ■,
(where n is generally an integer of 5 to 9) is formed into a cylindrical shape, and it is extremely complicated to make the magnetic anisotropy in the radial direction of the shape. The main reason is that anisotropy 1 occurs in the sintering process.
This is because a difference occurs in the expansion coefficient based on 1), and this difference in expansion coefficient is influenced by the culmness and shape of the magnetic anisotropy, but generally there is no choice but to deal with it by isotropy.

このため本来ならば最大エネルギー積で20〜30MG
Oe発現する磁気性能t)筒状半径方向では5M G 
OP!程度に低下してしまう。更に高度な寸法精度を要
求されるパルスモータ、サーボモータ、アクチ。エータ
などの部材に対応するには焼結後に研削加工が必要で製
品の歩留まりが悪(Smやcoを主成分とすることも加
えて経済性において性能とのバランスに乏しい。そのう
え焼結品は一般に機械的に脆弱であるため、その一部が
脱離してパルスモータ、サーボモータ、アクチュエータ
などの機能維持や信頼性の確保に重大な影響を及ぼす恐
れもあった。
Therefore, the maximum energy product would normally be 20 to 30 MG.
Oe developed magnetic performance t) 5M G in the cylindrical radial direction
OP! It will decrease to a certain extent. Pulse motors, servo motors, and actuators that require even higher dimensional accuracy. Grinding is required after sintering in order to make it compatible with parts such as ethers, resulting in poor product yields (in addition to the fact that the main components are Sm and Co, there is a poor balance between economy and performance. Moreover, sintered products Since they are generally mechanically fragile, there is a risk that a portion of them may come off and have a serious impact on maintaining the functionality and ensuring reliability of pulse motors, servo motors, actuators, etc.

一方、希土類コバルト樹脂磁石の場合にはマトリクスで
ある樹脂が半径方向へ磁気異方化された希土類コバルト
の膨張率の差を吸収できるため半径方向へ磁気異方化し
た磁石が得られる。近年、射出成形タイプの希土類コバ
ルト樹脂磁石をアキシャル方向へ磁気異方化すれば最大
エネルギー積8〜10 M G OF!のちのが容易に
得られることが知られている。しかt)焼結品に比べて
密度が概ね30%軽減され、且つ高度な寸法精度が確保
され、機械的に脆弱な点も改善されるため、特に、ここ
で例示した半径方向へ磁気異方化が必要な磁石としては
より好ましいものであると予測される。
On the other hand, in the case of rare earth cobalt resin magnets, the resin that is the matrix can absorb the difference in the expansion coefficient of the rare earth cobalt that has been magnetically anisotropic in the radial direction, so a magnet that is magnetically anisotropic in the radial direction can be obtained. In recent years, if injection molded rare earth cobalt resin magnets are made magnetically anisotropic in the axial direction, the maximum energy product can be increased to 8 to 10 M G OF! It is known that the latter can be easily obtained. However, compared to sintered products, the density is reduced by approximately 30%, a high degree of dimensional accuracy is ensured, and mechanical fragility is improved. This is expected to be more preferable for magnets that require chromatography.

次に、北記希土類コバルト樹脂磁石の半径方向への何気
異方化手段に関する従来技術を説明するう半径方向への
磁界発生手段として例えば特開昭57−170501号
公報に記載されているようにキャビティを取り囲んで磁
性体ヨークと非磁性体ヨークとを交互に組み合わせ、1
つ外側に磁化コイルを配置した金型を用いるか或は該キ
ャビティの外jMに磁化コイルを埋設した金型を用いろ
。かかる方法はキャビティ内に所定の強さの磁界を発生
させるため高電圧低電流型の電源を用い、1つ起磁力を
大とすることが行われている。
Next, we will explain the prior art related to a means for generating anisotropy in the radial direction of rare earth cobalt resin magnets. A magnetic yoke and a non-magnetic yoke are alternately combined to surround the cavity.
Either use a mold in which a magnetizing coil is placed on the outside, or use a mold in which a magnetizing coil is buried outside the cavity. In this method, a high-voltage, low-current type power source is used to generate a magnetic field of a predetermined strength within the cavity, and the magnetomotive force is increased by one.

発明が解決しようとする間頭点 しかし金型の外周からヨークにより磁化コイルで励磁し
た磁束をキャビティ内に有効に集束さぜろため磁路長を
長くせざるを得す、特に小形の磁石の場合には起磁力の
かなりの部分が漏洩磁束として消費されてしまう。その
結果、半径方向へ十分な磁気異方化をすることが困難と
なる。
However, in order to effectively focus the magnetic flux excited by the magnetizing coil from the outer periphery of the mold into the cavity by the yoke, the magnetic path length must be lengthened, especially for small magnets. In this case, a considerable portion of the magnetomotive force is consumed as leakage magnetic flux. As a result, it becomes difficult to achieve sufficient magnetic anisotropy in the radial direction.

ト、記のように希土類コバルト樹脂磁石は半径方向への
磁気異方化が必要な場合において希土類コバルト焼結磁
石を−F回る磁気性能が発現する場合t、あるが、該磁
石形状に重大な影響を受けるため、小形軽量化が進む中
で半径方向の磁気性能において十分な対応が困難である
七いう欠点を有していた。
As mentioned above, there are cases where rare earth cobalt resin magnets exhibit magnetic performance of −F rotation than rare earth cobalt sintered magnets when magnetic anisotropy in the radial direction is required. As a result, it has seven drawbacks: it is difficult to adequately respond to magnetic performance in the radial direction as miniaturization and weight reduction progress.

以ヒが−qt式Sm (Co、C+、+、Fe、M)n
なる希土類コバルトを対象とした焼結磁石と樹脂磁石と
の特質である。一方、Sm(Co、Cu。
This is −qt formula Sm (Co, C+, +, Fe, M)n
These are the characteristics of sintered magnets and resin magnets for the rare earth cobalt. On the other hand, Sm(Co, Cu).

Fp、M)nのような希土類コバルトと同様な製造方法
によって得られるFe−B−R系において、:’I f
t m程度に調整された粒子の保磁力の発生は磁壁移動
がピンニングであって木質的に磁気異方性であるため希
土類コバルト七同様な焼結磁石と樹脂磁石の双方の特質
を有しているt)のとなる。とくに標準的な原子組成F
e77、 Ba、Nd1sで例示される前記粒子は通常
10 K Oe程度の磁場中、1 、5 t、on /
 cJ程度の加圧丁で圧縮したのち、1000〜120
0℃Δで気流中1こで焼結し、500〜600°Cで熱
処理することにより保磁力を発現せしめる焼結磁石とし
て使用される。当該磁石は結晶粒界にBCC相が析出し
、表面はlNdがFeよりt)選択的に空気で酸化され
易いなどの理由により、樹脂磁石とするにはSm (C
o、Cu、FF!。
In the Fe-B-R system obtained by the same production method as rare earth cobalt such as Fp, M)n, :'I f
The coercive force of particles adjusted to about tm is generated by pinning due to domain wall movement, and because of the magnetic anisotropy of wood, rare earth cobalt 7 has the characteristics of both sintered magnets and resin magnets. It becomes t). Especially the standard atomic composition F
The particles, exemplified by e77, Ba, and Nd1s, are usually heated at 1,5 t, on/in a magnetic field of about 10 K Oe.
After compressing with a pressure knife of about cJ, 1000 to 120
It is used as a sintered magnet that develops coercive force by sintering it in an air stream at 0°C Δ and heat-treating it at 500 to 600°C. In this magnet, a BCC phase precipitates at the grain boundaries, and the surface of the magnet is Sm (C
o, Cu, FF! .

M>nで表されるような希土類コバルトよりS)一段と
困〒Wなものである。
S) is much more difficult than the rare earth cobalt represented by M>n.

本発明は上記背景に鑑みてなされたものである。The present invention has been made in view of the above background.

間罰点を解決するための手段 本発明は、液体急冷Fe−B−1≧系(但しRはNdま
たは/およびPr)磁石素材の結合剤として少なくとも
分子内にアルコール性水酸基を有するオリゴマーとイソ
シアナート再生1本を用いたt)のである。
Means for Solving Problems The present invention uses an oligomer having at least an alcoholic hydroxyl group in the molecule and an isocyanate as a binder for a liquid quenched Fe-B-1≧ system (where R is Nd or/and Pr) magnet material. t) using one playback.

作用 先ず、本発明で言う液体急冷Fe−B−R系(但しRは
N tlまたは/およびPr)磁石素材とは基本式Nd
1−X(Fel−y、By)Xで表される組成を有する
ものである。(但し0.5≦X≦0.9゜0.05≦Y
≦0.10)例えば標準的な原子組成)’es+、)3
s、 Nde3なる溶融合金をAr雰囲気中にてオリフ
ィス並びにロールを介して急冷リボン片としたものを適
宜粉砕して得る肉厚約10μm1長手方向数士ないし数
百μmの板状粒子を言う。
Function First, the liquid quenched Fe-B-R system (where R is N tl or/and Pr) magnet material referred to in the present invention has the basic formula Nd
It has a composition represented by 1-X(Fel-y, By)X. (However, 0.5≦X≦0.9゜0.05≦Y
≦0.10) For example, standard atomic composition)'es+,)3
It refers to plate-shaped particles with a wall thickness of about 10 μm and several tens to hundreds of μm in the longitudinal direction, which are obtained by suitably pulverizing a molten alloy of S, Nde3 into ribbon pieces through an orifice and rolls in an Ar atmosphere.

この粒子は例えばオルツムピック(Orthohomb
ic)系並びにテトラゴナール(’I’etragon
al)系Fe5B中に極めて微細なFe−B−R三元系
磁石相が点在するミクロ構造をもつt)のと考えられ磁
気的には等方性のものである。これ等の液体急冷Fe−
B−R磁石素材は急冷リボンを得る際にアモルファス状
態とし、然るのち結晶化温度以上に加熱せしめることに
より準安定相であるFe5B中にFe−)1−R三元系
磁石相を析出せしめる工程を経たものであってt)、或
はまた液体急冷時に最終的なミクロ構造とするものであ
っても差し支えない。
These particles can be used, for example, in Orthohompic.
ic) system as well as tetragonal ('I' etragon
It is considered to have a microstructure in which extremely fine Fe-B-R ternary magnet phases are scattered in the al) system Fe5B, and is magnetically isotropic. These liquid quenched Fe-
The B-R magnet material is brought into an amorphous state when a rapidly cooled ribbon is obtained, and then heated above the crystallization temperature to precipitate the Fe-)1-R ternary magnet phase in the metastable Fe5B phase. It may be the one that has gone through the process t) or the final microstructure that is formed during liquid quenching.

財に液体急冷Fe−B−R系磁石素材の基本的なミクロ
構造に基づく特質を損なわない範囲でSi。
As long as the properties based on the basic microstructure of the liquid-quenched Fe-B-R magnet material are not impaired, Si is added to the material.

Mo、A1.Co、Zr、Pd、Y、Tbなどの他の元
素の混在があっても差し支えない。更に液体急冷Fe−
B−R系磁石素材は例えばカーボンファンクショナルシ
ランの如き皿分子膜以上の表面皮膜形成物であっても差
し支えない。カーボンファンクショナルシランとしては
γ−グリシドキシプロピルトリエトキシシラン、γ−ア
ミノプロピルトリメトキシシラン、N−β+アミノエチ
ルトγ−アミノプロピルトリメトキシシラン、γ−メタ
カプトプロピルトリメトキシシランなどが例示できる。
Mo, A1. There is no problem even if other elements such as Co, Zr, Pd, Y, and Tb are mixed. Furthermore, liquid quenching Fe-
The B-R magnet material may be a material with a surface film formed on the surface of a dish molecular film or more, such as carbon functional silane. Examples of the carbon functional silane include γ-glycidoxypropyltriethoxysilane, γ-aminopropyltrimethoxysilane, N-β+aminoethyl γ-aminopropyltrimethoxysilane, and γ-metacaptopropyltrimethoxysilane.

尚、その他の有機化合物、例えば有機チタネート化合物
などでも適宜使用することができる。
Note that other organic compounds such as organic titanate compounds can also be used as appropriate.

次に本発明で言う分子内にアルコール性水酸基を有する
オリゴマーとは、下記(1) 、 (2)式で示される
オリゴエーテル、或はオリゴエーテルエステルなどが例
示できる。
Next, examples of the oligomer having an alcoholic hydroxyl group in the molecule as used in the present invention include oligoethers and oligoether esters represented by the following formulas (1) and (2).

R2R2R2 1l −4@−R+−◎−0−C−C−C−0+n−・−(1
)20HR R2R2R2 −lc  @ −R+ −@−0−C−C−C−0−)
−nl   1  1 R20HR2 (日し、1式中のn、mは整数、R1は脂肪族残基、R
2は水素或はアルキル基、R3は脂肪族、芳香族または
脂環族残基を示す。
R2R2R2 1l -4@-R+-◎-0-C-C-C-0+n-・-(1
)20HR R2R2R2 -lc @ -R+ -@-0-C-C-C-0-)
-nl 1 1 R20HR2 (in Japanese, n and m are integers, R1 is an aliphatic residue, R
2 represents hydrogen or an alkyl group, and R3 represents an aliphatic, aromatic or alicyclic residue.

ゼに本発明で用いるイソシアナート再生体とはジイソシ
アナートの活性水素化合物付加体であり、イソシアナー
トとしてはP−71ニレンジイソシアナート、m−)T
、ニレンジイソシアナート、2・4−トリレンジイソシ
アナート、2・6−ドリレンジイソシアナート、P−P
’−シフてニレンジイソシアナート、P−P’−ジフェ
ニルメタンジイソシアナート、P−P’−ジフェニルエ
ーテルジイソシアナート、P−P’−シフT、ニルスル
ホンジイソシアナート、P−P’−ベンゾフェノンジイ
ソシアナートなどがあり、これ等と付加体を形成する活
性水素化合物としてはアミン、酸性亜硫酸塩、第3級ア
ルコール、ラクタム、メルカプタン、エノール、オキシ
ムなどがあり、好ましくはフT、ノール、m−クレゾー
ル、キシレノール等イソシアナート再生体の熱解+a湿
温度比較的低温度域となるものである。更に、上記イソ
シアナート化合物として芳香族イミドを導入したものが
好ましい。このような芳香族イミドは例えば芳香族カル
ボン酸無水物とジイソシアナートをm−クレゾール、N
−N’−ジメチルホルムアミド、N −N’−ジメチル
アセトアミド、メチルピロリドン等の溶媒中で脱炭酸ガ
ス反応して容局に生成せしめることができる゛。
The isocyanate regenerated product used in the present invention is an active hydrogen compound adduct of diisocyanate, and the isocyanate includes P-71 nylene diisocyanate, m-)T
, nylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, P-P
'-Schifte nylene diisocyanate, P-P'-diphenylmethane diisocyanate, P-P'-diphenyl ether diisocyanate, P-P'-Schiff T, nylsulfone diisocyanate, P-P'-benzophenone diisocyanate. Active hydrogen compounds that form adducts with these include amines, acidic sulfites, tertiary alcohols, lactams, mercaptans, enols, oximes, etc., and preferably fluorocarbons, alcohols, m- Thermal decomposition+a humidity temperature of regenerated isocyanates such as cresol and xylenol is in a relatively low temperature range. Furthermore, those into which an aromatic imide is introduced as the isocyanate compound are preferred. Such an aromatic imide can be prepared, for example, by combining an aromatic carboxylic acid anhydride and a diisocyanate with m-cresol, N
-N'-dimethylformamide, N-N'-dimethylacetamide, methylpyrrolidone or the like can be decarboxylated and produced in situ.

上記オリゴマーとイソシアナート再生体とはオリゴマー
のアルコール性水酸基とイソシアナート基とが化学量論
的に当蛾比(OH/NC0=11であることが好ましい
It is preferable that the oligomer and the isocyanate regenerated product have a stoichiometric ratio of the alcoholic hydroxyl group and the isocyanate group of the oligomer (OH/NC0=11).

更に、液体急冷FeNd−B系磁石素材に占める上記結
合剤成分は1.5〜5重散部とすることが好ましい。
Further, the binder component in the liquid quenched FeNd-B magnet material is preferably 1.5 to 5 parts dispersed.

実施例 以丁、本発明を実施例並びに比較例によって更に詳しく
説明する。
EXAMPLES The present invention will be explained in more detail with reference to Examples and Comparative Examples.

(磁石素材) Ar雰囲気中の高周波溶解炉で溶融してなる原子組成F
ear、86.Nd+3の合金をオリフィスを介してロ
ール間隙に連続滴下することにより急冷リボン片とし、
該急冷リボン片を適宜破砕することにより第1図に示す
ような厚さ杓10μm1長手方向数十μmから数百μm
に至る液体急冷Fe−B−R系磁石素材を得た。第1表
は蛍光X線分析によるN a−Uの定性分析結果を示す
特性表である。
(Magnet material) Atomic composition F obtained by melting in a high frequency melting furnace in an Ar atmosphere
ear, 86. A quenched ribbon piece is produced by continuously dropping Nd+3 alloy into the gap between the rolls through an orifice,
By appropriately crushing the quenched ribbon pieces, the thickness as shown in FIG.
A liquid quenched Fe-B-R magnet material was obtained. Table 1 is a characteristic table showing the results of qualitative analysis of Na-U by fluorescent X-ray analysis.

第】表 SS  S  M   臀  間 多情   中等 少量 ?ia喰 一方、別に粒子径10〜80/zmのSm(COo、s
ea、 CuQ、IOI、 F po、2+4. Zr
o、o+7)733の標準組成で示される希土類コバル
トを用意した。
[Chapter] Table SS SM Buttocks Intermediate Small amount? On the other hand, Sm (COo, s
ea, CuQ, IOI, F po, 2+4. Zr
A rare earth cobalt having a standard composition of 733 (o, o+7) was prepared.

尚、上記液体急冷F e−B −R並びに希土類コバル
トの比表面積はそれぞれ0.070−/gおよび0.1
1On?/gであった。これ等は、その表面に単分子膜
を形成するに必要量のカーボンファンクシ1ナルシラン
処理した。但し用いたカーボンファンクショナルシラン
はγ−アミノプロピルトリメトキシシランである。
The specific surface areas of the liquid quenched Fe-B-R and rare earth cobalt are 0.070-/g and 0.1-g, respectively.
1On? /g. These were treated with the necessary amount of carbon funxysilane to form a monomolecular film on their surfaces. However, the carbon functional silane used was γ-aminopropyltrimethoxysilane.

第2図は上記磁石素材30mの空気中での示差熱分析結
果である。図から明らかなように液体急冷FF!−B−
R(第2図中の一点鎖線A)は希土頴コバルト(第2図
中の破線B)に比べて酸化安定性に優れているが、更に
カーボンファンクショナルシラン処理(第2図中の実線
C)によって安定化される。
FIG. 2 shows the results of differential thermal analysis of 30 m of the magnet material in air. As is clear from the diagram, liquid quenching FF! -B-
R (dotted line A in Figure 2) has better oxidation stability than rare earth cobalt (broken line B in Figure 2), but carbon functional silane treatment (solid line in Figure 2) C) is stabilized by

(結合剤) 分子内にアルコール性水酸基を有するオリゴマー七して
は下記(3)式で示され、1つ分子量を異にするオリゴ
エーテルを使用した。
(Binder) As the oligomer having an alcoholic hydroxyl group in its molecule, oligoethers represented by the following formula (3) and having one different molecular weight were used.

(:、H3H○HH I      111 A、 @ −C−@ −0−C−C−C−0+ n ・
・・・(3)l       l1l C1−138)]  H 佃し、−ヒ紀オリエーテル末端はエピクロルヒドリン付
方n物であるため末端基はエポキシ基である。
(:, H3H○HH I 111 A, @ -C-@ -0-C-C-C-0+ n ・
...(3) l l1 l C1-138)] H However, since the -hysterium oligoether terminal is an epichlorohydrin compound, the terminal group is an epoxy group.

一方のイソシアナート再牛体は下記(4) 、 (5)
 、 (6)式で示されるP−P’−シフ毛ニルメタン
ジイソシアナートのrn−クレゾール付加物、トリメリ
ット酸1モルとP−P’−ジフェニルメタンジイソシア
ナート2モルとを脱炭酸ガス反応して得られるアミドイ
ミドジイソシアナートのm−クレゾール付加物、ピロメ
リト酸無水物1モルとP−P’−シフTニルメタンジイ
ソシアナート2モルとを脱炭酸ガス反応して得られるイ
ミドジイソシアナートのm−クレゾール付加物を用いた
On the other hand, the isocyanate recalcification is as follows (4), (5)
, rn-cresol adduct of P-P'-Schiffenylmethane diisocyanate represented by formula (6), 1 mole of trimellitic acid and 2 moles of P-P'-diphenylmethane diisocyanate are decarboxylated. m-cresol adduct of amide imide diisocyanate obtained by decarboxylation of 1 mole of pyromellitic anhydride and 2 moles of P-P'-Schiff Tylmethane diisocyanate; An m-cresol adduct of Nato was used.

  H ◎−0−C−N−◎−CH2−◎− H3 Cト)3 0H)1 @−0−C−N−◎−CH2−◎−N− H3 +  11 @−N−C−0−@     ・・・・・(5)\、 H3 0   H II     1 ■−N−C−0−@       ・・・・・(6)H
3 尚、オリゴエーテルの末端エポキシ基により硬化させる
アミン化合物としてP−P’−シフ、ニルメタンジアミ
ンを使用した。
H ◎-0-C-N-◎-CH2-◎- H3 Cto)3 0H)1 @-0-C-N-◎-CH2-◎-N- H3 + 11 @-N-C-0- @ ・・・・・・(5)\, H3 0 H II 1 ■-N-C-0-@ ・・・・・・(6)H
3. P-P'-Schiff, nylmethanediamine was used as the amine compound to be cured by the terminal epoxy group of the oligoether.

上記、オリゴエーテルとイソシアナート再生体との混合
割合は末端エポキシ基と分子内アルコール性水酸基に対
するイソシアナート基を当量比とし、オリゴエーテルと
ジアミンとの配合割合は末端エポキシ基に対するアミン
活性水素を当量とした。
Above, the mixing ratio of oligoether and isocyanate regenerated product is based on the equivalent ratio of isocyanate group to terminal epoxy group and intramolecular alcoholic hydroxyl group, and the mixing ratio of oligoether and diamine is based on equivalent ratio of amine active hydrogen to terminal epoxy group. And so.

上記結合剤成分を170℃で2時間硬化させたのちTB
A法でガラス転移温度を求め、オリゴエーテルの分子端
に対してプロットした特性図が第3図である。第3図に
おいて、Aはイミドジイソシアナート、Bはアミドイミ
ドジイソシアナート、CはP−P’−シフLニルメタン
ジイソシアナート、DはP−P’−シフT、ニルメタン
ジアミンを示す。
After curing the above binder component at 170℃ for 2 hours, TB
FIG. 3 is a characteristic diagram in which the glass transition temperature was determined using Method A and plotted against the molecular ends of the oligoether. In Figure 3, A represents imido diisocyanate, B represents amide imide diisocyanate, C represents P-P'-Schiff L, nylmethane diisocyanate, and D represents P-P'-Schif T, nylmethane diamine. .

オリゴエーテルが高分子化すると末端エポキシ基が低濃
度となるためアミン化合物では高いガラス転移温度を維
持できないがイソシアナート再生体であれば維持できる
When the oligoether becomes a polymer, the concentration of terminal epoxy groups becomes low, so an amine compound cannot maintain a high glass transition temperature, but an isocyanate regenerated product can maintain it.

(成形性) 液体急冷Fe−R−Rと分子量を異にするオリゴエーテ
ル/P −P’−ジフェニルメタンシイ゛ノシアナート
再生体3M量%との混合物を外径8鴫、内径5.511
I111高さ4師、密度5 、 :3〜5 、5 g/
 cnfのグリーン体とした。このグリーン体の圧環強
度をJ l5−Z−2507に準じて求め、更に混合物
の流動性をJ l5−Z−2502に準じて求y)た。
(Moldability) A mixture of liquid quenched Fe-R-R and 3M mass % of oligoether/P-P'-diphenylmethane cyanocyanate regenerated material having different molecular weights was prepared with an outer diameter of 8 mm and an inner diameter of 5.511 mm.
I111 height 4 mm, density 5: 3~5, 5 g/
cnf green body. The radial crushing strength of this green body was determined according to Jl5-Z-2507, and the fluidity of the mixture was determined according to Jl5-Z-2502.

求めた値をもとのオリゴエーテルの分子量に対してプロ
ットした特性図を第4図に示す。第4図において、Aは
流動性を示し、Bはグリーン体圧環強度を示す。
FIG. 4 shows a characteristic diagram in which the determined values are plotted against the molecular weight of the original oligoether. In FIG. 4, A indicates fluidity and B indicates green body radial crushing strength.

但し、流動性はカーボンファンクショナルシラン処理し
た液体急冷Fe−B−Rの流動性を基準として、その比
を求めたものである。
However, the fluidity is the ratio determined based on the fluidity of liquid quenched Fe-BR treated with carbon functional silane.

図から混合物の流動性やグリーン体の圧環強度などはオ
リゴエーテルの分子量に対して依存性が認められる。即
ち、混合物の成形作業性の確保にはオリゴエーテルの分
子量は900以−F、であることが望ましい。
The figure shows that the fluidity of the mixture and the radial crushing strength of the green body depend on the molecular weight of the oligoether. That is, in order to ensure the molding workability of the mixture, it is desirable that the molecular weight of the oligoether is 900-F or more.

(TR石の強度と減磁) 液体急冷Fp−R−Rと分子量を異にするオリゴエーテ
ル/P −P’−ジフェニルメタンジイソシアナート再
生体もしくはP−P’−シフTニルメタンジアミン3重
礒%との混合物を外径8鴫、内径5.5mm、高さ4 
mm s密度5 、3〜5 、5 g / cn?のグ
リーン体としたのち、170℃で2時間硬化し樹脂磁石
とした。第5図は130℃雰囲気における圧環強度をt
)とのオリゴエーテルの分子量に対してプロットした特
性図を示し、第6図は130℃雰囲気でF)00時間劣
化した波高値20KA外周10極着磁した磁束量(Ma
xwell )から減磁率を求めたものである。なお、
第5図、第6図において、AはP−P’−シフT、ニル
メタンジイソシアナートを示し、BはP−P’−ジフェ
ニルメタンシアミンを示す。一方、第3図で示したオリ
ゴエーテルの分子量と結合剤のガラス転移温度との特性
を参照すれば、磁石の高温下での機械的強度や減磁率が
結合剤のガラス転移温度によって重大な影響を受けるこ
とは明白である。
(Strength and demagnetization of TR stone) Oligoether with a different molecular weight from liquid quenched Fp-R-R/P-P'-diphenylmethane diisocyanate regenerated product or P-P'-SchifTnylmethanediamine triple salt %, the outer diameter is 8mm, the inner diameter is 5.5mm, and the height is 4mm.
mm s density 5, 3~5, 5 g/cn? After forming a green body, it was cured at 170° C. for 2 hours to obtain a resin magnet. Figure 5 shows the radial crushing strength t in an atmosphere of 130°C.
) is shown, and Figure 6 shows the magnetic flux amount (Ma
The demagnetization rate was calculated from In addition,
In FIGS. 5 and 6, A represents P-P'-Schiff T, nylmethane diisocyanate, and B represents P-P'-diphenylmethanecyamine. On the other hand, referring to the characteristics between the molecular weight of oligoether and the glass transition temperature of the binder shown in Figure 3, the mechanical strength and demagnetization rate of a magnet at high temperatures are significantly affected by the glass transition temperature of the binder. It is obvious that you will receive

オリゴエーテルをイソシアナート再生体で硬化する結合
剤方式はオリゴエーテルの分子量に依存せずに高いガラ
ス転移1品度を確保することが可能であり、更に高位の
ガラス転移点を得ようとするならばイミド基を導入する
ことで容易に対応可能である。このことから磁石を製造
する段階での作業11(混合物の流動11やグリーン体
の圧環強度)を確保しながら、該磁石の信頼性の維持・
確保に極めて有効であることは明白である。
The binder method of curing oligoether with isocyanate regenerant can ensure a high glass transition quality regardless of the molecular weight of the oligoether, and if you want to obtain an even higher glass transition point, This can be easily achieved by introducing a bimide group. From this, while ensuring work 11 (flow 11 of the mixture and radial crushing strength of the green body) at the stage of manufacturing the magnet, maintaining the reliability of the magnet.
It is clear that this is extremely effective in securing security.

尚、イソシアナート再生体によってオリゴエーテルを硬
化する際にイソシアナートに付カロした活往水素化合物
が熱解離し遊離する。しかし、磁石自体が一般に相対密
度75〜80%程度の多孔質体であるから結合剤中に残
存して、該磁石の信頼11の維持に重大な影響を及ぼす
ことはない。更にイソシアナートに付加した活性水素化
合物は室温付近での解離を無視することができるから液
体急冷Fp−B−Rやオリゴエーテルとの混合物状態で
の保存に特別な配慮をする必要もない。
Incidentally, when the oligoether is cured by the isocyanate regenerant, the active hydrogen compound attached to the isocyanate is thermally dissociated and liberated. However, since the magnet itself is generally a porous material with a relative density of about 75 to 80%, it remains in the binder and does not seriously affect the maintenance of reliability 11 of the magnet. Furthermore, since the active hydrogen compound added to the isocyanate can ignore dissociation at around room temperature, there is no need to take special care when storing it in a mixture state with liquid quenched Fp-BR or oligoether.

(磁石としての特質) 第1表に示した液体急冷Fe−B−Rとオリゴエーテル
/P−P’−シフ、ニルメタンジイソシアナート再生体
との混合物とから密度5.8〜6.0g/c−の磁石を
製造した。その磁気性能を第2表に示す。
(Characteristics as a magnet) The density is 5.8 to 6.0 g from the mixture of liquid quenched Fe-B-R shown in Table 1 and oligoether/P-P'-Schiff, nilmethane diisocyanate regenerated product. /c- magnet was manufactured. Its magnetic performance is shown in Table 2.

第2表 第2表の如く、液体急冷Fe−B−R系磁石素材に微≠
のZr、Yなどの元素が微量混在しても磁気11能は重
大な影響を受けない。
Table 2 As shown in Table 2, the liquid quenched Fe-B-R magnet material has a slight
Even if trace amounts of elements such as Zr and Y are present, the magnetic properties are not significantly affected.

次に、上記磁石の密度と磁気特性との関係を第7図に示
す。図のように液体急冷Fe−B−R系樹脂磁石の磁気
性能は当該磁石の密度にのみ依存する。そして等方11
tの希土石コバルト焼結絣石の最大エネルギー積5 M
 G Oe程度を容易に上回る高度な性能を確保するこ
ともてきる。
Next, FIG. 7 shows the relationship between the density and magnetic properties of the magnet. As shown in the figure, the magnetic performance of the liquid-quenched Fe-B-R resin magnet depends only on the density of the magnet. and isotropic 11
Maximum energy product of rare earth cobalt sintered stone with t 5 M
It is also possible to secure advanced performance that easily exceeds the level of G Oe.

尚、半径方向へ磁気異方化が可能である射出成形タイプ
の希土類コバルト樹脂磁石の半径方向の磁気特性と円筒
磁石外径との関係を第8図に示す。
Incidentally, FIG. 8 shows the relationship between the radial magnetic properties of an injection molded rare earth cobalt resin magnet that can be magnetically anisotropic in the radial direction and the outer diameter of the cylindrical magnet.

第8図において、Aは液体急冷Fe−B−R,(密度5
 、5 g / cnt )を示し、Bは希土類コバル
トを示す。
In Fig. 8, A is liquid quenched Fe-B-R, (density 5
, 5 g/cnt), and B indicates rare earth cobalt.

図のように小形状の磁石になるに従って励磁コイルで発
生させた磁束を有効に集束できなくなるため、半径方向
への磁気異方化が困難となる。このことは小形・軽量化
が求められるパルスモータ、サーボモータ、アクチュエ
ータなどの部材として希土類コバルト樹脂磁石が十分な
対応ができないことを物語るものである。しかし液体急
冷Fe−Fl−R系樹脂磁石とすれば、本質的に等方性
であり、月つまた高度な磁気性能が得られるため極めて
有用であることは明白である。そして、希土類コバルト
のような磁気異方性定数の大きな磁石素材の場合には磁
気異方化を促進するため低粘度な液体結合剤を用いざる
を得なかったが、液体急冷Fe−B−R系であればその
必要はなく、オリゴエーテルとイソシアナート再生体と
によって極めて効率的に高度な信頼性を維持・確保でき
る樹脂磁石とすることができる。
As shown in the figure, as the magnet becomes smaller in size, it becomes impossible to effectively focus the magnetic flux generated by the excitation coil, making it difficult to create magnetic anisotropy in the radial direction. This shows that rare earth cobalt resin magnets cannot be used satisfactorily as components for pulse motors, servo motors, actuators, etc., which require smaller size and lighter weight. However, it is clear that liquid-quenched Fe-Fl-R resin magnets are extremely useful because they are essentially isotropic and provide excellent magnetic performance. In the case of magnet materials with large magnetic anisotropy constants such as rare earth cobalt, it was necessary to use a low-viscosity liquid binder to promote magnetic anisotropy, but liquid quenched Fe-BR This is not necessary if the resin magnet is a resin magnet that can maintain and ensure a high degree of reliability extremely efficiently by using the oligoether and the isocyanate regenerant.

発明の効果 以りの説明から明らかなように本発明によれば、極めて
効率的に高度な信頼性を継続、確保できる磁石磁石を得
ることができる。
As is clear from the description of the effects of the invention, according to the present invention, it is possible to obtain a magnet that can continue and ensure high reliability extremely efficiently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は液体急冷F e−B −R系磁石素材の粒子構
造を示す顕微鏡写真、第2図は示差熱分析結果を示す特
性図、第3図はオリゴエーテルの分子量に対するガラス
転移温度を示す特性図、第4図はオリゴエーテルの分子
量に対するグリーン体圧マ強度と流動性を示す特性図、
第5図はオリゴエーテルの分子量と磁石の圧環伸度を示
す特性図、第6図はオリゴエーテルの分子量と減磁率を
示す特性図、′i!S7図は密度と磁気性能を示す特性
図、第8図は円筒磁石の外径と半径方向のBrを示す特
性図である。 代狸人の氏名 弁理士 中尾敏男 ほか]名第 1 図 −一一〜〜翫〜I嗅−−マーー−へ〜−^〜へ一一一一
一メトへ+□〜いへ一□、\−+へ+5(−※−−−−
−X−盾J)、丸い※鳩−−〜2、tり〜N、51〜い
〜い−に一第2図 温( 第3図 オリコ゛L−チルO分子量 第4図 オリコ゛ニーチルOイト子予 第5図 オリコバニープルのイト+1h 第6図 オリコバニープルつメトチ量 第 7 図 古 度 g/cyn3 第8図
Figure 1 is a micrograph showing the particle structure of the liquid quenched Fe-B-R magnet material, Figure 2 is a characteristic diagram showing the results of differential thermal analysis, and Figure 3 is the glass transition temperature versus molecular weight of oligoether. Characteristic diagram, Figure 4 is a characteristic diagram showing green body pressure strength and fluidity with respect to molecular weight of oligoether.
Fig. 5 is a characteristic diagram showing the molecular weight of the oligoether and the radial crushing elongation of the magnet, and Fig. 6 is a characteristic diagram showing the molecular weight and demagnetization rate of the oligoether. Figure S7 is a characteristic diagram showing the density and magnetic performance, and Figure 8 is a characteristic diagram showing the outer diameter of the cylindrical magnet and Br in the radial direction. Proxy Tanuki person's name Patent attorney Toshio Nakao et al.] Name No. 1 Fig. −+ to +5 (−*−−−−
- Fig. 5 Orico bunny pull weight +1h Fig. 6 Orico bunny pull amount Fig. 7 Age of age g/cyn3 Fig. 8

Claims (6)

【特許請求の範囲】[Claims] (1)液体急冷Fe−B−R系(但しRはNdまたは/
およびPr)磁石素材の結合剤成分として、少なくとも
分子内にアルコール性水酸基を有するオリゴマーとイソ
シアナート再生体とを用いてなる樹脂磁石。
(1) Liquid quenched Fe-B-R system (where R is Nd or /
and Pr) A resin magnet using at least an oligomer having an alcoholic hydroxyl group in the molecule and an isocyanate regenerant as a binder component of the magnet material.
(2)液体急冷Fe−B−R系磁石素材はカーボンファ
ンクショナルシラン処理された特許請求の範囲第1項記
載の樹脂磁石。
(2) The resin magnet according to claim 1, wherein the liquid quenched Fe-B-R magnet material is treated with carbon functional silane.
(3)オリゴマーが分子量900以上のオリゴエーテル
である特許請求の範囲第1項記載の樹脂磁石。
(3) The resin magnet according to claim 1, wherein the oligomer is an oligoether having a molecular weight of 900 or more.
(4)イソシアナート再生体が芳香族イソシアナート化
合物と活性水素とからなる特許請求の範囲第1項記載の
樹脂磁石。
(4) The resin magnet according to claim 1, wherein the isocyanate regenerant comprises an aromatic isocyanate compound and active hydrogen.
(5)イソシアナート再生体が芳香族イミド残基を有す
る特許請求の範囲第1項または第4項記載の樹脂磁石。
(5) The resin magnet according to claim 1 or 4, wherein the isocyanate regenerant has an aromatic imide residue.
(6)オリゴマーのアルコール性水酸基とイソシアナー
ト再生体のイソシアナート基が当量比である特許請求の
範囲第1項記載の樹脂磁石。
(6) The resin magnet according to claim 1, wherein the alcoholic hydroxyl groups of the oligomer and the isocyanate groups of the isocyanate regenerant are in an equivalent ratio.
JP61107907A 1986-02-24 1986-05-12 Resin magnet Expired - Lifetime JPH0642409B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP61107907A JPH0642409B2 (en) 1986-05-12 1986-05-12 Resin magnet
US06/937,424 US4689163A (en) 1986-02-24 1986-12-03 Resin-bonded magnet comprising a specific type of ferromagnetic powder dispersed in a specific type of resin binder
DE3642228A DE3642228C2 (en) 1986-02-24 1986-12-10 Resin bonded magnet comprising a specific type of ferromagnetic powder dispersed in a specific type of resin binder
FR878700277A FR2595001B1 (en) 1986-02-24 1987-01-13 RESIN BINDER MAGNET COMPRISING A PARTICULAR TYPE OF FERROMAGNETIC POWDER DISPERSED IN A PARTICULAR TYPE OF RESIN BINDER
KR1019870001418A KR900003477B1 (en) 1986-02-24 1987-02-20 Resin-bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61107907A JPH0642409B2 (en) 1986-05-12 1986-05-12 Resin magnet

Publications (2)

Publication Number Publication Date
JPS62263612A true JPS62263612A (en) 1987-11-16
JPH0642409B2 JPH0642409B2 (en) 1994-06-01

Family

ID=14471085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61107907A Expired - Lifetime JPH0642409B2 (en) 1986-02-24 1986-05-12 Resin magnet

Country Status (1)

Country Link
JP (1) JPH0642409B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08181011A (en) * 1995-10-02 1996-07-12 Seiko Epson Corp Rare earth magnet
US6387294B1 (en) 1999-10-15 2002-05-14 Matsushita Electric Industrial Co., Ltd. Rare earth resin magnet, magnet rotor, magnet motor using the same, and its manufacturing method
WO2006022101A1 (en) * 2004-08-24 2006-03-02 Matsushita Electric Industrial Co., Ltd. Anisotropic rare earth bonded magnet having self-organized network boundary phase and permanent magnet motor utilizing the same
JP2011233764A (en) * 2010-04-28 2011-11-17 Minebea Co Ltd Method for manufacturing laminated resin composite magnet film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08181011A (en) * 1995-10-02 1996-07-12 Seiko Epson Corp Rare earth magnet
US6387294B1 (en) 1999-10-15 2002-05-14 Matsushita Electric Industrial Co., Ltd. Rare earth resin magnet, magnet rotor, magnet motor using the same, and its manufacturing method
WO2006022101A1 (en) * 2004-08-24 2006-03-02 Matsushita Electric Industrial Co., Ltd. Anisotropic rare earth bonded magnet having self-organized network boundary phase and permanent magnet motor utilizing the same
US7828988B2 (en) 2004-08-24 2010-11-09 Panasonic Corporation Anisotropic rare earth bonded magnet having self-organized network boundary phase and permanent magnet motor utilizing the same
JP4710830B2 (en) * 2004-08-24 2011-06-29 パナソニック株式会社 Anisotropic rare earth bonded magnet with self-organized network boundary phase and permanent magnet type motor using the same
JP2011233764A (en) * 2010-04-28 2011-11-17 Minebea Co Ltd Method for manufacturing laminated resin composite magnet film

Also Published As

Publication number Publication date
JPH0642409B2 (en) 1994-06-01

Similar Documents

Publication Publication Date Title
US4689163A (en) Resin-bonded magnet comprising a specific type of ferromagnetic powder dispersed in a specific type of resin binder
EP0362812A2 (en) Bonded isotropic R-Fe-B-magnet and method for making it
EP0657899A1 (en) Iron-based permanent magnet alloy powders for resin bonded magnets and magnets made therefrom
EP0542529B1 (en) Method of making alloy powders of the RE-Fe/Co-B-M-type and bonded magnets containing this alloy powder
US6338761B1 (en) Iron-based permanent magnets and their fabrication as well as iron-based permanent magnet alloy powders for permanent bonded magnets and iron-based bonded magnets
EP0323125B1 (en) Rare earth permanent magnet
JPH0447024B2 (en)
EP1127358B1 (en) Sm (Co, Fe, Cu, Zr, C) COMPOSITIONS AND METHODS OF PRODUCING SAME
JP5692496B2 (en) LAMINATED RESIN COMPOSITE MAGNETIC MEMBRANE MANUFACTURING METHOD AND DIAMETER VERTICAL GAP
JPS63194312A (en) Manufacture of resin magnet
EP0029071B1 (en) Process for producing permanent magnet alloy
JPS62263612A (en) Resin magnet
JP2002057017A (en) Isotropic powdery magnet material, its manufacturing method, and bonded magnet
JP3275055B2 (en) Rare earth bonded magnet
JPS5945745B2 (en) Permanent magnet material and its manufacturing method
JP2951006B2 (en) Permanent magnet material, manufacturing method thereof, and bonded magnet
JP3357381B2 (en) Magnet material, method of manufacturing the same, and bonded magnet
JPH10130796A (en) Production of fine crystal permanent magnet alloy and isotropic permanent magnet powder
KR100517642B1 (en) COMPOSITION AND FABRICATION OF Pr-Fe-B TYPE MAGNET POWDER
JP3148514B2 (en) Method for producing R-Fe-M-N bonded magnet
JP2839264B2 (en) permanent magnet
JPS61245505A (en) Manufacture of rare-earth iron magnet
JP2002217010A (en) Anisotropic magnetic powder improved in magnetization factor and anisotropic bonded magnet
JPS6250437A (en) Permanent magnet material superior in corrosion resistance
JPH048923B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term