JP2009068213A - Construction method for underground structure using caisson, and caisson with cut-off device - Google Patents

Construction method for underground structure using caisson, and caisson with cut-off device Download PDF

Info

Publication number
JP2009068213A
JP2009068213A JP2007236127A JP2007236127A JP2009068213A JP 2009068213 A JP2009068213 A JP 2009068213A JP 2007236127 A JP2007236127 A JP 2007236127A JP 2007236127 A JP2007236127 A JP 2007236127A JP 2009068213 A JP2009068213 A JP 2009068213A
Authority
JP
Japan
Prior art keywords
caisson
bedrock
water
rock
underground structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007236127A
Other languages
Japanese (ja)
Other versions
JP4614996B2 (en
Inventor
Naoaki Kozuki
直昭 上月
Motoharu Sato
元治 佐藤
Haruo Hasegawa
春生 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiho Construction Co Ltd
Original Assignee
Daiho Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiho Construction Co Ltd filed Critical Daiho Construction Co Ltd
Priority to JP2007236127A priority Critical patent/JP4614996B2/en
Publication of JP2009068213A publication Critical patent/JP2009068213A/en
Application granted granted Critical
Publication of JP4614996B2 publication Critical patent/JP4614996B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cut-off method for construction of an underground structure, which enables a bedrock section to be more accurately constructed than by excavation without timbering and a New Austrian Tunnelling Method, by constructing natural ground having an upper section with a high coefficient of permeability by a pneumatic caisson method. <P>SOLUTION: The natural ground 21 with the high coefficient of permeability until a leading end of a cutting edge 2 of the caisson reaches bedrock 22 is excavated by the pneumatic caisson method, so that the caisson can be settled. When the leading end of the cutting edge 2 of the caisson reaches the bedrock 22, a grout material is infilled into a void between an outer surface of a caisson skeleton 1 and the natural ground 21. Subsequently, the bedrock section is excavated by the excavation without timbering and the New Austrian Tunnelling Method. In the case of the production of sump water from the bedrock 22 during the excavation of the bedrock section, after the sump water is temporarily stopped by applying working air pressure consistent with sump water pressure, cut-off grouting is performed, and the bedrock section is excavated to a predetermined depth, so that the prescribed underground structure can be constructed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ケーソンの沈設時における止水にかかる構築方法と、この止水方法を実施するための止水装置付ケーソンに関する。   The present invention relates to a construction method for water stoppage when a caisson is set, and a caisson with a water stop device for carrying out this water stoppage method.

近年、ケーソンを地上から地下の岩盤深く貫入させて地下空間を設ける例が増加している。   In recent years, there are an increasing number of cases in which caisson is deeply penetrated from the ground to provide underground space.

地上やトンネルでの岩盤部分の掘削は、一般に素掘りまたはナトム工法により施工可能であるが、地下の岩盤上部に透水性の高い地山がある場合、素掘りまたはナトム工法では施工が困難である。このような場合、ニューマチックケーソン工法により、ケーソンを岩盤深く貫入させる手法が採られる場合が多い。   The excavation of the rock part on the ground or in the tunnel is generally possible by the underground digging or natom method, but if there is a highly permeable ground in the upper part of the underground rock mass, the excavation is difficult by the digging or natom method . In such a case, a method of penetrating the caisson deeply into the rock is often adopted by the pneumatic caisson method.

ニューマチックケーソン工法によりケーソンを岩盤深く貫入させるべく施工した場合、上部の透水係数の高い地山を掘削することは容易であるが、岩盤部分の掘削は高気圧下での発破作業を要するため、作業員に苦渋作業を強いることになる。発破作業により掘削を行う先行例としては、特開平9−158197が存在する。また、高気圧下における作業時間の制約等から作業能率が悪く、工程数も多くなり、かつ工期が長くなるため、コストも高くなるという問題があった。   When the caisson is constructed to penetrate deeply into the rock mass by the pneumatic caisson method, it is easy to excavate the ground with high permeability coefficient, but excavation of the rock mass requires blasting work under high pressure. Will be forced to work hard. Japanese Patent Laid-Open No. 9-158197 is a prior example of excavation by blasting work. In addition, there is a problem that the work efficiency is poor due to the restriction of the working time under high atmospheric pressure, the number of processes is increased, and the construction period is lengthened, resulting in an increase in cost.

この問題を解決するため、上部の透水係数の高い地山をニューマチックケーソン工法で施工し、岩盤部分を大気圧のナトム工法で施工することにより、工程およびコストを削減できることが考えられる。   In order to solve this problem, it is conceivable that the process and cost can be reduced by constructing a natural ground with a high hydraulic conductivity in the upper part by the pneumatic caisson method and constructing the rock mass by the atmospheric pressure natom method.

しかし、ナトム工法による施工時に大気圧で施工すると、ケーソン躯体と地山との間の隙間から作業室内に地下水が流入し、施工が困難になるという問題がある。また、ケーソン躯体と地山の空隙から地下水が流入しなくとも、岩盤部分の掘削個所から湧水が発生し、施工が困難となることがある。
特開平9−158197
However, if it is constructed at atmospheric pressure during the construction by the Natom method, there is a problem that groundwater flows into the working chamber from the gap between the caisson housing and the natural ground, making construction difficult. Even if groundwater does not flow from the gap between the caisson body and the natural ground, spring water may be generated from the excavation site in the rock and the construction may be difficult.
JP-A-9-158197

本発明は、上記の事情に鑑みなされたもので、その目的とするところは,上部の透水係数の高い地山をニューマチックケーソン工法により施工し、岩盤部分を素掘りまたはナトム工法により的確に施工し得るケーソンを用いた地下構造物の構築方法を提供することにある。   The present invention has been made in view of the above circumstances. The purpose of the present invention is to construct a natural ground with a high permeability coefficient by a pneumatic caisson method, and to accurately construct a rock portion by digging or natom method. An object of the present invention is to provide a method for constructing an underground structure using caisson.

また、本発明の他の目的は、本発明の前記止水方法を的確に実施し得る止水装置付ケーソンを提供することにある。   Moreover, the other object of this invention is to provide the caisson with a water stop apparatus which can implement the said water stop method of this invention exactly.

前記目的を達成するため、請求項1では、ケーソンの刃口2の先端部が岩盤22に到達するまでの透水性の高い地山21を、ニューマチックケーソン工法により掘削してケーソンを沈下させて行き、ケーソンの刃口2の先端部が岩盤22に到達または貫入したとき、ケーソン躯体1の外面と地山21間の空隙gにグラウト材23を充填して水道を塞ぎ、岩盤部分を素掘りまたはナトム工法により掘削し、岩盤部分を所定深さまで掘削し、所定の地下構造物を構築するようにしている。   In order to achieve the above object, in claim 1, the caisson is sunk by excavating a highly water-permeable ground 21 until the tip of the caisson blade 2 reaches the rock 22 by a pneumatic caisson method. When the tip of the caisson blade 2 reaches or penetrates the bedrock 22, the gap g between the outer surface of the caisson housing 1 and the natural ground 21 is filled with a grout material 23 to block the water supply, and the bedrock portion is dug. Or, it is excavated by the Natom method, and the rock portion is excavated to a predetermined depth to construct a predetermined underground structure.

また、前記目的をより良く達成するため、請求項2では、請求項1記載の地下構造物の構築方法において、前記刃口2の内面と、この刃口2の内面から岩盤22の上面に向かって取り付けられた仕切り板17と、岩盤22により空間19を形成し、この空間19にグラウト材23aを充填し、前記空隙gのグラウト材23が作業室3内へ漏洩することを防止するようにしている。   Further, in order to better achieve the above object, in claim 2, in the underground structure construction method according to claim 1, the inner surface of the blade edge 2 and the inner surface of the blade edge 2 toward the upper surface of the bedrock 22. A space 19 is formed by the partition plate 17 and the bedrock 22 attached in this manner, and the space 19 is filled with a grout material 23a, so that the grout material 23 in the gap g is prevented from leaking into the work chamber 3. ing.

さらに、前記目的を達成するため、請求項3では、請求項1、2または3記載の地下構造物の構築方法において、ケーソンの作業室3内の気圧を低下させ、作業室3内に湧水が発生する場合には、刃口2の外面と岩盤22間の空隙gを止水した後、岩盤部分を素掘りまたはナトム工法により掘削し、岩盤部分の掘削中に、その岩盤22から湧水が発生した場合は、ケーソンの圧気設備により湧水圧に見合った作業気圧を掛けて一時的に湧水を止めた後、止水グラウト、または覆工を行い、作業気圧を低下させて岩盤部分を所定深さまで掘削し、所定の地下構造物を構築するようにしている。   Furthermore, in order to achieve the object, according to claim 3, in the method for constructing an underground structure according to claim 1, 2, or 3, the pressure in the work room 3 of the caisson is lowered, and spring water is placed in the work room 3. In the case of the occurrence of water, the gap g between the outer surface of the blade edge 2 and the rock mass 22 is stopped, and then the rock mass is excavated by a natural digging or natom method, and the rock mass 22 is springed during the excavation of the rock mass. If this occurs, the work pressure corresponding to the spring pressure is applied to the caisson's pressure equipment to temporarily stop the spring, and then a water stop grout or lining is carried out to lower the work pressure and remove the bedrock part. A predetermined underground structure is constructed by excavating to a predetermined depth.

さらにまた、前記目的をより確実に達成するため、請求項4では岩盤部分の掘削中に、その岩盤22中に湧水の著しい層があり、そこに到達した場合、ケーソンの圧気設備により湧水圧に見合った作業気圧をかけて湧水を止め、支保工28を設置し、覆工29を行い止水し、その後、作業気圧を低下させ、素掘りまたはナトム工法により掘削し、岩盤中に地下構造物を構築するようにしている。   Furthermore, in order to achieve the above-described object more reliably, in claim 4, there is a significant layer of spring water in the rock 22 during excavation of the rock portion, and when it reaches, the spring pressure is increased by the caisson pressure equipment. The work pressure is commensurate with the water pressure, the spring water is stopped, the support work 28 is installed, the lining 29 is applied, the water is stopped, the work pressure is lowered, and the work is excavated by the natural digging or the natom method, and underground in the bedrock I try to build a structure.

請求項5では、ケーソンは、その作業室3内に、刃口2の内面から岩盤22の上面に向かって延びる仕切り板17を取り付け、前記刃口2の内面と岩盤22の上面と仕切り板17とにより空間19を形成し、前記仕切り板17の作業室3側に第2の注入口18を設け、この第2の注入口18を、作業室3側からグラウト材23を供給可能にグラウト材圧送設備に接続している。   In the fifth aspect, the caisson attaches a partition plate 17 extending from the inner surface of the blade edge 2 toward the upper surface of the rock mass 22 in the work chamber 3, and the inner surface of the blade mouth 2, the upper surface of the rock mass 22, and the partition plate 17. To form a space 19, a second inlet 18 is provided on the partition plate 17 on the side of the working chamber 3, and the grout material 23 can be supplied to the second inlet 18 from the side of the working chamber 3. Connected to pumping equipment.

請求項1記載の本発明方法では、ケーソンの刃口2の先端部が岩盤22に到達または貫入するまでは地山21をニューマチックケーソン工法により掘削し、ケーソンを沈下させて行く。そして、ケーソンの刃口2の先端部が岩盤22に到達または貫入したときは、ケーソン躯体1の外面と地山21間の空隙にグラウト材23を充填し、水道を塞ぎ、刃口2の先端部から作業室3への漏水を防止する。これにより、刃口2の先端部が岩盤22に到達した後における作業室3内への漏水や湧水の浸水を確実に防止することができる。したがって、岩盤部分を素掘りまたはナトム工法により能率良く掘削でき、工程数を削減し、工期を短縮できるので、コストダウンを図り得る効果がある。   In the method according to the first aspect of the present invention, the natural ground 21 is excavated by the pneumatic caisson method until the tip of the caisson blade edge 2 reaches or penetrates the rock 22 to sink the caisson. When the tip of the caisson blade 2 reaches or penetrates the bedrock 22, the gap between the outer surface of the caisson housing 1 and the ground 21 is filled with the grout material 23, the water supply is closed, and the tip of the blade 2. Prevents water leakage from the room to the work room 3. Thereby, after the front-end | tip part of the blade edge | tip 2 reaches the rock mass 22, it can prevent reliably the water leak in the working chamber 3, and the inundation of spring water. Therefore, the bedrock portion can be excavated efficiently by the bare digging or the natom method, the number of processes can be reduced, and the construction period can be shortened, so that the cost can be reduced.

また、本発明方法によれば、刃口2の先端部が岩盤22に到達または貫入した後、前述のごとく作業室3内に漏水や湧水が浸入しないように止水しているので、漏水や湧水の発生を抑えるために作業室3内を高気圧に保つ必要がなく、したがって作業員を高気圧下での苦渋作業から解放し、安全に掘削作業を遂行し得る効果もある。   Further, according to the method of the present invention, since the tip end of the blade edge 2 reaches or penetrates the bedrock 22, the water is stopped so that water leakage or spring water does not enter the work chamber 3 as described above. It is not necessary to keep the inside of the work chamber 3 at a high atmospheric pressure in order to suppress the generation of water and spring water. Therefore, there is an effect that the operator can be released from the troublesome work under the high atmospheric pressure and the excavation work can be performed safely.

また、請求項2記載の本発明方法では、刃口2の内面と岩盤22の上面との間に、仕切り板17により空間19を形成し、この空間19にグラウト材23を充填し、地山21側から作業室3内へのグラウト材23の漏洩を防止するようにしているので、より一層能率良く施工し得る効果がある。   Further, in the method of the present invention described in claim 2, a space 19 is formed by the partition plate 17 between the inner surface of the blade edge 2 and the upper surface of the rock 22 and the space 19 is filled with the grout material 23, Since the grout material 23 is prevented from leaking into the work chamber 3 from the 21 side, there is an effect that construction can be performed more efficiently.

さらに、請求項3、4記載の本発明の方法では、岩盤中に、被圧砂層や破砕帯等の湧水の層があっても、ケーソンの圧気設備で湧水を止め、支保工28を設置して覆工29後、素掘りまたはナトム工法を行うことにより、岩盤中に地下構造物を構築することができる。   Furthermore, in the method of the present invention according to claims 3 and 4, even if there is a spring layer such as a pressurized sand layer or a crush zone in the bedrock, the spring water is stopped by the caisson pressure equipment, and the support work 28 is After installation and lining 29, an underground structure can be constructed in the rock mass by performing an underground digging or a natom method.

さらにまた、請求項5記載の本発明ケーソンでは、前記刃口2の内面から岩盤22の上面に向かって延びる仕切り板17を取り付け、前記刃口2の内面と岩盤22の上面と仕切り板17とにより空間19を形成し、前記仕切り板17の作業室3側に第2の注入口18を設け、この第2の注入口18を通じて空間19内にグラウト材23を充填し、地山21側から作業室3内へのグラウト材23の漏洩を防止するようにしているので、前記本発明方法をより一層的確に実施し得る効果がある。   Furthermore, in the caisson of the present invention according to claim 5, a partition plate 17 extending from the inner surface of the blade edge 2 toward the upper surface of the bedrock 22 is attached, and the inner surface of the blade mouth 2, the upper surface of the bedrock 22, the partition plate 17, The space 19 is formed by the above, and the second injection port 18 is provided on the work chamber 3 side of the partition plate 17, and the grout material 23 is filled into the space 19 through the second injection port 18. Since the grout material 23 is prevented from leaking into the work chamber 3, the method of the present invention can be implemented more accurately.

以下、本発明の実施例を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1〜図5は本発明の実施例1を示すもので、図1は止水装置付ケーソンの縦断側面図であって、刃口の先端部が岩盤上面に到達するまで沈下させた状態における縦断側面図、図2は岩盤部分を掘削し、ケーソンを沈下させている状態の縦断側面図、図3は岩盤部分を所定深さまで掘削し、地下構造物を構築した状態の縦断側面図、図4は図1のA−A線横断平面図、図5は図1のB部分の拡大図である。   FIGS. 1 to 5 show Example 1 of the present invention, and FIG. 1 is a longitudinal side view of a caisson with a water stop device, in a state in which the tip of the blade edge is submerged until it reaches the upper surface of the rock mass. Fig. 2 is a longitudinal side view of a state in which the rock mass is excavated and the caisson is submerged. Fig. 3 is a longitudinal side view of the state in which an underground structure is constructed by excavating the rock mass to a predetermined depth. 4 is a cross-sectional view taken along line AA in FIG. 1, and FIG. 5 is an enlarged view of a portion B in FIG.

これら図1〜図5に示す本発明の実施例において、ニューマチックケーソンはケーソン躯体1と、これの下部に形成された刃口2と、この刃口2の内面と作業室スラブ4とに囲まれた作業室3と、作業室スラブ4の上面と上スラブ6の下面とケーソン躯体1の下部内面とに囲まれた上部室5と、作業室3の天井面から作業室スラブ4を経て地上に向かって延びるマテリアルシャフト7と、上部に設置されたマテリアルロック8と、作業室3の天井面から作業室スラブ4を経て地上に向かって延びるマンシャフト9と、上部に設置されたマンロック10と、圧気設備と、掘削機等を装備している。圧気設備と掘削機は図示を省略している。   In the embodiment of the present invention shown in FIGS. 1 to 5, the pneumatic caisson is surrounded by a caisson housing 1, a blade edge 2 formed at the lower part thereof, an inner surface of the blade edge 2, and a work chamber slab 4. The working chamber 3, the upper chamber 5 surrounded by the upper surface of the working chamber slab 4, the lower surface of the upper slab 6, and the lower inner surface of the caisson housing 1, and the ceiling surface of the working chamber 3 through the working chamber slab 4 and the ground. A material shaft 7 extending toward the top, a material lock 8 installed at the top, a man shaft 9 extending from the ceiling surface of the work chamber 3 to the ground via the work chamber slab 4, and a manlock 10 installed at the top And equipped with pneumatic equipment and excavator. The pneumatic equipment and excavator are not shown.

前記ニューマチックケーソンには、止水装置が付設されている。   The pneumatic caisson is provided with a water stop device.

前記止水装置は、グラウト材用の第1の注入通路11と、この第1の注入通路11に設けられた第1の注入口12と、第2の注入通路13と、グラウト材圧送設備(図示省略)とを備えて構成されている。   The water stop device includes a first injection passage 11 for grout material, a first injection port 12 provided in the first injection passage 11, a second injection passage 13, and a grout material pumping facility ( (Not shown).

前記第1の注入通路11は、パイプを用いてケーソン躯体1の上面から内部を通って作業室スラブ4の方向に設けられている。また、この第1の注入通路11は互いに所要の間隔をおいて複数本設けられている。さらに、各第1の注入通路11の上端部はグラウト材圧送設備に接続されている。   The first injection passage 11 is provided in the direction of the working chamber slab 4 from the upper surface of the caisson housing 1 through the inside using a pipe. Further, a plurality of the first injection passages 11 are provided at a predetermined interval. Further, the upper end portion of each first injection passage 11 is connected to a grout material pumping facility.

前記第1の注入口12は、各第1の注入通路11に、ケーソン躯体1の外面と地山21間の空隙にグラウト材23を注入可能に設けられている。また、第1の注入口12はケーソン躯体1の高さ方向に所要の間隔をおいて複数個設けられている。   The first injection ports 12 are provided in the first injection passages 11 so that the grout material 23 can be injected into the gap between the outer surface of the caisson housing 1 and the natural ground 21. A plurality of first injection ports 12 are provided at a predetermined interval in the height direction of the caisson housing 1.

前記第2の注入通路13は、パイプにより作業室スラブ4の上面から刃口2の下部の外面に向かって斜めに挿設されていて、刃口2の下部の外面と岩盤22間の空隙にグラウト材23を注入可能に設けられている。この第2の注入通路13も、互いに所要の間隔をおいて複数本設けられている。また、各第2の注入通路13の上端部はグラウト材圧送設備に接続されている。   The second injection passage 13 is obliquely inserted from the upper surface of the working chamber slab 4 toward the outer surface of the lower portion of the blade edge 2 by a pipe, and is formed in the space between the outer surface of the lower portion of the blade edge 2 and the bedrock 22. The grout material 23 is provided so as to be injected. A plurality of second injection passages 13 are also provided at a predetermined interval. Moreover, the upper end part of each 2nd injection | pouring channel | path 13 is connected to the grout material pumping equipment.

各第2の注入通路13の出口側には、図5に拡大示したように、逆止弁14が設けられている。この逆止弁14は、ケーソン躯体1と地山21間の空隙に充填したグラウト材23や、同空隙に滞留している水が第2の注入通路13に逆流して来るのを防止している。   As shown in an enlarged view in FIG. 5, a check valve 14 is provided on the outlet side of each second injection passage 13. This check valve 14 prevents the grout material 23 filled in the gap between the caisson housing 1 and the natural ground 21 and the water staying in the gap from flowing back into the second injection passage 13. Yes.

次に、前述のごとく構成した実施例1の作用に関連して、本発明の構築方法の一例を説明する。   Next, an example of the construction method of the present invention will be described in relation to the operation of the first embodiment configured as described above.

まず、地上でケーソンを構築し、そのケーソンを沈設すべき位置に設置し、ケーソンにニューマチックケーソン工法に必要な装置や設備を取り付ける。   First, a caisson is constructed on the ground, the caisson is installed at a position where it should be submerged, and equipment and facilities necessary for the pneumatic caisson method are attached to the caisson.

そして、透水性の高い地山21をニューマチックケーソン工法により掘削する。すなわち、作業室3を圧気状態に保ち、掘削機により作業室3の底部地盤を掘削し、その掘削土砂を地上に引き上げて排土し、かかる掘削作業を繰り返して行い、図1に示すように、刃口2の先端部が岩盤22の上面22′に到達または貫入するまでケーソンを沈下させる。   And the natural water 21 with high water permeability is excavated by the pneumatic caisson method. That is, the work chamber 3 is kept in a pressurized state, the bottom ground of the work chamber 3 is excavated by an excavator, the excavated soil is lifted to the ground, and the excavation work is repeated, as shown in FIG. The caisson is lowered until the tip of the blade edge 2 reaches or penetrates the upper surface 22 ′ of the rock 22.

次に、地上に設置されたグラウト材圧送設備から各第1の注入通路11にグラウト材23を圧送し、そのグラウト材23を各第1の注入通路11を経て各第1の注入口12によりケーソン躯体1の外面と地山21間の空隙gに充填し、水道を塞ぐ。   Next, the grout material 23 is pumped to the first injection passages 11 from the grout material pumping equipment installed on the ground, and the grout material 23 is passed through the first injection passages 11 by the first injection ports 12. The gap g between the outer surface of the caisson housing 1 and the natural ground 21 is filled to close the water supply.

ついで、作業室3内の気圧を徐々に低下させ、刃口2の先端部から作業室3内への湧水発生の有無を検査する。   Next, the air pressure in the work chamber 3 is gradually reduced, and the presence or absence of the occurrence of spring water from the tip of the blade edge 2 into the work chamber 3 is inspected.

もし、刃口2の先端部から作業室3内に湧水が発生した場合は、上部室5に設置したグラウト材圧送設備より作業室3を経て、第2の注入通路13および逆止弁14(図5参照)を通って刃口2と岩盤22間の空隙gにグラウト材23を充填することにより止水効果を上げる。   If spring water is generated in the work chamber 3 from the tip of the blade 2, the second injection passage 13 and the check valve 14 pass through the work chamber 3 from the grout material pumping equipment installed in the upper chamber 5. The water stop effect is increased by filling the gap g between the blade edge 2 and the rock mass 22 with the grout material 23 through (see FIG. 5).

前記刃口2と岩盤22間の空隙gにグラウト材23を充填した後は、逆止弁14により第2の注入通路13の出口が自動的に閉じるので、ケーソン躯体1の外面と地山21間に充填されたグラウト材23や水等の、第2の注入通路13への逆流を防止することができる。   After the grout material 23 is filled in the gap g between the blade edge 2 and the rock mass 22, the check valve 14 automatically closes the outlet of the second injection passage 13, so that the outer surface of the caisson housing 1 and the ground 21 It is possible to prevent the backflow of the grout material 23 and water filled in between to the second injection passage 13.

以上の止水作業により刃口2の先端部から作業室3への漏水を止めた後、気圧を低下させて岩盤22に発破を掛け、岩盤部分を素掘りまたはナトム工法により所定の深さまで掘削し、その掘削土砂を地上に引き上げて排土する。なお、このときケーソンの圧気設備を残して置く。   After stopping the water leakage from the tip of the blade edge 2 to the working chamber 3 by the water stop operation described above, the pressure is lowered and the rock 22 is blasted, and the rock portion is excavated to a predetermined depth by bare digging or natom method. Then, the excavated sediment is lifted to the ground and discharged. At this time, leave the caisson pressure equipment.

岩盤部分の掘削中に岩盤22から湧水が発生した場合には、存置してあった圧気設備により湧水圧に見合った作業気圧を掛け、湧水を一時的に止め、岩盤22を掘削した空間の地山の湧水の止水グラウトを行い、湧水を止める。   When spring water is generated from the rock mass 22 during excavation of the rock mass, the working pressure corresponding to the spring pressure is applied by the existing pressure equipment, the spring water is temporarily stopped, and the rock mass 22 is excavated Stop the spring water by grouting the spring water of the natural ground.

その後、岩盤22を掘削した空間の気圧を低下させて大気圧に戻し、再び素掘りまたはナトム工法により施工し、所定深さまで掘削する。ナトム工法は一般的に山岳トンネルの構築に使用されているが、ここではそれを縦方向に利用し、岩盤部の施工を行うこととする。   Thereafter, the pressure in the space where the rock 22 is excavated is reduced to the atmospheric pressure, and then the excavation is performed again by the bare digging or the natom method and excavating to a predetermined depth. The Natom method is generally used for the construction of mountain tunnels, but here it will be used in the vertical direction to construct the rock mass.

前記ナトム工法による施工時には、必要に応じて支保工やロックボルトを設置する。   At the time of construction by the above-mentioned Natom method, support works and lock bolts are installed as necessary.

以上の掘削作業を繰り返して行い、岩盤部分を所定深さまで掘削し、図3に示すごとく、掘削した空間24にライニング25を施し、所望の地下構造物26を構築する。   The above excavation work is repeated to excavate the rock portion to a predetermined depth, and as shown in FIG. 3, a lining 25 is applied to the excavated space 24 to construct a desired underground structure 26.

以上説明したこの実施例1によれば、刃口2の先端部が岩盤22に到達するまでは、透水性の高い地山21をニューマチックケーソン工法により掘削し、刃口2の先端部が岩盤22に到達したときは、ケーソン躯体1の外面と地山21間の空隙から刃口2の先端部を経て作業室3に侵入する漏水、作業室3内の気圧を徐々に低下させて行ったときの刃口2の先端部から作業室3内に発生する湧水、岩盤部分の掘削時中に発生する湧水をそれぞれ止水したうえで、岩盤22を素掘りまたはナトム工法により掘削するようにしているので、岩盤部分を素掘りまたはナトム工法により的確に、かつ能率良く掘削できるし、岩盤掘削の工程数を削減でき、工期を短縮できるので、コストダウンを図ることができる。   According to the first embodiment described above, until the tip portion of the blade edge 2 reaches the rock mass 22, the ground 21 having high water permeability is excavated by the pneumatic caisson method, and the tip portion of the blade edge 2 is rock bed. When reaching 22, water leakage entering the working chamber 3 from the gap between the outer surface of the caisson housing 1 and the natural ground 21 through the tip of the blade 2 and the atmospheric pressure in the working chamber 3 were gradually reduced. The spring 22 generated in the working chamber 3 from the tip of the cutting edge 2 and the spring generated during the excavation of the rock part are stopped, and then the rock 22 is excavated by the bare or natom method. Therefore, the rock portion can be excavated accurately and efficiently by bare digging or natom method, the number of steps of rock excavation can be reduced, and the construction period can be shortened, so that the cost can be reduced.

また、この実施例1によれば、岩盤22の掘削時に、前述の止水装置により効果的に止水できるので、作業室3内への漏水や湧水を抑えるために作業室3内を高気圧に保つ必要がなく、したがって作業員を高気圧下での苦渋作業から解放することができる。   Further, according to the first embodiment, when the rock 22 is excavated, water can be effectively stopped by the water stop device described above, so that the work chamber 3 is kept at a high atmospheric pressure in order to suppress water leakage and spring water. Therefore, it is possible to relieve the worker from troublesome work under high pressure.

なお、この実施例1において、各第1の注入口12の出口部にも逆止弁14を設けても良い。   In the first embodiment, a check valve 14 may be provided at the outlet of each first inlet 12.

また、第1の注入通路11や第2の注入通路13にグラウト材23を圧送するグラウト材圧送設備を地上に設置し、全て地上から配管しても良い。   Moreover, the grout material pumping equipment which pumps the grout material 23 to the 1st injection path 11 or the 2nd injection path 13 may be installed on the ground, and all may be piped from the ground.

次に、図6および図7は本発明の実施例2を示すもので、図6は止水装置付ケーソンの縦断側面図、図7は図6のC部分の拡大図である。   Next, FIG. 6 and FIG. 7 show Example 2 of this invention, FIG. 6 is a vertical side view of a caisson with a water stop device, and FIG. 7 is an enlarged view of a portion C in FIG.

これらの図に示す実施例2では、ケーソンの刃口2の内面に仕切り板取り付け具15(詳しくは図7参照)が固定されている。   In Example 2 shown in these drawings, a partition plate attachment 15 (see FIG. 7 for details) is fixed to the inner surface of the blade 2 of the caisson.

この仕切り板取り付け具15には、ボルト等の固着具16を介して仕切り板17が取り付けられている。   A partition plate 17 is attached to the partition plate attaching tool 15 via a fixing tool 16 such as a bolt.

この仕切り板17は、金属板やプラスチック板等により、刃口2の内面から岩盤22の上面22′に向かって延びる断面がほぼく字型に形成されている。そして、この仕切り板17は先端部が岩盤22の上面22′に接地し得るように取り付けられている。   The partition plate 17 is formed of a metal plate, a plastic plate, or the like so that the cross section extending from the inner surface of the blade edge 2 toward the upper surface 22 ′ of the bedrock 22 has a substantially square shape. And this partition plate 17 is attached so that the front-end | tip part can be earth | grounded to the upper surface 22 'of the rock mass 22. As shown in FIG.

前記刃口2の先端部が岩盤22の上面22′に到達した状態において、刃口2の内面と岩盤22の上面22′と仕切り板17とにより、空間19が形成されている。   A space 19 is formed by the inner surface of the blade edge 2, the upper surface 22 ′ of the rock mass 22, and the partition plate 17 in a state where the tip of the blade edge 2 reaches the upper surface 22 ′ of the rock mass 22.

前記仕切り板17における作業室3側には、互いに所要の間隔をおいて第2の注入口18が複数個設けられている。各第2の注入口18は、上部室5または地上に設置されたグラウト材圧送設備(図示省略)に接続されていて、作業室3側から前記空間19にグラウト材23aを充填し得るようになっている。このグラウト材23aとしては、隙間gに充填する上記グラウト材23と同じものであっても良く、異なるものでも良い。   A plurality of second inlets 18 are provided on the partition plate 17 on the side of the working chamber 3 at a predetermined interval. Each second inlet 18 is connected to the upper chamber 5 or a grout material pumping facility (not shown) installed on the ground so that the space 19 can be filled with the grout material 23a from the working chamber 3 side. It has become. The grout material 23a may be the same as or different from the grout material 23 filled in the gap g.

前述のごとく構成した実施例2では、ケーソンをその刃口2の先端部が岩盤22の上面22′に到達するまで沈下させ、作業室3の気圧を徐々に下げ、ほぼ大気圧まで低下させたとき、ケーソン躯体1の外面と地山21間の隙間gに充填したグラウト材23が刃口2の先端部から作業室3内に漏れる場合、前記刃口2の内面と岩盤22の上面22′と仕切り板17とにより形成された空間19に、第2の注入口18を通じてグラウト材23aを充填し、防止するようにしている。なお、手順としては、第2の注入口18を通じてグラウト材23aを先に充填しても良い。   In the second embodiment configured as described above, the caisson was sunk until the tip of the blade edge 2 reached the upper surface 22 ′ of the rock 22, and the pressure in the working chamber 3 was gradually reduced to almost atmospheric pressure. When the grout material 23 filled in the gap g between the outer surface of the caisson housing 1 and the natural ground 21 leaks into the work chamber 3 from the tip of the blade edge 2, the inner surface of the blade edge 2 and the upper surface 22 'of the rock 22 The space 19 formed by the partition plate 17 is filled with the grout material 23a through the second inlet 18 to prevent it. As a procedure, the grout material 23 a may be filled first through the second inlet 18.

前記空間19にグラウト材23を充填することにより、前記ケーソン躯体1の外面と地山21間に充填したグラウト材23が刃口2の先端部から作業室3内に漏れる不具合を解消し、止水効果をより一層高めることができる。   By filling the space 19 with the grout material 23, the trouble that the grout material 23 filled between the outer surface of the caisson housing 1 and the natural ground 21 leaks into the work chamber 3 from the tip end of the blade edge 2 is eliminated. The water effect can be further enhanced.

この実施例2における他の構成,作用については、前記実施例1と同様である。   Other configurations and operations in the second embodiment are the same as those in the first embodiment.

図8は本発明の実施例3にかかる止水装置付ケーソンの縦断側面図を示す。   FIG. 8: shows the vertical side view of the caisson with a water stop apparatus concerning Example 3 of this invention.

この実施例は、岩盤中22に湧水が著しい湧水層27が存在する場合の構築方法にかかる。すなわち、実施例1の図3に示す構築状態の過程において、岩盤部分を所定深さまで掘削し、ライニング25を施す工程で、岩盤22に被圧砂層や破砕帯等の湧水の著しい層27があり、そこに到達した場合、存置してあった圧気設備で、湧水圧に見合った作業気圧を掛けて湧水を一時的に止め、支保工28を設置し、図示しない型枠を設置し、覆工コンクリートを打設し、覆工29を行い、必要に応じて覆工29の部分にロックボルト30等を設置する。その後、岩盤22を掘削した空間を大気圧に戻し、素掘りまたはナトム工法で施工し所定の深さまで掘削し、地下構造物26を構築するようにしている。図中符号24は、このようにして所定深さまで掘削した空間である。   This embodiment is related to a construction method in the case where there is a spring layer 27 in which the spring water is remarkably present in the bedrock 22. That is, in the process of the construction state shown in FIG. 3 of Example 1, in the process of excavating the rock portion to a predetermined depth and applying the lining 25, a remarkable layer 27 of spring water such as a pressurized sand layer or a crush zone is formed on the rock 22. Yes, when you reach it, with the existing pneumatic equipment, apply the working pressure corresponding to the spring pressure, temporarily stop the spring, install the support 28, install the formwork not shown, The lining concrete is placed, the lining 29 is performed, and a lock bolt 30 or the like is installed in the lining 29 as necessary. Thereafter, the space excavated from the rock mass 22 is returned to the atmospheric pressure, and the underground structure 26 is constructed by excavating to a predetermined depth by performing an unearthed or natom construction method. Reference numeral 24 in the figure is a space excavated to a predetermined depth in this way.

この構築方法は、実施例2にも適用し得ることは勿論である。   Of course, this construction method can also be applied to the second embodiment.

本発明の実施例1を示すもので、ケーソンをその刃口の先端部が岩盤上面に到達するまで沈下させた状態における縦断側面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is Example 1 of this invention, Comprising: It is a vertical side view in the state where the caisson was sunk until the front-end | tip part of the blade edge reached | attained the rock surface. 同実施例1において、岩盤部分を掘削し、ケーソンを沈下させている状態の縦断側面図である。In the Example 1, it is a vertical side view of the state which excavated the rock part and subsidized the caisson. 同実施例1において、岩盤部分を所定深さまで掘削し、地下構造物を構築した状態の縦断側面図である。In the Example 1, it is a vertical side view of the state which excavated the rock part to the predetermined depth and constructed the underground structure. 図1のA−A線横断平面図である。It is an AA line crossing top view of FIG. 図1のB部分の拡大図である。It is an enlarged view of B part of FIG. 本発明の実施例2を示すもので、岩盤部分を所定深さまで掘削し、地下構造物を構築した状態の縦断側面図である。Example 2 of the present invention is shown, and is a longitudinal side view of a state where an underground structure is constructed by excavating a rock portion to a predetermined depth. 図6のC部分の拡大図である。FIG. 7 is an enlarged view of a portion C in FIG. 6. 本発明の実施例3を示すもので、湧水の著しい湧水層がある岩盤に地下構造物を構築する場合の説明図である。It is Example 3 which shows Example 3 of this invention, and is an explanatory view in the case of constructing an underground structure on the rock mass with a remarkable spring layer.

符号の説明Explanation of symbols

1 ケーソン躯体
2 刃口
3 作業室
4 作業室スラブ
5 上部室
6 上スラブ
7 マテリアルシャフト
8 マテリアルロック
9 マンシャフト
10 マンロック
11 第1の注入通路
12 第1の注入口
13 第2の注入通路
14 逆止弁
15 仕切り板取り付け具
16 仕切り板の固着具
17 仕切り板
18 第2の注入口
19 刃口内面と岩盤上面と仕切り板とにより形成された空間
21 地山
22 岩盤
22′ 岩盤の上面
23、23a グラウト材
24 所定深さまで掘削した空間
25 ライニング
26 地下構造物
27 湧水層
28 支保工
29 覆工
30 ロックボルト
DESCRIPTION OF SYMBOLS 1 Caisson housing 2 Cutting edge 3 Work chamber 4 Work chamber slab 5 Upper chamber 6 Upper slab 7 Material shaft 8 Material lock 9 Man shaft 10 Man lock 11 1st injection path 12 1st injection path 13 2nd injection path 14 Check valve 15 Partition plate fixture 16 Partition plate fixture 17 Partition plate 18 Second injection port 19 Space formed by the inner surface of the blade edge, the upper surface of the rock mass, and the partition plate 21 Natural ground 22 Rock mass 22 'Upper surface of the rock mass 23 , 23a Grout material 24 Space excavated to a predetermined depth 25 Lining 26 Underground structure 27 Spring layer 28 Supporting work 29 Covering 30 Rock bolt

Claims (5)

ケーソンの刃口(2)の先端部が岩盤(22)に到達するまでの透水性の高い地山(21)を、ニューマチックケーソン工法により掘削してケーソンを沈下させて行き、
ケーソンの刃口(2)の先端部が岩盤(22)に到達または貫入したとき、ケーソン躯体(1)の外面と地山(21)間の空隙(g)にグラウト材(23)を充填して水道を塞ぎ、岩盤部分を素掘りまたはナトム工法により掘削し、
岩盤部分を所定深さまで掘削し、所定の地下構造物を構築する、
ことを特徴とするケーソンを用いた地下構造物の構築方法。
The caisson blade (2) until the tip of the caisson blade (2) reaches the bedrock (22) is excavated by the pneumatic caisson method to sink the caisson.
When the tip of the caisson blade (2) reaches or penetrates the bedrock (22), the gap (g) between the outer surface of the caisson housing (1) and the ground (21) is filled with grout material (23). Block the water channel, excavate the rock part by unearthing or natom method,
Excavate the rock part to a predetermined depth and construct a predetermined underground structure,
The construction method of the underground structure using the caisson characterized by this.
前記刃口(2)の内面と、この刃口(2)の内面から岩盤(22)の上面に向かって取り付けられた仕切り板(17)と、岩盤(22)により空間(19)を形成し、この空間(19)にグラウト材(23a)を充填し、前記空隙(g)のグラウト材(23)が作業室(3)内へ漏洩することを防止する、
ことを特徴とする請求項1記載のケーソンを用いた地下構造物の構築方法。
A space (19) is formed by the inner surface of the blade edge (2), the partition plate (17) attached from the inner surface of the blade edge (2) toward the upper surface of the rock mass (22), and the rock mass (22). The space (19) is filled with a grout material (23a) to prevent the grout material (23) in the gap (g) from leaking into the working chamber (3).
The construction method of an underground structure using the caisson according to claim 1.
ケーソンの作業室(3)内の気圧を低下させ、作業室(3)内に湧水が発生する場合には、刃口(2)の外面と岩盤(22)間の空隙(g)を止水した後、岩盤部分を素掘りまたはナトム工法により掘削し、岩盤部分の掘削中に、その岩盤(22)から湧水が発生した場合は、ケーソンの圧気設備により湧水圧に見合った作業気圧を掛けて一時的に湧水を止めた後、止水グラウト、または覆工を行い、
作業気圧を低下させて岩盤部分を所定深さまで掘削し、所定の地下構造物を構築する、ことを特徴とする請求項1または2記載のケーソンを用いた地下構造物の構築方法。
When the pressure in the work room (3) of caisson is lowered and spring water is generated in the work room (3), the gap (g) between the outer surface of the blade (2) and the bedrock (22) is stopped. After the water is drained, the rock mass is excavated by bare digging or natom method, and when spring water is generated from the rock mass (22) during excavation of the rock mass, the work pressure corresponding to the spring pressure is adjusted by the caisson pressure equipment. Hang it to temporarily stop the spring water, then perform a water stop grout or lining,
The method for constructing an underground structure using caisson according to claim 1 or 2, wherein the working pressure is lowered to excavate a rock portion to a predetermined depth to construct a predetermined underground structure.
岩盤部分の掘削中に、その岩盤(22)中に湧水の著しい層があり、そこに到達した場合、ケーソンの圧気設備により湧水圧に見合った作業気圧をかけて湧水を止め、支保工(28)を設置し、覆工(29)を行い止水し、
その後、作業気圧を低下させ、素掘りまたはナトム工法により掘削し、岩盤中に地下構造物を構築する、
ことを特徴とする地下構造物の請求項1、2または3記載の構築方法。
During excavation of the rock mass, there is a remarkable layer of spring water in the rock mass (22), and when it reaches it, the caisson pressure equipment stops the spring by applying a working pressure corresponding to the spring pressure, and supports (28) is installed, lining (29) is performed and water is stopped,
After that, reduce the working air pressure, excavate by bare digging or natom construction method, build underground structure in the rock,
The construction method according to claim 1, 2 or 3 for an underground structure.
ケーソンの作業室(3)内に、刃口(2)の内面から岩盤(22)の上面に向かって延びる仕切り板(17)を取り付け、前記刃口(2)の内面と岩盤(22)の上面と仕切り板(17)とにより空間(19)を形成し、
前記仕切り板(17)の作業室(3)側に第2の注入口(18)を設け、この第2の注入口(18)を、作業室(3)側からグラウト材(23)を供給可能にグラウト材圧送設備に接続した、
ことを特徴とする止水装置付ケーソン。


A partition plate (17) extending from the inner surface of the blade edge (2) toward the upper surface of the bedrock (22) is attached in the caisson work chamber (3), and the inner surface of the blade edge (2) and the bedrock (22) A space (19) is formed by the upper surface and the partition plate (17),
The partition plate (17) is provided with a second inlet (18) on the side of the working chamber (3), and the grout material (23) is supplied to the second inlet (18) from the side of the working chamber (3). Connected to grout material pumping equipment,
A caisson with a water stop device characterized by that.


JP2007236127A 2007-09-12 2007-09-12 Caisson with underground structure and water stop device constructed using caisson Active JP4614996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007236127A JP4614996B2 (en) 2007-09-12 2007-09-12 Caisson with underground structure and water stop device constructed using caisson

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007236127A JP4614996B2 (en) 2007-09-12 2007-09-12 Caisson with underground structure and water stop device constructed using caisson

Publications (2)

Publication Number Publication Date
JP2009068213A true JP2009068213A (en) 2009-04-02
JP4614996B2 JP4614996B2 (en) 2011-01-19

Family

ID=40604762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007236127A Active JP4614996B2 (en) 2007-09-12 2007-09-12 Caisson with underground structure and water stop device constructed using caisson

Country Status (1)

Country Link
JP (1) JP4614996B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2511520A (en) * 2013-03-05 2014-09-10 Allan Cassells Sharp Methods for construction and completion of underwater tunnels
CN104060623A (en) * 2013-03-20 2014-09-24 中国二十冶集团有限公司 Open caisson structure provided with resistance reduction mechanism and dry excavation method of open caisson
JP2015040448A (en) * 2013-08-23 2015-03-02 株式会社大本組 Decompression construction method of pneumatic caisson
JP2016084605A (en) * 2014-10-24 2016-05-19 株式会社安藤・間 Construction method for underground structure, and pneumatic caisson used therewith
JP2018035506A (en) * 2016-08-29 2018-03-08 鹿島建設株式会社 Construction method for underground structure
CN113605430A (en) * 2021-08-24 2021-11-05 中国建筑第二工程局有限公司 Caisson construction structure utilizing communicating vessels and construction method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01322045A (en) * 1988-06-24 1989-12-27 Shimizu Corp Construction of basement
JPH0424399A (en) * 1990-05-18 1992-01-28 Kumagai Gumi Co Ltd Construction of underground space
JPH05156645A (en) * 1991-02-20 1993-06-22 Taisei Corp Structure for fixing cutting edge portion of caisson and for stopping water
JPH06108468A (en) * 1992-09-24 1994-04-19 Minoru Yagi Placing of underwater concrete by use of concrete block
JPH09158197A (en) * 1995-12-12 1997-06-17 Kajima Corp Rock mass excavation method in pneumatic caisson method
JPH10131202A (en) * 1996-11-01 1998-05-19 Daiho Constr Co Ltd Method for sinking pneumatic caisson
JPH10131201A (en) * 1996-11-01 1998-05-19 Daiho Constr Co Ltd Method for carrying out excavated soil in pneumatic caisson
JPH116164A (en) * 1997-06-17 1999-01-12 Shimizu Corp Construction method for underground structure
JPH11166387A (en) * 1997-12-04 1999-06-22 Sakata Construction Co Ltd Form for lining back-filling
JP2916595B2 (en) * 1995-12-05 1999-07-05 鹿島建設株式会社 Wastewater discharge method in the pneumatic caisson method
JP2003286726A (en) * 2002-03-28 2003-10-10 Shimizu Corp Caisson

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01322045A (en) * 1988-06-24 1989-12-27 Shimizu Corp Construction of basement
JPH0424399A (en) * 1990-05-18 1992-01-28 Kumagai Gumi Co Ltd Construction of underground space
JPH05156645A (en) * 1991-02-20 1993-06-22 Taisei Corp Structure for fixing cutting edge portion of caisson and for stopping water
JPH06108468A (en) * 1992-09-24 1994-04-19 Minoru Yagi Placing of underwater concrete by use of concrete block
JP2916595B2 (en) * 1995-12-05 1999-07-05 鹿島建設株式会社 Wastewater discharge method in the pneumatic caisson method
JPH09158197A (en) * 1995-12-12 1997-06-17 Kajima Corp Rock mass excavation method in pneumatic caisson method
JPH10131202A (en) * 1996-11-01 1998-05-19 Daiho Constr Co Ltd Method for sinking pneumatic caisson
JPH10131201A (en) * 1996-11-01 1998-05-19 Daiho Constr Co Ltd Method for carrying out excavated soil in pneumatic caisson
JPH116164A (en) * 1997-06-17 1999-01-12 Shimizu Corp Construction method for underground structure
JPH11166387A (en) * 1997-12-04 1999-06-22 Sakata Construction Co Ltd Form for lining back-filling
JP2003286726A (en) * 2002-03-28 2003-10-10 Shimizu Corp Caisson

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2511520A (en) * 2013-03-05 2014-09-10 Allan Cassells Sharp Methods for construction and completion of underwater tunnels
GB2511520B (en) * 2013-03-05 2016-02-24 Allan Cassells Sharp Methods for construction and completion of underwater tunnels
CN104060623A (en) * 2013-03-20 2014-09-24 中国二十冶集团有限公司 Open caisson structure provided with resistance reduction mechanism and dry excavation method of open caisson
JP2015040448A (en) * 2013-08-23 2015-03-02 株式会社大本組 Decompression construction method of pneumatic caisson
JP2016084605A (en) * 2014-10-24 2016-05-19 株式会社安藤・間 Construction method for underground structure, and pneumatic caisson used therewith
JP2018035506A (en) * 2016-08-29 2018-03-08 鹿島建設株式会社 Construction method for underground structure
CN113605430A (en) * 2021-08-24 2021-11-05 中国建筑第二工程局有限公司 Caisson construction structure utilizing communicating vessels and construction method thereof
CN113605430B (en) * 2021-08-24 2022-05-24 中国建筑第二工程局有限公司 Caisson construction structure utilizing communicating vessels and construction method thereof

Also Published As

Publication number Publication date
JP4614996B2 (en) 2011-01-19

Similar Documents

Publication Publication Date Title
CN205172598U (en) Pipe curtain spouts a supporting construction soon
US20120132424A1 (en) Method of drilling from a shaft for underground recovery of hydrocarbons
JP2010101062A (en) Drainage structure of underground water, and construction method for tunnel equipped with the drainage structure
KR100936471B1 (en) A circular structure supported by the segment with A drainage structure and method constructing the shield tunnel
JP4614996B2 (en) Caisson with underground structure and water stop device constructed using caisson
CN108661650A (en) A kind of rich water magmatic body area depth pozo shaft construction method
CN104499479A (en) Dig-hole pile construction method based on penetration of sand gravel backfilling layer
CN109371980B (en) Deep foundation pit enclosure construction method combining spray anchor reverse construction and punched pile
US20110116868A1 (en) Method for constructing an underground tunnel or hole to create an impervious plug for the storage of hazardous, particularly radioactive, waste
CN105863648A (en) Underground-excavation shallow-covering large-cross-section tunnel construction method
CN203924137U (en) A kind of diaphragm wall serious leakage plugging structure
CN105937397A (en) Segmented excavation freezing method reinforcing construction method for deep tunnel
CN109024706A (en) A kind of foundation pit waterproof curtain breakthrough inside method for blocking
CN105134254B (en) A kind of tunnel surface drilling sleeve pipe sealing device and its operating procedure
JP2010031556A (en) Construction method of tunnel in large depth and at high water pressure
CN107059904B (en) A kind of underground pipe gallery ponding well excavation method
JP3908464B2 (en) Construction method of underwater tunnel
JP2007100416A (en) Structure and construction method for steel sheet pile and water passing soil retaining wall
CN116816389A (en) Tunnel water-rich karst collapse cavity treatment method
US11441423B2 (en) Method and apparatus for the bottom-up construction of vertical risers from underground passes through the soil, using a pipe jacking equipment
KR20140080852A (en) Freezimg pipe and ground freezing method using freezimg pipe
CN110685292A (en) Foundation pit drainage system and construction method thereof
CN104060636B (en) Pressure release anti-float method during high water level regional architecture foundation construction and device
CN209724365U (en) A kind of preliminary bracing structure suitable for the loose location of tunnel
CN113027466A (en) Underground excavation construction process for tunnel with extremely small clear distance

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101019

R150 Certificate of patent or registration of utility model

Ref document number: 4614996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141029

Year of fee payment: 4