JPH116164A - Construction method for underground structure - Google Patents

Construction method for underground structure

Info

Publication number
JPH116164A
JPH116164A JP9160303A JP16030397A JPH116164A JP H116164 A JPH116164 A JP H116164A JP 9160303 A JP9160303 A JP 9160303A JP 16030397 A JP16030397 A JP 16030397A JP H116164 A JPH116164 A JP H116164A
Authority
JP
Japan
Prior art keywords
retaining wall
earth retaining
underground
slab
constructed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9160303A
Other languages
Japanese (ja)
Inventor
Hiroyasu Tsutsumi
博恭 堤
Hiroyuki Aikyo
博幸 相京
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP9160303A priority Critical patent/JPH116164A/en
Publication of JPH116164A publication Critical patent/JPH116164A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Abstract

PROBLEM TO BE SOLVED: To construct a deep underground structure without using such methods as pumping or freezing of underground water, and chemical grouting, prevent problems associated with pumping, reduce effects on the neighboring ground significantly, simplify an earth retaining wall and improve the quality of a building frame. SOLUTION: An earth retaining wall 10 is built in a position equivalent to an external wall of an underground structure, the ground inside the earth retaining wall 10 is excavated while pumping water there, beams 15a, 15b of the main body of a structure are built by a reverse winding method to a critical depth where they may not cause heaving. And then water is filled inside the earth retaining wall 10, the ground inside the earth retaining wall 10 is underwater-excavated to a final design depth without supporting, a slab for the main body of the structure for a position just above the underground water level inside the earth retaining wall 10 is placed, a space surrounded by the slab and the earth retaining wall 10 is made a sealed pace, underground water inside the earth retaining wall 10 is pushed down by supplying air to the sealed space, and the foundation and sole plates of the structure body are built in the sealed space in the air-compressed state.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、地下水位が高く、
透水性の高い砂礫地盤などの大量の地下水が湧水する地
盤に建築物地階や地下駐車場などの大深度構造物を構築
する場合に好適に用いられる地下構造物構築工法に関す
る。
TECHNICAL FIELD The present invention relates to a high groundwater level,
The present invention relates to an underground structure construction method that is suitably used when a large depth structure such as a building basement or an underground parking lot is constructed on a ground where a large amount of groundwater springs, such as a highly permeable gravel ground.

【0002】[0002]

【従来の技術】地下水位が高く透水性の高い地盤に大深
度地下構造物を構築するときの工法として従来、下記の
工法が一般的に用いられている。 (1)揚水工法 山留壁で締切った後、内部の地下水を深井戸などで揚水
して水位を低下させながら掘削、山留支保工を繰り返し
て、計画床付け地盤から順巻で躯体を構築する工法であ
る。 (2)薬液注入工法、地盤改良工法 山留め壁で締切った後、計画床付け盤以深の地盤が盤膨
れを生じない深さに不透水層になるよう、地表面から薬
液を注入したり、セメントミルクを混合・撹拌する工法
である。 (3)凍結工法 上記(2)で説明した工法と同じ目的で、計画床付け盤
以深の地盤を凍結させて不透水層を構築する工法であ
る。 (4)ケーソン工法 地上または半地下で構築した躯体内部を水中掘削(オー
プン・ケーソン)したり、地下水圧とバランスした圧力
まで送気しながらドライ掘削して順次沈降させる工法で
ある。
2. Description of the Related Art Conventionally, the following method has been generally used as a method of constructing a deep underground structure on a ground having a high groundwater level and high permeability. (1) Pumping method After closing off at the mountain retaining wall, the groundwater inside is pumped up with a deep well, etc., and excavation is performed while lowering the water level. This is a construction method. (2) Chemical solution injection method, ground improvement method After closing with a mountain retaining wall, a chemical solution is injected from the ground surface so that the ground deeper than the planned flooring floor becomes an impermeable layer to a depth that does not cause bulging. This is a method of mixing and stirring cement milk. (3) Freezing method With the same purpose as the method described in (2) above, this method is to freeze the ground deeper than the planned flooring board to build an impermeable layer. (4) Caisson method This is a method in which the inside of a building constructed on the ground or semi-underground is excavated underwater (open caisson), or dry excavation is performed while feeding air to a pressure balanced with the groundwater pressure, and the sediment is settled sequentially.

【0003】[0003]

【発明が解決しようとする課題】ところで、上述した従
来の工法にあっては、次の問題があった。 (1)の工法では、地下水位の高い透水性地盤の場合、
揚水による周辺地盤の変状、家屋被害、井戸枯れ、構築
する躯体の品質の低下、排水の下水料金や井戸設置によ
る工費増、あるいは工期が長いといった問題があった。 (2)の工法では、施工面積が広いときや、不透水にす
る地盤が深い場合に、工費、工期を大幅に増加させた
り、地下水を汚染させる等の問題があった。 (3)の工法では、工費・工期の増加の他、凍結時の地
盤隆起、あるいは躯体品質の低下といった問題があっ
た。 (4)の工法では、工費・工期の増加の他、躯体形状や
壁厚に制約が生じる上、周辺地盤の変状やそれに伴う家
屋被害、施工時の景観疎外、漏気音などの公害、仮壁撤
去に伴う産廃物の発生などの問題があった。
However, the above-mentioned conventional method has the following problems. In the method (1), in the case of permeable ground with high groundwater level,
There were problems such as deformation of the surrounding ground due to pumping, damage to houses, well withering, deterioration of the quality of the building to be built, increased drainage sewage charges, increased construction costs due to the installation of wells, and long construction periods. In the method (2), when the construction area is large or when the ground to be impervious is deep, there are problems such as a significant increase in construction cost and construction period, and contamination of groundwater. The method (3) involves problems such as an increase in the construction cost and the construction period, a rise in the ground during freezing, and a decrease in the quality of the skeleton. In the construction method (4), in addition to the increase in construction cost and construction period, there are restrictions on the frame shape and wall thickness, as well as deformation of the surrounding ground and damage to the houses, alienation of the landscape at the time of construction, and pollution such as sound leakage. There were problems such as the generation of industrial waste associated with the removal of the temporary wall.

【0004】本発明は、地下水位が高い透水性地盤にお
いて大深度地下構造物を構築する際、地下水の揚水や凍
結、薬液注入等の方法をとることなく構築でき、これに
より前記の諸問題を解決することができる地下構造物構
築工法を提供することを目的とする。
According to the present invention, when constructing a deep underground structure in a permeable ground having a high groundwater level, it can be constructed without taking a method of pumping and freezing groundwater, injecting a chemical solution, etc., thereby solving the above-mentioned problems. An object of the present invention is to provide an underground structure construction method that can be solved.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに、請求項1記載の発明では、地下構築物の外壁に当
たる箇所に山留め壁を構築し、該山留め壁の内側の地盤
を揚水しながら掘削して構造物本体の梁を逆巻き工法に
より構築し、該構造物本体の梁を所定の深さまで構築し
た時点で、山留め壁の内側に湛水して該山留め壁の内側
の地盤を無支保工で最終計画深さまで水中掘削し、山留
め壁の内側の地下水位の真上に当たる箇所の構造物本体
スラブを打設して該スラブと山留め壁で囲まれる空間を
密封空間とし、該密封空間に送気して山留め壁の内側に
ある地下水を下方へ押し下げ、この圧気状態のまま、密
封空間内で構造物本体の基礎、底盤を構築することを特
徴としている。底盤構築後は送気を停止して常圧下で残
りを構築することもできる。請求項2記載の発明では、
前記山留め壁を構築するときにその内側に本体利用でき
る構真柱を構築し、この構真柱で逆巻き工法により構築
される構造物本体の梁とスラブを支持することを特徴と
している。請求項3記載の発明では、前記密封空間に送
気する前に、前記構造物スラブを、浮き上がり防止用ア
ンカーで支持することを特徴としている。
In order to achieve the above object, according to the first aspect of the present invention, a mountain retaining wall is constructed at a location corresponding to the outer wall of an underground building, and the ground inside the mountain retaining wall is pumped while pumping. When the beam of the structure body is excavated to construct the beam of the structure body by the reverse winding method, and when the beam of the structure body is constructed to a predetermined depth, the inside of the retaining wall is flooded and the ground inside the retaining wall is unsupported. Underwater excavation to the final planned depth by the work, cast a structure body slab at a location just above the groundwater level inside the retaining wall, make the space surrounded by the slab and the retaining wall a sealed space, and It is characterized in that the air is supplied to push down the groundwater inside the retaining wall, and the foundation and bottom plate of the structure body are constructed in the sealed space in this compressed state. After the bottom is built, the air supply can be stopped and the rest can be built under normal pressure. In the invention according to claim 2,
When the mountain retaining wall is constructed, a straight pillar that can be used as a main body is constructed inside the retaining wall, and the straight pillar supports a beam and a slab of a structure body constructed by a reverse winding method. The invention according to claim 3 is characterized in that the structure slab is supported by a floating prevention anchor before air is supplied to the sealed space.

【0006】本発明では、浅深度までしか地下水位低下
のための排水を行わないため、揚水に伴う問題がほとん
ど発生しない。また、それ以深は水中掘削及び圧気作業
により山留め壁に作用する力を少なくできるため、周辺
地盤への影響の大幅な減少、山留め壁の簡素化を図るこ
とができる。さらに、圧気により山留め壁からの漏水を
完全に防止できるため、躯体品質は格段に向上する。ま
た、地表部は早期に完成することから、交通規制などの
規制が短時間で終わる。
In the present invention, since the drainage for lowering the groundwater level is performed only to a shallow depth, there is almost no problem associated with pumping. Further, since the force acting on the retaining wall due to underwater excavation and pneumatic work can be reduced at a deeper depth, the influence on the surrounding ground can be significantly reduced, and the retaining wall can be simplified. Furthermore, since the pressure can completely prevent water leakage from the retaining wall, the quality of the skeleton is significantly improved. In addition, since the ground surface is completed early, regulations such as traffic regulations are completed in a short time.

【0007】[0007]

【発明の実施の形態】以下、図面に基づいて本発明の実
施の形態を説明する。図1〜図3は、本発明工法によっ
て構築する地下構造物を示すものであり、ここでは地下
駐車場を構築する例を示す。図1(a)は地下1階、図
1(b)は地下2階のそれぞれ平面図であり、図2は図
1(a)のAーA線に沿った断面図、図3は他の面に沿
った断面図である。これらの図に示すように地下1階に
は複数の入庫エレベータ1…、複数の出庫エレベータ2
…、並びにエントランス部3が設けられ、エレベータホ
ールの下方に当たる地下2階は駐車場スペース4とされ
ている。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 3 show an underground structure constructed by the method of the present invention. Here, an example of constructing an underground parking lot is shown. 1 (a) is a plan view of the first basement floor, FIG. 1 (b) is a plan view of the second basement floor, FIG. 2 is a sectional view taken along line AA of FIG. 1 (a), and FIG. It is sectional drawing which followed the surface. As shown in these figures, on the first basement floor, a plurality of incoming elevators 1..., A plurality of outgoing elevators 2
, And an entrance section 3 are provided, and the second basement floor below the elevator hall is a parking space 4.

【0008】このような地下構造物の構築は以下の手順
による。 (1)山留め壁及び構真柱の構築工程 図4に示すように、地下構造物の外壁に当たる箇所にT
RD連壁や連続地中壁等によって山留め壁10を構築す
る。なお、図4はTRD掘削機10AによってTRD連
壁を構築している例を示している。山留め壁10は、後
述するようにその内側からの圧送される空気の圧力に十
分耐え得る強度並びに密封性を有するものとする。ま
た、山留め壁10によって囲まれる内側部分に簡易な深
井戸11を設置する。これは、後述するように盤膨れ等
掘削限界深さまでドライ掘削するためのものである。さ
らに、後述する逆打ち躯体を支えるために、構真柱12
を地上から構築する。なお、この構真柱12は後に本設
真柱としても利用する。図4中13はリバース機、14
aは第1滞水層、14bは第2滞水層、14cは第3滞
水層をそれぞれ示す。
The construction of such an underground structure is performed according to the following procedure. (1) Construction process of the retaining wall and the timber pillar As shown in FIG. 4, T is placed on the outer wall of the underground structure.
The retaining wall 10 is constructed by an RD continuous wall, a continuous underground wall, or the like. FIG. 4 shows an example in which a TRD connecting wall is constructed by the TRD excavator 10A. The mountain retaining wall 10 has sufficient strength and airtightness to withstand the pressure of the air fed from the inside as described later. In addition, a simple deep well 11 is installed in an inner portion surrounded by the retaining wall 10. This is for dry excavation to an excavation limit depth such as bulging of a board as described later. Further, in order to support a reverse-striking body, which will be described later,
From the ground. The straight pillar 12 is also used later as a permanent pillar. In FIG. 4, 13 is a reverse machine, 14
a indicates a first aquifer, 14b indicates a second aquifer, and 14c indicates a third aquifer.

【0009】(2)逆巻き工法による構造物本体スラブ
梁兼用のRC切梁の構築工程 地下構造物の躯体は予め梁構造で設計しておき、図5に
示すように、深井戸11から揚水して掘削しながら、山
留め壁10及び構真柱12と一体構造となるように、ア
ンカー筋を設置して構造物本体のスラブ梁15a、15
b及び地下1階の側壁16を構築する。盤膨れ等掘削限
界深さまで、この方法を繰り返し、構造物本体のスラブ
梁等を構築する。これらスラブ梁15a、15b及び側
壁16はRC構造とする。なお、図中17は作業用トラ
ッククレーンである。
(2) Construction process of RC section beam which also serves as slab beam of structure body by reverse winding method The skeleton of the underground structure is designed in advance with a beam structure, and as shown in FIG. While excavating, slab beams 15a, 15 of the main body of the structure are installed by installing anchor bars so as to be integrated with the retaining wall 10 and the trussed pillar 12.
b and the first basement side wall 16 are constructed. This method is repeated up to the excavation limit depth such as the bulging of the slab to construct a slab beam or the like of the structure body. These slab beams 15a, 15b and side walls 16 have an RC structure. In the figure, reference numeral 17 denotes a working truck crane.

【0010】(3)最終床付け及び水中掘削工程 図6に示すように、最上段スラブ梁15a上に仮設構台
20を敷設するとともに、山留め壁10の内側を湛水
し、仮設構台20上に設けたクラムシェル21等を利用
して水中掘削する。掘削土はプレドライマー等で脱水し
た後、搬出する。床付け完了後、浮上がり防止用のアー
スアンカー22を、ボーリング機23等を利用して仮設
構台20から穿孔して定着する。
(3) Final Flooring and Underwater Excavation Step As shown in FIG. 6, a temporary gantry 20 is laid on the uppermost slab beam 15a, and the inside of the retaining wall 10 is flooded. Underwater excavation is performed using the provided clamshell 21 and the like. The excavated soil is dehydrated by a pre-dryer or the like and then carried out. After the flooring is completed, the floating anchor 22 is pierced and fixed from the temporary gantry 20 using a boring machine 23 or the like.

【0011】(4)構造物本体スラブの構築及び送気装
置の設置工程 図7に示すように、鉄筋などの底盤材料24を地下2階
のスラブ梁15b上に仮置きした後、マテリアルロック
25a、マンロック25b等を設置して、地下水位の真
上に当たる箇所の構造物本体スラブ26を打設する(図
8参照)。すなわち、マテリアルロック25a、マンロ
ック25bを締め切ったときには、構造物本体スラブ2
6と山留め壁1で囲まれた空間27を気密状態に保持で
きるよう密封空間とする。また、コンクリートの硬化を
確認して浮き上がり防止用のアースアンカー22を構造
物本体スラブ26や構真柱12に定着する。
(4) Construction of Structural Body Slab and Installation Process of Air Supply Device As shown in FIG. 7, after temporarily placing a base material 24 such as a reinforcing bar on a slab beam 15b on the second basement floor, a material lock 25a is provided. , A man lock 25b, and the like, and the structure main body slab 26 at a position just above the groundwater level is cast (see FIG. 8). That is, when the material lock 25a and the man lock 25b are closed, the structure main body slab 2 is closed.
A space 27 surrounded by the inner wall 6 and the retaining wall 1 is made a sealed space so that the space 27 can be kept airtight. In addition, after confirming the hardening of the concrete, the earth anchor 22 for preventing lifting is fixed to the structure main body slab 26 and the straight pillar 12.

【0012】(5)圧気、底盤構築工程 図8に示すように、コンプレッサ28、レシーバタンク
29等を有する圧気装置30を地上に設置し、ここから
前記密封空間27に圧縮空気を送り、地下水を下方へ押
し下げて完全に排除した後、構造物本体スラブ26の下
側に天井クレーン31を設置する。なお、22aはアー
スアンカー22の構造物本体の躯体への定着部分を示
す。さらに、ドライ状態で最終床付け、山留め芯材や構
真柱12へジベル打設を行い、構造物本体の基礎工、底
盤コンクリート33を打設する。これらに必要な資材は
全て圧気前に密封空間27に投入しておく。このように
圧気内での作業のため、山留め壁10や本体接続部から
の漏水は完全に防止できる。
(5) Compressed Air and Bottom Board Construction Process As shown in FIG. 8, a compressed air device 30 having a compressor 28, a receiver tank 29, and the like is installed on the ground, from which compressed air is sent to the sealed space 27 to remove groundwater. After being pushed down and completely removed, the overhead crane 31 is installed below the structure main body slab 26. Reference numeral 22a denotes a fixing portion of the earth anchor 22 to the frame of the structure main body. Further, in the dry state, the final floor is attached, a dowel is cast on the retaining core material and the timber pillar 12, and the foundation work of the structure body and the bottom concrete 33 are poured. All the necessary materials for these are put in the sealed space 27 before the air is compressed. As described above, since the operation is performed in the compressed air, water leakage from the retaining wall 10 and the connection portion of the main body can be completely prevented.

【0013】(6)躯体の構築と内装工程 山留め壁10内の圧力を低下させながら漏水の有無を確
認し、必要箇所を止水しながら、常圧下で地下2階の側
壁36等を順巻きで構築する。山留め壁芯材、構真柱に
はジベルを打設し、構造物本体と一体化する。構造物本
体の構築後、階段部などのスラブ開口を撤去する。その
後、必要に応じてエレベータ等の付帯設備及び内装工事
を行う。また、構真柱、浮き上がり防止用のアースアン
カー22はそのまま、構造物本体の底盤に定着してそれ
らの浮き上がり用として本体利用する。以上の工程によ
って前記図1〜図3に示した地下駐車場を構築すること
ができる。
(6) Construction of the skeleton and the interior process While the pressure in the retaining wall 10 is being reduced, it is checked whether or not water has leaked. While stopping necessary water, the side walls 36 and the like on the second basement floor are sequentially wound under normal pressure. Build with. A dowel is cast into the core of the retaining wall and the timber pillar, and integrated with the structure body. After the construction of the structure body, the slab openings such as the stairs are removed. After that, if necessary, ancillary facilities such as elevators and interior work will be performed. In addition, the pillars and the earth anchors 22 for preventing lifting are fixed to the bottom of the structure main body as they are and used for lifting them. Through the above steps, the underground parking lot shown in FIGS. 1 to 3 can be constructed.

【0014】なお、前記実施の形態では、地下1階のス
ラブ26を打設し、その下方を密封空間としたが、地下
水位がもう少し下がっていれば、地下2階のスラブを密
封空間形成用のスラブとして利用しても良い。また、前
記実施の形態では、本発明工法により地下駐車場を構築
する場合を例にとって説明したが、勿論、本発明工法
は、他の地下構造物を構築する場合にも適用できる。
In the above-described embodiment, the slab 26 on the first basement floor is cast and the lower part of the slab is used as a sealed space. However, if the groundwater level is slightly lower, the slab on the second basement floor is used for forming a sealed space. May be used as a slab. In the above-described embodiment, the case where the underground parking lot is constructed by the method of the present invention has been described as an example. However, the method of the present invention can be applied to the case of constructing another underground structure.

【0015】[0015]

【発明の効果】以上説明したように本発明は以下の優れ
た効果を奏する。 地下水を低下させるための揚水量が大幅に低下する
とともに、周辺地盤の変状、井戸枯れ、地盤沈下等の不
具合が減少する。 水中掘削部以深の山留め壁の断面が小さい物で済む
上、逆巻きによる支保形成のため山留め壁の変形は大幅
に低下する。 スラブ梁を利用して仮設構台が架設できるため、工
費、工程が改善される上、支持杭に係わる箱抜きなどの
躯体品質の低下もない。 ケーソンのように刃口や土砂搬出などからの漏気は極
端に少なく、送気設備は小さくて済む。 薬液注入に係わる地下水汚染などの公害の心配がな
い。 排水にかかる下水や河川の容量負担がほとんどない
上、下水料金などに係わる工事費が低減できる。 スラブ構築後、地上がすぐ開放できるため、周囲に
対する影響が少ない。 また、予め構真柱を構築し、これで構造物本体の梁
を支持するようにすれば、構造物本体の梁を高強度で支
持でき、大規模地下構造物を構築する場合に好適であ
る。 さらに、浮き上がり防止用アンカーで構造物スラブ
を支持するようにすれば、密封空間に高圧状態で空気を
送ることができ、地下水を完全に排除できるとともに、
浮き上がり用の防止アンカーはそのまま本体に利用で
き、揚水や地盤改良のように完成後不必要な工種がほと
んどなく、工費、工程が改善する。
As described above, the present invention has the following excellent effects. The amount of pumped water for lowering groundwater will be greatly reduced, and problems such as deformation of the surrounding ground, well withering, and land subsidence will be reduced. The cross section of the retaining wall deeper than the underwater excavation portion can be small, and the deformation of the retaining wall is greatly reduced due to the formation of the support by reverse winding. Since the temporary gantry can be erected using the slab beam, the construction cost and the process are improved, and there is no deterioration in the frame quality such as box removal related to the support pile. As with caisson, air leakage from the cutting edge and earth and sand discharge is extremely small, and the air supply equipment can be small. There is no concern about pollution such as groundwater contamination related to chemical injection. There is almost no capacity burden on sewage and rivers for drainage, and construction costs related to sewage charges can be reduced. After the slab is constructed, the ground can be opened immediately, so there is little effect on the surroundings. In addition, if a straight pillar is constructed in advance and the beam of the structure body is supported by this, the beam of the structure body can be supported with high strength, which is suitable for constructing a large-scale underground structure. . Furthermore, if the structure slab is supported by the lifting prevention anchor, air can be sent to the sealed space under high pressure, and groundwater can be completely eliminated,
The lifting prevention anchor can be used for the main body as it is, and there are almost no unnecessary types of work after completion, such as pumping and ground improvement, and the cost and process are improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態による地下構築物の構築方
法により構築される地下駐車場を示し、(a)が地下1
階の平面図、(b)が地下2階の平面図である。
FIG. 1 shows an underground parking lot constructed by an underground construction method according to an embodiment of the present invention, wherein (a) shows an underground parking lot.
FIG. 2B is a plan view of the second floor of the basement.

【図2】 図1(a)のAーA線に沿う断面図である。FIG. 2 is a sectional view taken along line AA in FIG.

【図3】 同他の面に沿う断面図である。FIG. 3 is a cross-sectional view along the other surface.

【図4】 本発明の実施の形態による地下構造物の構築
方法の手順を示す断面図である。
FIG. 4 is a sectional view showing a procedure of a method of constructing an underground structure according to the embodiment of the present invention.

【図5】 本発明の実施の形態による地下構造物の構築
方法の手順を示す断面図である。
FIG. 5 is a sectional view showing a procedure of a method of constructing an underground structure according to the embodiment of the present invention.

【図6】 本発明の実施の形態による地下構造物の構築
方法の手順を示す断面図である。
FIG. 6 is a sectional view showing a procedure of a method of constructing an underground structure according to an embodiment of the present invention.

【図7】 本発明の実施の形態による地下構造物の構築
方法の手順を示す断面図である。
FIG. 7 is a cross-sectional view showing a procedure of a method for constructing an underground structure according to an embodiment of the present invention.

【図8】 本発明の実施の形態による地下構造物の構築
方法の手順を示す断面図である。
FIG. 8 is a cross-sectional view illustrating a procedure of a method of constructing an underground structure according to an embodiment of the present invention.

【図9】 本発明の実施の形態による地下構造物の構築
方法の手順を示す断面図である。
FIG. 9 is a sectional view showing a procedure of a method of constructing an underground structure according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 山留め壁 12 構真柱 15a、15b スラブ梁 22 アースアンカー 26 構造体本体スラブ 27 密封空間 30 圧気装置 33 底盤コンクリート DESCRIPTION OF SYMBOLS 10 Mountain retaining wall 12 Structural pillar 15a, 15b Slab beam 22 Earth anchor 26 Structure main body slab 27 Sealed space 30 Pneumatic device 33 Bottom concrete

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 地下構築物の外壁に当たる箇所に山留め
壁を構築し、 該山留め壁の内側の地盤を揚水しながら掘削して構造物
本体の梁を逆巻き工法により構築し、 該構造物本体の梁を所定の深さまで構築した時点で、山
留め壁の内側に湛水して該山留め壁の内側の地盤を無支
保工で最終計画深さまで水中掘削し、 山留め壁の内側の地下水位の真上に当たる箇所の構造物
本体スラブを打設して該スラブと山留め壁で囲まれる空
間を密封空間とし、 該密封空間に送気して山留め壁の内側にある地下水を下
方へ押し下げ、 この圧気状態のまま、密封空間内で構造物本体の基礎、
底盤を構築することを特徴とする地下構造物構築工法。
An earth retaining wall is constructed at a location corresponding to an outer wall of an underground construction, and a ground inside the mountain retaining wall is excavated while pumping water to construct a beam of a structure main body by a reverse winding method. At the time of constructing to a predetermined depth, the inside of the retaining wall is flooded and the ground inside the retaining wall is excavated underwater to the final planned depth without any support, and hits directly above the groundwater level inside the retaining wall. A space surrounded by the slab and the retaining wall is cast into a sealed space, and air is supplied to the sealed space to push down the groundwater inside the retaining wall downward. The foundation of the structure itself in a sealed space,
Underground structure construction method characterized by the construction of a bottom.
【請求項2】 前記山留め壁を構築するときにその内側
に構真柱を構築し、この構真柱で逆巻き工法により構築
される構造物本体の梁を支持することを特徴とする請求
項1記載の地下構造物構築工法。
2. The construction method according to claim 1, wherein when the retaining wall is constructed, a straight pillar is constructed inside the retaining wall, and the straight pillar supports a beam of a structure body constructed by a reverse winding method. Underground structure construction method described.
【請求項3】 前記密封空間に送気する前に、前記構造
物スラブを、浮き上がり防止用のアースアンカーで支持
することを特徴とする請求項1または2記載の地下構造
物構築工法。
3. The underground structure construction method according to claim 1, wherein the structure slab is supported by an earth anchor for preventing lifting before air is supplied to the sealed space.
JP9160303A 1997-06-17 1997-06-17 Construction method for underground structure Withdrawn JPH116164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9160303A JPH116164A (en) 1997-06-17 1997-06-17 Construction method for underground structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9160303A JPH116164A (en) 1997-06-17 1997-06-17 Construction method for underground structure

Publications (1)

Publication Number Publication Date
JPH116164A true JPH116164A (en) 1999-01-12

Family

ID=15712049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9160303A Withdrawn JPH116164A (en) 1997-06-17 1997-06-17 Construction method for underground structure

Country Status (1)

Country Link
JP (1) JPH116164A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1333139C (en) * 2006-04-17 2007-08-22 陈星� Column supported underground continuous wall
JP2009068213A (en) * 2007-09-12 2009-04-02 Daiho Constr Co Ltd Construction method for underground structure using caisson, and caisson with cut-off device
JP2012162888A (en) * 2011-02-04 2012-08-30 Taisei Corp Underground structure, and construction method for underground structure
JP2015200096A (en) * 2014-04-08 2015-11-12 大成建設株式会社 Installation method for stratified settlement gauge and stratified settlement measuring system
CN106759461A (en) * 2015-11-16 2017-05-31 彭高培 Resist grand supporting construction

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1333139C (en) * 2006-04-17 2007-08-22 陈星� Column supported underground continuous wall
JP2009068213A (en) * 2007-09-12 2009-04-02 Daiho Constr Co Ltd Construction method for underground structure using caisson, and caisson with cut-off device
JP4614996B2 (en) * 2007-09-12 2011-01-19 大豊建設株式会社 Caisson with underground structure and water stop device constructed using caisson
JP2012162888A (en) * 2011-02-04 2012-08-30 Taisei Corp Underground structure, and construction method for underground structure
JP2015200096A (en) * 2014-04-08 2015-11-12 大成建設株式会社 Installation method for stratified settlement gauge and stratified settlement measuring system
CN106759461A (en) * 2015-11-16 2017-05-31 彭高培 Resist grand supporting construction
CN106759461B (en) * 2015-11-16 2019-05-21 彭高培 Resist grand supporting construction

Similar Documents

Publication Publication Date Title
CN210127485U (en) Concrete suction type caisson foundation and thin-wall pier stud connecting structure
CN107700521A (en) One kind is built(Structure)Build thing foundation stabilization and underpin pier and its construction method
JPH116164A (en) Construction method for underground structure
CN216194845U (en) Pebble covering layer steel sheet pile cofferdam system
CN111827705A (en) Method for expanding well barrel-shaped underground garage in existing underground garage
JP2000087361A (en) Construction method of underground structure
KR102166574B1 (en) caisson installtion Method for foundation work of structure
JP3999628B2 (en) Construction method of caisson dyke
KR101077242B1 (en) Construction method of basement structure using retaining wall and steel column
JP4159148B2 (en) Construction method of shaft
JP3656366B2 (en) Underground structure construction method
JPS5936058B2 (en) How to construct a structure using underground continuous walls
CN205557573U (en) Underground structure
CN115262568B (en) Deepening support and excavation construction method based on zero-field deep foundation pit
CN111733830B (en) Super high-rise building foundation pit bearing and enclosing system
JPH0610339A (en) Landslide protection wall made of reinforced concrete and construction thereof
JPH07216915A (en) Construction method of underground type storage tank and bottom mounting float
JPH11166242A (en) Underground space constructing method and supporting structure in underground space construction
JPS6367328A (en) Construction of high-floor type tank foundation
CN113832998A (en) Pebble covering layer steel sheet pile cofferdam system and construction method thereof
JPH0748848A (en) Construction method for underground skeleton by inverted construction method
CN117090224A (en) Edge-pasting pit-in-pit unsupported enclosure system and construction method thereof
CN118531802A (en) Construction method for excavating soil of deep and large foundation pit by combining forward and reverse directions
JP2000178983A (en) Foundation construction method
JP2612669B2 (en) Underground tank construction method and underground tank constructed thereby

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040907