JP2018035506A - Construction method for underground structure - Google Patents

Construction method for underground structure Download PDF

Info

Publication number
JP2018035506A
JP2018035506A JP2016166736A JP2016166736A JP2018035506A JP 2018035506 A JP2018035506 A JP 2018035506A JP 2016166736 A JP2016166736 A JP 2016166736A JP 2016166736 A JP2016166736 A JP 2016166736A JP 2018035506 A JP2018035506 A JP 2018035506A
Authority
JP
Japan
Prior art keywords
caisson
excavation
ground
concrete
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016166736A
Other languages
Japanese (ja)
Other versions
JP6674868B2 (en
Inventor
安永 正道
Masamichi Yasunaga
正道 安永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2016166736A priority Critical patent/JP6674868B2/en
Publication of JP2018035506A publication Critical patent/JP2018035506A/en
Application granted granted Critical
Publication of JP6674868B2 publication Critical patent/JP6674868B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a construction method for an underground structure that facilitates construction.SOLUTION: A pneumatic caisson 5 is installed, and a bottom end thereof is set in an impermeable stratum 3 of a ground. When installing the caisson 5, pressure in an excavation part 11 underneath a bottom slab 7 of the caisson 5 is kept at a high pressure state of a pressure higher than groundwater pressure, and automatic excavation is performed using an excavator and the like provided on an undersurface of the bottom slab 7 of the caisson 5. After installing the caisson 5 at a prescribed position, a low-temperature antifreeze liquid is circulated through a frozen duct embedded in a side wall 9 or the like of the caisson 5 for forming a frozen part 33 by freezing a boundary between the caisson 5 and the impermeable stratum 3 outside, thus water-sealing the boundary between the caisson 5 and the impermeable stratum 3. Then, the pressure in the excavation part 11 underneath the bottom slab 7 is lowered gradually to an atmospheric pressure, for casting concrete in the excavation part 11 and filling a gap under the atmospheric pressure.SELECTED DRAWING: Figure 4

Description

本発明は、ケーソンを用いた地下構造物の施工方法に関する。   The present invention relates to a construction method for an underground structure using a caisson.

シールドトンネルの立坑、下水処理場建屋などの深い地下構造物の施工方法として、ニューマチックケーソン工法やオープンケーソン工法などケーソンを用いるものがある。これらの工法は、遮水壁を不要とすることから多くの施工実績がある。   As construction methods for deep underground structures such as shield tunnel shafts and sewage treatment plant buildings, there are methods using caisson such as pneumatic caisson method and open caisson method. These construction methods have many construction results because they do not require a water-impervious wall.

図9はニューマチックケーソン工法の概要を示す図である。ニューマチックケーソン工法は、図9(a)に示すように地表面付近で底版105、側壁107、刃口125を有するニューマチックケーソン103(以下、単にケーソンということがある)を構築した後、図9(b)に示すように側壁107を上部に継ぎ足しながら底版105下の地盤の掘削とケーソン103の沈設を繰り返すものである。   FIG. 9 is a diagram showing an outline of the pneumatic caisson method. In the pneumatic caisson method, as shown in FIG. 9 (a), a pneumatic caisson 103 (hereinafter sometimes simply referred to as caisson) having a bottom plate 105, a side wall 107, and a blade edge 125 is constructed near the ground surface. 9 (b), the excavation of the ground under the bottom slab 105 and the caisson 103 are repeated while the side wall 107 is added to the upper part.

側壁107は底版105の外周部に沿って底版105の上面に筒状に設けられ、刃口125は底版105の外周部に沿って底版105の下面に設けられる。底版105にはマンロック109aやマテリアルロック109bなどの開口部が設けられる。マンロック109aは底版105下の掘削部111への作業員の出入りに用いられ、マテリアルロック109bは底版105下の掘削部111への機材投入や掘削土の搬出に用いられる。   The side wall 107 is provided in a cylindrical shape on the upper surface of the bottom plate 105 along the outer peripheral portion of the bottom plate 105, and the blade edge 125 is provided on the lower surface of the bottom plate 105 along the outer peripheral portion of the bottom plate 105. The bottom plate 105 is provided with openings such as a manlock 109a and a material lock 109b. The manlock 109a is used for workers to enter and leave the excavation section 111 below the bottom slab 105, and the material lock 109b is used to input equipment to the excavation section 111 below the bottom slab 105 and carry out excavation soil.

地盤の掘削とケーソン103の沈設作業を行う際は、高圧の空気やヘリウムガス等を用いて底版105下の掘削部111の気圧を地下水圧より高圧とすることによって、地下水の浸入を防いで底版105下の掘削部111を水の無いドライな状態の作業空間とする。   When excavating the ground and laying the caisson 103, the bottom plate is prevented from invading groundwater by using high-pressure air, helium gas, or the like to make the pressure of the excavation part 111 below the bottom plate 105 higher than the groundwater pressure. The excavation part 111 below 105 is a dry work space without water.

ケーソン103を深く沈設する場合には掘削部111の気圧が5〜7kgf/cm2(水深50〜70m相当)にも達し、掘削部111に作業員が入っての作業が困難になることから自動掘削が多く行われる。これは、掘削機(不図示)を底版105の下面に配置した走行レールに取付け、当該掘削機を地上の操作盤で操作して地盤の掘削を行い、これに併せてマテリアルロック109bからの排土を行うものである。自動掘削を行うことで、工費は高くなるものの安全に作業を行うことができる。 When caisson 103 is deeply submerged, the pressure of the excavation part 111 reaches 5-7 kgf / cm 2 (equivalent to a water depth of 50-70 m), which makes it difficult for workers to enter the excavation part 111. A lot of excavation is done. This is because an excavator (not shown) is attached to a traveling rail disposed on the lower surface of the bottom slab 105, and the excavator is operated with an operation panel on the ground to excavate the ground. It is to do soil. By performing automatic excavation, the cost can be increased, but the work can be performed safely.

図9(c)に示すように地盤を掘削し所定位置までケーソン103の沈設が完了した後、床付地盤110上の高圧気状態の掘削部111に作業員が入り掘削機等の解体、撤去、床付地盤110の整形を行う。そして、図9(d)に示すように掘削部111にコンクリートを打設して間詰めを行う。その後、マンロック109a、マテリアルロック109bなどの底版105の開口部をコンクリートで塞ぐ。   As shown in FIG. 9 (c), after excavating the ground and completing the caisson 103 to a predetermined position, an operator enters the excavating part 111 in a high-pressure air state on the floored ground 110 to dismantle and remove the excavator and the like. Then, the floored ground 110 is shaped. And as shown in FIG.9 (d), concrete is cast in the excavation part 111 and it fills up. Thereafter, the openings of the bottom plate 105 such as the manlock 109a and the material lock 109b are closed with concrete.

図10はオープンケーソン工法の概要を示す図である。オープンケーソン工法は、図10(a)に示すように地表面付近で側壁119と刃口127を有するオープンケーソン117(以下、単にケーソンということがある)を構築した後、図10(b)に示すように側壁119を上部に継ぎ足しながらケーソン117の内側の地盤の水中掘削とケーソン117の沈設を繰り返すものである(例えば、特許文献1、2参照)。   FIG. 10 is a diagram showing an outline of the open caisson method. As shown in FIG. 10A, the open caisson method is constructed as shown in FIG. 10B after constructing an open caisson 117 having a side wall 119 and a blade edge 127 in the vicinity of the ground surface. As shown in the figure, the underwater excavation of the ground inside the caisson 117 and the caisson 117 are repeated while the side wall 119 is added to the upper part (see, for example, Patent Documents 1 and 2).

側壁119は筒状の構造物であり、刃口127は側壁119の周方向に沿って側壁119の下面に設けられる。また、この例では地盤にアンカ115を設置し、当該アンカ115を反力にとってジャッキ116によりケーソン117を圧入して沈設を行っている。ただし、アンカ115やジャッキ116を用いずにケーソン117の自重で沈設させる場合もある。   The side wall 119 is a cylindrical structure, and the blade edge 127 is provided on the lower surface of the side wall 119 along the circumferential direction of the side wall 119. In this example, the anchor 115 is installed on the ground, and the caisson 117 is press-fitted with the jack 116 by using the anchor 115 as a reaction force to perform the sinking. However, the caisson 117 may be sunk by its own weight without using the anchor 115 or the jack 116.

図10(c)に示すように所定位置までケーソン117の沈設が完了し、地盤を床付位置まで掘削した後、床付地盤110の上に水中コンクリート123を打設する。その後、図10(d)に示すようにケーソン117の内側の排水を行って、水中コンクリート123上にコンクリートを打設して底版121の構築を行う。水中コンクリート123は、ケーソン117の内側の排水時に地下水がケーソン117の内側に浸入しないように設けられる。   As shown in FIG. 10 (c), after the caisson 117 has been set up to a predetermined position and the ground is excavated to the floored position, the underwater concrete 123 is placed on the floored ground 110. Thereafter, as shown in FIG. 10 (d), the drainage inside the caisson 117 is performed, and the bottom plate 121 is constructed by placing concrete on the underwater concrete 123. The underwater concrete 123 is provided so that groundwater does not enter the inside of the caisson 117 when draining inside the caisson 117.

特許第3926804号Patent No. 3926804 特許第5670595号Patent No. 5670595

以上の例では地盤の透水層中にケーソンを根入れしており、地下水の浸入を防ぐためにニューマチックケーソン工法では底版105下の掘削部111を高圧気状態とし、オープンケーソン工法では水中コンクリート123を打設している。これは、図11のように地盤の透水層2下にある軟岩層などの不透水層3にケーソンが根入れされる場合も同様である。すなわち、ケーソンの沈設時に刃口によってケーソンの外側の不透水層3が崩れて水みちができる可能性があり、地下水の浸入を防止するため同様の処置が必要になる。図11はニューマチックケーソン工法の例であり、底版105、側壁107、刃口125を有するニューマチックケーソン103を示しているが、オープンケーソン工法の場合も同様である。   In the above example, caisson is embedded in the permeable layer of the ground, and in order to prevent infiltration of groundwater, the excavation part 111 under the bottom plate 105 is in a high-pressure air state in the pneumatic caisson method, and the underwater concrete 123 is used in the open caisson method. It is laid. This is the same when the caisson is embedded in the impermeable layer 3 such as a soft rock layer under the permeable layer 2 of the ground as shown in FIG. That is, when the caisson is set up, the impervious layer 3 outside the caisson may collapse due to the blade edge, and a water channel may be formed, and the same treatment is required to prevent infiltration of groundwater. FIG. 11 shows an example of a pneumatic caisson method, which shows a pneumatic caisson 103 having a bottom plate 105, a side wall 107, and a blade edge 125, but the same applies to the open caisson method.

しかしながら、このように地下水の浸入を防ぐための処置を施すことは施工の難しさにもつながっている。例えばニューマチックケーソン工法において高圧気状態の掘削部111にコンクリートを打設するには、掘削部111の気圧に負けない超高圧のコンクリートポンプ車が必要なうえ、コンクリート内部の気泡が圧力でつぶされて空気量が減少することからコンクリートの流動性が低下し、安定した状態でのコンクリート打設が困難であった。   However, such a treatment for preventing intrusion of groundwater leads to difficulty in construction. For example, in the pneumatic caisson method, in order to place concrete in the excavation part 111 in a high-pressure air state, an ultra-high-pressure concrete pump truck that does not lose the pressure of the excavation part 111 is required, and bubbles in the concrete are crushed by pressure. Since the air volume decreased, the fluidity of the concrete decreased, and it was difficult to place the concrete in a stable state.

さらに、高圧気状態の掘削部111に作業員が入ってコンクリートホースの振り回し、目で見ながらの打設、振動締固めを行うのは難しく、底版105下の掘削部111を完全にコンクリートで充填することは困難である。そのためコンクリートの打設後に残った空間をモルタル注入で塞ぐことが必要であった。   Furthermore, it is difficult to put a concrete hose around the excavation part 111 in a high-pressure air state, and to perform the placement and vibration compaction while visually observing. The excavation part 111 under the bottom plate 105 is completely filled with concrete. It is difficult to do. Therefore, it was necessary to close the space left after placing concrete with mortar injection.

また地盤の自動掘削を行うと床付地盤110を深掘し易い傾向にあり、深掘により掘削部111に打設するコンクリートの量が増えるという課題もある。また、自動掘削ではケーソン103が沈下しにくい場合があり、その場合は床付位置より下方まで掘削を行ってケーソン103を沈下させた後床付位置まで埋め戻すことになり、緩んだ土が残りやすく支持力の面で問題があった。   Further, when automatic excavation of the ground is performed, the floored ground 110 tends to be deeply dug, and there is a problem that the amount of concrete to be placed in the excavation part 111 is increased by the deep dug. In addition, in the automatic excavation, the caisson 103 may be difficult to sink. In this case, the caisson 103 is subtracted from the flooring position to sink the caisson 103 and then backfilled to the flooring position, leaving loose soil. There was a problem in terms of supportability.

また掘削機等の解体、搬出なども、高圧気状態の掘削部111に作業員が入って行うため危険を伴う作業となり、また一回の作業可能時間が極端に短いことから作業終了に時間がかかっていた。   In addition, dismantling and unloading of excavators, etc. are dangerous because the workers enter the excavation section 111 in a high-pressure air state, and the time required for one operation is extremely short, so it takes time to complete the operation. It was hanging.

一方、オープンケーソン工法の場合も、地下水の浸入防止のために水中コンクリート123を打設することから、水中コンクリート123の厚さ分の地盤を余計に掘削しなければならない。設計にもよるが、ケーソン117の内側の排水時に作用する荷重(水中コンクリート123下からの水圧)に耐えるためには水中コンクリート123の厚さが2〜4m程度必要であり、ケーソン117もその分長いものが必要になる。   On the other hand, in the case of the open caisson method, since the underwater concrete 123 is placed to prevent the ingress of groundwater, the ground for the thickness of the underwater concrete 123 must be excavated. Although it depends on the design, the thickness of the underwater concrete 123 is required to be about 2 to 4 m in order to withstand the load (water pressure from below the underwater concrete 123) that acts during drainage inside the caisson 117. I need a long one.

さらに、水中コンクリート123を打設するにはトレミー管や水中不分離コンクリートの使用が必要であり、工費が嵩む。また、ケーソン117内面と水中コンクリート123との境界部の水密性を保ち、上記の荷重を水中コンクリート123から側壁119に伝達するため、側壁119の内面の清掃やせん断キーの配置が事前に必要であった。   Furthermore, in order to place the underwater concrete 123, it is necessary to use a tremy tube or underwater non-separable concrete, which increases the construction cost. Further, in order to maintain the water tightness of the boundary between the inner surface of the caisson 117 and the underwater concrete 123 and to transmit the above load from the underwater concrete 123 to the side wall 119, it is necessary to clean the inner surface of the side wall 119 and to arrange a shear key in advance. there were.

さらに、水中掘削であることから掘削深度の管理が難しく、計画よりも深い掘削となり易い。また床付地盤110に凸凹ができやすく、床付地盤110を傷めて支持力を得にくい場合もあった。   Furthermore, since it is underwater excavation, it is difficult to manage the excavation depth, and it is easy to excavate deeper than planned. Further, the floor-equipped ground 110 is likely to be uneven, and the floor-equipped ground 110 may be damaged and it may be difficult to obtain a supporting force.

本発明は以上の問題点に鑑みてなされたもので、その目的は、施工が容易な地下構造物の施工方法を提供することである。   This invention is made | formed in view of the above problem, The objective is to provide the construction method of an underground structure with easy construction.

前述した目的を達成するための本発明は、ケーソンの下端部を、地盤の透水層の下方にある不透水層に根入れする工程(a)と、前記ケーソンと前記ケーソンの外側の前記不透水層との境界部を凍結させ、遮水を行う工程(b)と、前記ケーソンの内側でコンクリートを打設する工程(c)と、を具備することを特徴とする地下構造物の施工方法である。   In order to achieve the above-described object, the present invention includes a step (a) of rooting a lower end portion of a caisson in an impermeable layer below the water permeable layer of the ground, and the impermeable water outside the caisson and the caisson. A method of constructing an underground structure, comprising: a step (b) of freezing a boundary portion with a layer and impermeable to water; and a step (c) of placing concrete inside the caisson. is there.

本発明では、ケーソンの下端部を地盤の不透水層に根入れした後、ケーソンとその外側の不透水層との境界部を凍結させて遮水を行う。これにより、ケーソンの沈設時にケーソンの外側の不透水層にできた水みちを塞ぐことができ、上方の透水層から地下水がケーソンの内側に浸入し、地下構造物の施工時の支障となるのを防止できる。   In the present invention, after the lower end portion of the caisson is embedded in the impermeable layer of the ground, the boundary portion between the caisson and the impermeable layer outside thereof is frozen to perform water shielding. As a result, the water channel formed in the impermeable layer outside the caisson when the caisson is set up can be blocked, and groundwater can enter the caisson from the upper permeable layer, hindering the construction of underground structures. Can be prevented.

例えば前記ケーソンは底版を有するニューマチックケーソンであり、前記工程(a)において、前記底版の下方の地盤の掘削を、掘削部の気圧を地下水圧より高圧としながら行って前記ケーソンを沈設し、前記工程(c)において、前記掘削部を大気圧として前記掘削部に前記コンクリートを打設する。また前記工程(c)において、前記掘削部を大気圧とした後、前記掘削部に作業員を入れ、前記底版の下方の地盤を床付位置まで掘削する。
ニューマチックケーソン工法の場合、上記のようにしてケーソンと不透水層の境界部を遮水することにより、底版下の掘削部を大気圧に戻した後、作業員による掘削部内での各種の作業やコンクリートによる掘削部の間詰が可能となる。従って、掘削機等の解体や搬出も効率的かつ安全な状態で行うことができる。また大気圧下でコンクリートを打設して間詰を行うことから空気量などコンクリートの性状が変わることが無く、作業員が中に入って打設作業を行うことができバイブレータの使用による締固めも可能なので、通常のコンクリートポンプ車を用いて高品質なコンクリートを容易に打設することができる。また、底版下で人力により床付位置まで掘削を行うことができ、深掘を防止しやすい。自動掘削時に生じた緩んだ土が残っていればこれを除去して床付地盤の支持力を確保することもできる。また掘削部内に作業員が入れることから、平板載荷試験等を行うことにより床付地盤の支持力を原位置で測定することも可能である。
For example, the caisson is a pneumatic caisson having a bottom slab, and in the step (a), excavation of the ground below the bottom slab is performed while setting the pressure of the excavation part to be higher than the groundwater pressure, and the caisson is laid down, In the step (c), the concrete is placed in the excavation part with the excavation part at atmospheric pressure. In the step (c), after setting the excavation part to atmospheric pressure, an operator is put into the excavation part, and the ground below the bottom slab is excavated to the floor position.
In the case of the pneumatic caisson method, after the excavation part under the bottom slab is returned to atmospheric pressure by blocking the boundary part between the caisson and the impermeable layer as described above, various operations in the excavation part by workers are performed. It becomes possible to pack the excavated part with concrete. Therefore, the excavator and the like can be disassembled and carried out in an efficient and safe state. In addition, since concrete is placed under atmospheric pressure and clogging is performed, the properties of the concrete, such as the amount of air, do not change, allowing workers to enter and perform placement work, and compaction by using a vibrator Therefore, high-quality concrete can be easily placed using a normal concrete pump car. In addition, it is possible to excavate to the floored position by human power under the bottom plate, and it is easy to prevent deep excavation. If there is any loose soil left during the automatic excavation, it can be removed to secure the bearing capacity of the floored ground. Moreover, since an operator puts in the excavation part, it is also possible to measure the supporting force of the ground with a floor by performing a flat plate loading test or the like.

あるいは前記ケーソンはオープンケーソンであり、前記工程(a)において、前記ケーソンの内側の地盤を水中掘削しつつ前記ケーソンを沈設し、前記工程(c)において、前記ケーソンの内側の排水を行い前記ケーソンの内側で前記コンクリートを打設して底版を構築する。また前記工程(c)において、前記ケーソンの内側の排水を行った後、前記ケーソンの内側に作業員を入れ、前記ケーソンの内側の地盤を床付位置まで掘削する。
オープンケーソン工法の場合、上記のようにしてケーソンと不透水層の境界部を遮水することにより、高コストとなる水中コンクリートの打設が不要となり直接底版を構築できる。そのため施工が容易となり、掘削深度を浅く、ケーソンを短くできるので工費を節減できる。また床付位置付近の掘削を大気中で人力や小型掘削機によって行うことが可能となり、深掘を防止しやすく床付地盤を痛めるのも防止できる。また、水中掘削に伴い発生した緩んだ土を除去して床付地盤の支持力を確保することができ、平板載荷試験等により床付地盤の支持力を原位置で測定することもできる。
Alternatively, the caisson is an open caisson, and in the step (a), the caisson is submerged while excavating the ground inside the caisson, and the caisson is drained inside the caisson in the step (c). The bottom plate is constructed by placing the concrete inside. In the step (c), after draining the inside of the caisson, an operator is put inside the caisson, and the ground inside the caisson is excavated to a floored position.
In the case of the open caisson method, by blocking the boundary between the caisson and the impermeable layer as described above, it is not necessary to place underwater concrete that is expensive, and the bottom plate can be constructed directly. Therefore, construction becomes easy, the excavation depth is shallow, and the caisson can be shortened, thereby reducing the construction cost. In addition, it becomes possible to perform excavation near the floored position in the atmosphere by human power or a small excavator, and it is easy to prevent deep digging and prevent the ground with ground from being damaged. Moreover, it is possible to remove the loose soil generated by underwater excavation and secure the supporting force of the ground with floor, and it is also possible to measure the supporting force of the floor with ground by a flat plate loading test or the like.

前記ケーソンに、凍結用の流体を循環させる凍結管が設けられることが望ましい。
このように、予めケーソンに設けた凍結管を用いて凍結を行うことにより、容易に遮水を行うことができる。
The caisson is preferably provided with a freezing pipe for circulating a freezing fluid.
In this way, water can be easily shielded by freezing using a freezing tube provided in the caisson in advance.

前記ケーソンに、温度センサが設けられることが望ましい。
温度センサによる測定データを用いて、凍結部が所定の位置に形成されているかを確認することができる。
The caisson is preferably provided with a temperature sensor.
It can be confirmed whether the frozen part is formed in the predetermined position using the measurement data by the temperature sensor.

本発明によれば、施工が容易な地下構造物の施工方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the construction method of an underground structure with easy construction can be provided.

ニューマチックケーソン工法による地下構造物の施工方法について示す図。The figure shown about the construction method of an underground structure by a pneumatic caisson method. 凍結管20を示す図。The figure which shows the freezing tube 20. FIG. ニューマチックケーソン工法による地下構造物の施工方法について示す図。The figure shown about the construction method of an underground structure by a pneumatic caisson method. ニューマチックケーソン工法による地下構造物の施工方法について示す図。The figure shown about the construction method of an underground structure by a pneumatic caisson method. オープンケーソン工法による地下構造物の施工方法について示す図。The figure shown about the construction method of an underground structure by an open caisson method. 凍結管60を示す図。The figure which shows the freezing tube 60. FIG. オープンケーソン工法による地下構造物の施工方法について示す図。The figure shown about the construction method of an underground structure by an open caisson method. オープンケーソン工法による地下構造物の施工方法について示す図。The figure shown about the construction method of an underground structure by an open caisson method. ニューマチックケーソン工法の概要を示す図。The figure which shows the outline | summary of a pneumatic caisson method. オープンケーソン工法の概要を示す図。The figure which shows the outline | summary of an open caisson method. ケーソン103を不透水層3に根入れする例。An example in which the caisson 103 is embedded in the impermeable layer 3.

以下、図面に基づいて、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[第1の実施形態]
本発明の第1の実施形態の地下構造物の施工方法について、図1〜図4を参照して説明する。第1の実施形態は、ニューマチックケーソン工法において、ニューマチックケーソンの下端部を地盤の透水層の下方にある不透水層に根入れして地下構造物を施工する例である。
[First embodiment]
The construction method of the underground structure of the 1st Embodiment of this invention is demonstrated with reference to FIGS. 1-4. In the pneumatic caisson method, the first embodiment is an example in which an underground structure is constructed by rooting a lower end portion of a pneumatic caisson into an impermeable layer below the permeable layer of the ground.

本実施形態では、図1に示すように底版7、側壁9、刃口19を有するニューマチックケーソン5(以下、単にケーソンということがある)を用いる。底版7や側壁9は、場所打ちコンクリートやプレキャストコンクリートによって構築される。底版7、側壁9、刃口19は図9で説明した底版105、側壁107、刃口125と略同様の構成を有し、前記と同様、底版7にはマンロック13aやマテリアルロック13b等の開口部が設けられる。   In this embodiment, as shown in FIG. 1, a pneumatic caisson 5 (hereinafter sometimes simply referred to as a caisson) having a bottom plate 7, a side wall 9, and a blade edge 19 is used. The bottom plate 7 and the side wall 9 are constructed by cast-in-place concrete or precast concrete. The bottom plate 7, the side wall 9, and the blade edge 19 have substantially the same configuration as the bottom plate 105, the side wall 107, and the blade mouth 125 described with reference to FIG. 9. As in the above, the bottom plate 7 includes a manlock 13 a and a material lock 13 b. An opening is provided.

ただし、本実施形態では、ケーソン5の外周部に図2に示すように凍結管20が設けられる。凍結管20は後述する低温の不凍液を循環させるものであり、ケーソン5の周方向(図2の左右方向に対応する)に沿った略環状の水平配管23と、入側の鉛直配管25および出側の鉛直配管27を有する。凍結管20はケーソン5の側壁9等のコンクリート内に埋設される。   However, in the present embodiment, a freezing tube 20 is provided on the outer periphery of the caisson 5 as shown in FIG. The freezing pipe 20 circulates a low-temperature antifreeze which will be described later. The freezing pipe 20 has a substantially annular horizontal pipe 23 along the circumferential direction of the caisson 5 (corresponding to the left-right direction in FIG. 2), an inlet-side vertical pipe 25 and an outlet. It has a vertical pipe 27 on the side. The freezing pipe 20 is embedded in concrete such as the side wall 9 of the caisson 5.

水平配管23はケーソン5の下端部に配置され、例えば直径が75mm程度のパイプが用いられる。水平配管23は、例えばケーソン5の外周面からのかぶりが25cm以下の位置に埋設される。本実施形態では凍結管20が3段に用いられ、水平配管23が所定の間隔で上下3段に配置される。この間隔は例えば50cm程度とするが、これに限ることはない。   The horizontal pipe 23 is disposed at the lower end of the caisson 5, and for example, a pipe having a diameter of about 75 mm is used. The horizontal pipe 23 is embedded at a position where the fog from the outer peripheral surface of the caisson 5 is 25 cm or less, for example. In the present embodiment, the freezing tubes 20 are used in three stages, and the horizontal pipes 23 are arranged in three upper and lower stages at a predetermined interval. This interval is, for example, about 50 cm, but is not limited thereto.

また上下の水平配管23の間の中央部付近には温度センサ29が配置される。温度センサ29もケーソン5の側壁9等のコンクリート内に埋設される。図の例では温度センサ29をケーソン5の周方向に1つ設けているが、ケーソン5の周方向に沿って間隔を空けて複数配置することも可能である。   A temperature sensor 29 is disposed near the center between the upper and lower horizontal pipes 23. The temperature sensor 29 is also embedded in the concrete such as the side wall 9 of the caisson 5. In the example shown in the figure, one temperature sensor 29 is provided in the circumferential direction of the caisson 5, but a plurality of temperature sensors 29 can be arranged at intervals along the circumferential direction of the caisson 5.

鉛直配管25、27は、水平配管23の端部から上方に延び、ケーソン5の側壁9の上面に達するように設けられる。   The vertical pipes 25 and 27 are provided so as to extend upward from the end of the horizontal pipe 23 and reach the upper surface of the side wall 9 of the caisson 5.

ケーソン5の沈設方法は図9等で説明したものと略同様であり、前記と同様、側壁9を上部に継ぎ足しながら、底版7下の地盤の掘削とケーソン5の沈設を繰り返す。地盤の掘削時には、底版7下の掘削部11の気圧を大気圧および地下水圧よりも高い高圧気状態としながら、底版7の下面に設けた掘削機等によって自動掘削を行う。上記した鉛直配管25、27は、ケーソン5の沈設時に側壁9を継ぎ足すのに合わせて継ぎ足し、上方に延伸させる。   The caisson 5 is laid out in a manner substantially the same as that described with reference to FIG. 9 and the like, and the excavation of the ground under the bottom slab 7 and the caisson 5 are repeated while the side wall 9 is added to the upper part as described above. When excavating the ground, automatic excavation is performed by an excavator or the like provided on the lower surface of the bottom slab 7 while the atmospheric pressure of the excavation part 11 below the bottom slab 7 is in a high-pressure air state higher than atmospheric pressure and groundwater pressure. The vertical pipes 25 and 27 described above are added in accordance with the addition of the side wall 9 when the caisson 5 is set, and are extended upward.

ただし、本実施形態では、図1に示すようにケーソン5を所定位置まで沈設し、その下端部を軟岩層などの不透水層3に根入れした後、図3に示すようにケーソン5とその外側の不透水層3との境界部に凍結部33を形成してケーソン5と不透水層3の間を遮水する。   However, in the present embodiment, the caisson 5 is laid down to a predetermined position as shown in FIG. 1, and the lower end of the caisson 5 is rooted in an impermeable layer 3 such as a soft rock layer. A frozen portion 33 is formed at the boundary with the outer impermeable layer 3 to shield water between the caisson 5 and the impermeable layer 3.

ここで、不透水層3とは難透水層と呼ばれるものも含む広義の不透水層を指すものとする。本実施形態では、不透水層3が土丹などの軟岩層であり、透水係数が1×10-5cm/sec以下、例えば1×10-6〜1×10-8cm/sec程度である。また、軟岩層は地下構造物の支持層としての役割も有しており、その一軸圧縮強度は例えば5〜20kgf/cm2以上である。なお、ケーソン5の不透水層3への根入れ長は例えば4〜5m以上とするが、これに限ることはない。 Here, the water-impermeable layer 3 refers to a water-impermeable layer in a broad sense including what is called a hardly water-permeable layer. In the present embodiment, the impermeable layer 3 is a soft rock layer such as Dotan, and the permeability coefficient is 1 × 10 −5 cm / sec or less, for example, about 1 × 10 −6 to 1 × 10 −8 cm / sec. . The soft rock layer also has a role as a support layer for the underground structure, and its uniaxial compressive strength is, for example, 5 to 20 kgf / cm 2 or more. In addition, although the penetration length to the impermeable layer 3 of the caisson 5 shall be 4-5 m or more, for example, it is not restricted to this.

このような不透水層3は水圧によって崩壊することは無いが、ケーソン5の沈設時に刃口19によって不透水層3が削られて崩れると、ケーソン5とその外側の不透水層3との境界部に隙間ができ、当該隙間が水みちとなって透水層2の地下水がケーソン5の内側の掘削部11に浸入する可能性がある。   Such an impermeable layer 3 does not collapse due to water pressure, but if the impermeable layer 3 is scraped and broken by the blade 19 when the caisson 5 is set, the boundary between the caisson 5 and the outer impermeable layer 3 outside thereof. There is a possibility that a gap is formed in the portion, and the gap becomes a waterway, and the groundwater of the permeable layer 2 enters the excavation portion 11 inside the caisson 5.

そのため、本実施形態では、凍結用の流体である-20〜-30℃の不凍液をポンプ(不図示)等によって前記した凍結管20(水平配管23、鉛直配管25、27)に循環させる。これにより、ケーソン5とその外側の不透水層3との境界部を凍結させて凍結部33を形成し、ケーソン5と不透水層3との間を遮水する。不凍液にはナイブライン(登録商標)などを用いることができる。   Therefore, in this embodiment, the antifreezing liquid of −20 to −30 ° C., which is a freezing fluid, is circulated through the above-described freezing pipe 20 (horizontal pipe 23, vertical pipes 25 and 27) by a pump (not shown) or the like. Thereby, the boundary part of the caisson 5 and the impermeable layer 3 outside thereof is frozen to form a frozen part 33, and the caisson 5 and the impermeable layer 3 are insulated. Nybrine (registered trademark) or the like can be used as the antifreeze.

凍結管20による凍結中は、前記した温度センサ29で測定した測定データをコンピュータ(不図示)に送信し、当該コンピュータにて熱伝導解析を行い、凍結部33が所望の位置に形成されていることを確認する。例えば前記したように水平配管23の上下の間隔が約50cmである場合、ケーソン5の外周面から凍結部33の外縁までの最大距離rが1mに達していれば、ケーソン5と不透水層3の間の遮水性が確保されたと判断する。   During freezing by the freezing tube 20, the measurement data measured by the temperature sensor 29 is transmitted to a computer (not shown), and heat conduction analysis is performed by the computer, so that the frozen portion 33 is formed at a desired position. Make sure. For example, as described above, when the vertical distance between the horizontal pipes 23 is about 50 cm, if the maximum distance r from the outer peripheral surface of the caisson 5 to the outer edge of the frozen portion 33 reaches 1 m, the caisson 5 and the impermeable layer 3 It is judged that the water barrier between the two was secured.

こうして凍結部33を形成し遮水を行った後、底版7下の掘削部11の気圧を徐々に下げ、漏水量の少ないこと(凍結による遮水の効果)を確認しつつ掘削部11を大気圧に戻す。   After forming the frozen portion 33 and water shielding, the pressure of the excavating portion 11 below the bottom slab 7 is gradually lowered, and the excavating portion 11 is enlarged while confirming that the amount of water leakage is small (the water shielding effect due to freezing). Return to atmospheric pressure.

掘削部11を大気圧に戻した後、掘削部11に作業員や重機を入れ、掘削機等の撤去、床付位置までの地盤の掘削、および自動掘削時に生じた緩んだ土が残っている場合はその撤去も行い、図4に示すようにケーソン5の内側で床付地盤30上の掘削部11にコンクリートを打設して間詰めを行う。また底版7のマンロック13a、マテリアルロック13bなどの開口部をコンクリートによって閉塞する。   After returning the excavation part 11 to atmospheric pressure, workers and heavy machinery are put into the excavation part 11 and the excavator etc. is removed, the ground is excavated to the floored position, and the loose soil generated during automatic excavation remains. In that case, the removal is also performed, and concrete is placed in the excavation part 11 on the ground with ground 30 inside the caisson 5 as shown in FIG. Further, the openings of the bottom plate 7 such as the manlock 13a and the material lock 13b are closed with concrete.

凍結管20中の不凍液の循環運転は、少なくとも掘削部11へのコンクリートの打設完了まで行い、この間温度センサ29による温度測定と測定データに基づく遮水性の確認も行う。コンクリートの打設完了後、適当な時点で不凍液の循環運転を停止し、凍結部33の凍結を自然に解除する。循環運転の停止後は、凍結管20から不凍液を抜き、グラウト材を充填するか、窒素ガス等の不活性ガスを封入する。   The operation of circulating the antifreeze liquid in the freezing pipe 20 is performed at least until completion of placing the concrete on the excavation part 11, and during this time, temperature measurement by the temperature sensor 29 and confirmation of water shielding based on measurement data are also performed. After completion of placing the concrete, the antifreeze circulating operation is stopped at an appropriate time, and the freezing of the freezing portion 33 is naturally released. After the circulation operation is stopped, the antifreeze liquid is extracted from the freezing tube 20 and filled with a grout material or filled with an inert gas such as nitrogen gas.

このように、第1の実施形態では、ケーソン5の下端部を地盤の不透水層3に根入れした後、ケーソン5とその外側の不透水層3との境界部を凍結させて遮水を行う。これにより、ケーソン5の沈設時にケーソン5の外側の不透水層3が削られて水みちとなり、上方の透水層2から地下水がケーソン5の内側に浸入し、地下構造物の施工時の支障となるのを防止できる。   As described above, in the first embodiment, after the lower end portion of the caisson 5 is embedded in the impermeable layer 3 of the ground, the boundary portion between the caisson 5 and the outer impermeable layer 3 on the outside thereof is frozen to provide water shielding. Do. As a result, when the caisson 5 is set up, the impermeable layer 3 outside the caisson 5 is scraped to become a water channel, and groundwater enters from the upper permeable layer 2 into the caisson 5, thereby obstructing the construction of the underground structure. Can be prevented.

本実施形態のようなニューマチックケーソン工法の場合、上記のようにしてケーソン5と不透水層3の境界部を遮水することにより、底版7下の掘削部11を大気圧に戻した後、作業員による掘削部11内での各種の作業やコンクリートによる掘削部11の間詰が可能となる。従って、掘削機等の解体や搬出も効率的かつ安全な状態で行うことができる。   In the case of the pneumatic caisson method as in the present embodiment, by blocking the boundary between the caisson 5 and the impermeable layer 3 as described above, the excavation part 11 below the bottom slab 7 is returned to atmospheric pressure, Various kinds of work in the excavation part 11 by an operator and clogging of the excavation part 11 by concrete can be performed. Therefore, the excavator and the like can be disassembled and carried out in an efficient and safe state.

また大気圧下でコンクリートを打設して間詰を行うことから空気量などコンクリートの性状が変わることが無く、作業員が中に入って打設作業を行うことができバイブレータの使用による締固めも可能なので、通常のコンクリートポンプ車を用いて高品質なコンクリートを容易に打設することができる。   In addition, since concrete is placed under atmospheric pressure and clogging is performed, the properties of the concrete, such as the amount of air, do not change, allowing workers to enter and perform placement work, and compaction by using a vibrator Therefore, high-quality concrete can be easily placed using a normal concrete pump car.

また、底版7下で人力により床付位置まで掘削を行うことができ、目視での確認ができるため深掘を防止しやすい。また自動掘削時に生じた緩んだ土が残っていればこれを除去して床付地盤30の支持力を確保することもできる。また掘削部11内に作業員が入れることから、平板載荷試験等を行うことにより床付地盤30の支持力を原位置で測定することも可能である。   In addition, it is possible to excavate to the floored position by human power under the bottom plate 7, and since it can be visually confirmed, it is easy to prevent deep excavation. Moreover, if the loose soil produced at the time of automatic excavation remains, this can be removed and the supporting force of the floor ground 30 can also be ensured. Moreover, since an operator puts in the excavation part 11, it is also possible to measure the supporting force of the floor ground 30 in an original position by performing a flat plate loading test or the like.

しかしながら、本発明はこれに限らない。例えば本実施形態では、掘削部11をコンクリートにより間詰めしたが、掘削部11の間詰めに用いる材料はコンクリートに限らない。最終的に底版7のマンロック13a、マテリアルロック13bはコンクリートで閉塞されることから、掘削部11を砕石やソイルモルタルなど安価な材料で間詰することも可能である。   However, the present invention is not limited to this. For example, in this embodiment, the excavation part 11 is padded with concrete, but the material used for the padding of the excavation part 11 is not limited to concrete. Since the manlock 13a and the material lock 13b of the bottom plate 7 are finally closed with concrete, the excavation part 11 can be filled with an inexpensive material such as crushed stone or soil mortar.

また、不透水層3は軟岩層に限らず、粘土層、シルト層、硬岩等でもよい。さらに、不透水層3の一軸圧縮強度、透水係数も上述したものに限らない。設計計算により、不透水層3の水圧に対する安定性、湧水量が工事に支障無い程度であることが確認されれば、さらに小さい一軸圧縮強度、大きい透水係数の不透水層3においても、本実施形態の地下構造物の施工方法を適用することができる。   The impermeable layer 3 is not limited to a soft rock layer, and may be a clay layer, a silt layer, a hard rock, or the like. Furthermore, the uniaxial compressive strength and water permeability coefficient of the impermeable layer 3 are not limited to those described above. If it is confirmed by design calculation that the stability of the water-impermeable layer 3 to the water pressure and the amount of spring water will not interfere with the construction, the implementation will be carried out even in the water-impermeable layer 3 having a smaller uniaxial compressive strength and a larger water permeability. The construction method of the underground structure in the form can be applied.

また本実施形態では、凍結管20を3つ設け水平配管23を3段としたが、凍結管20は少なくとも1つ設けられていればよい。また凍結管20の構成についても、1本の鉛直配管25から3段の水平配管23が分岐し、これらの水平配管23が1本の鉛直配管27に接続されるものなど本実施形態以外の他の配管方式も可能である。また、本実施形態ではケーソン5の側壁9等のコンクリートに凍結管20を埋設しているが、凍結管20をケーソン5の内周面あるいは外周面に配置する場合もある。また、ケーソン5を沈設した後、別途凍結管20を地盤に設置することも可能である。また、ケーソン5の側壁9はコンクリート製のものに限らず、例えば鋼殻などの鋼材を用いてもよい。   In this embodiment, three freezing tubes 20 and three horizontal pipings 23 are provided, but at least one freezing tube 20 may be provided. Further, the structure of the freezing pipe 20 is not limited to this embodiment, such as one in which a three-stage horizontal pipe 23 is branched from one vertical pipe 25 and these horizontal pipes 23 are connected to one vertical pipe 27. The piping method of this is also possible. In this embodiment, the freeze pipe 20 is embedded in the concrete such as the side wall 9 of the caisson 5, but the freeze pipe 20 may be disposed on the inner peripheral surface or the outer peripheral surface of the caisson 5. In addition, after the caisson 5 is laid, a freezing tube 20 can be separately installed on the ground. Further, the side wall 9 of the caisson 5 is not limited to a concrete one, and for example, a steel material such as a steel shell may be used.

またケーソン5の形状も特に限定されない。例えば側壁9は筒状のものであればよく、その平面形状は略円形、略矩形状あるいはその他の略多角形状とできる。   Further, the shape of the caisson 5 is not particularly limited. For example, the side wall 9 may have a cylindrical shape, and the planar shape thereof may be a substantially circular shape, a substantially rectangular shape, or another substantially polygonal shape.

次に、本発明の別の例を第2の実施形態として説明する。第2の実施形態は第1の実施形態と異なる点について主に説明し、同様の点については図等で同じ符号を付すなどして説明を省略する。   Next, another example of the present invention will be described as a second embodiment. The second embodiment will mainly describe differences from the first embodiment, and the same points will be denoted by the same reference numerals in the drawings and the like, and description thereof will be omitted.

[第2の実施形態]
図5〜図8は本発明の第2の実施形態の地下構造物の施工方法について示す図である。第2の実施形態は、オープンケーソン工法において、オープンケーソンの下端部を地盤の透水層の下方にある不透水層に根入れして地下構造物を施工する例である。
[Second Embodiment]
5-8 is a figure shown about the construction method of the underground structure of the 2nd Embodiment of this invention. In the open caisson method, the second embodiment is an example in which an underground structure is constructed by rooting the lower end portion of the open caisson into an impermeable layer below the permeable layer of the ground.

すなわち、本実施形態では、図5に示すように側壁47、刃口55を有するオープンケーソン45(以下、単にケーソンということがある)を用いる。側壁47は場所打ちコンクリートやプレキャストコンクリートによって構築される。側壁47、刃口55は図10等で説明した側壁119、刃口127と略同様の構成を有する。   That is, in the present embodiment, as shown in FIG. 5, an open caisson 45 having a side wall 47 and a blade edge 55 (hereinafter sometimes simply referred to as caisson) is used. The side wall 47 is constructed of cast-in concrete or precast concrete. The side wall 47 and the blade edge 55 have substantially the same configuration as the side wall 119 and the blade edge 127 described with reference to FIG.

ただし、本実施形態でも、図6に示すように不凍液を循環させるための凍結管60がケーソン45の側壁47のコンクリート内に埋設される。凍結管60は、ケーソン45の周方向(図6の左右方向に対応する)に沿った略環状の水平配管63と、入側の鉛直配管65および出側の鉛直配管67を有する。これらの構成および配置等はそれぞれ前記した凍結管20の水平配管23、鉛直配管25、27と同様である。また本実施形態でも上下の水平配管63の間の中央部付近に温度センサ69が配置される。温度センサ69は前記の温度センサ29と同様、ケーソン45の側壁47のコンクリート内に埋設される。   However, also in this embodiment, the freezing pipe 60 for circulating the antifreeze liquid is embedded in the concrete of the side wall 47 of the caisson 45 as shown in FIG. The freezing pipe 60 has a substantially annular horizontal pipe 63 along the circumferential direction of the caisson 45 (corresponding to the left-right direction in FIG. 6), an inlet-side vertical pipe 65, and an outlet-side vertical pipe 67. These configurations, arrangements, and the like are the same as those of the horizontal pipe 23 and the vertical pipes 25 and 27 of the freezing pipe 20 described above. Also in this embodiment, the temperature sensor 69 is arranged near the center between the upper and lower horizontal pipes 63. The temperature sensor 69 is embedded in the concrete of the side wall 47 of the caisson 45 in the same manner as the temperature sensor 29 described above.

ケーソン45の沈設方法は図10等で説明したものと略同様であり、ケーソン45の内側の地盤を水中掘削しつつ、アンカ53を反力にとってジャッキ54によりケーソン45を圧入して沈設させる。アンカ53、ジャッキ54は図10等で説明したアンカ115、ジャッキ116と同様である。場合によってはアンカ53やジャッキ54を用いずケーソン45の自重で沈設させることも可能である。上記した鉛直配管65、67は、第1の実施形態と同様、ケーソン45の沈設時に側壁47を継ぎ足すのに合わせて継ぎ足し、上方に延伸させる。   The caisson 45 is laid down in a manner substantially the same as that described with reference to FIG. 10 and the like, while the ground inside the caisson 45 is excavated underwater, the caisson 45 is pressed and set by the jack 54 with the anchor 53 as a reaction force. The anchor 53 and the jack 54 are the same as the anchor 115 and the jack 116 described with reference to FIG. In some cases, it is possible to set the caisson 45 by its own weight without using the anchor 53 or the jack 54. As in the first embodiment, the vertical pipes 65 and 67 described above are added in accordance with the addition of the side wall 47 when the caisson 45 is set, and are extended upward.

ただし、本実施形態でも、図5に示すようにケーソン45を所定位置まで沈設し、その下端部を軟岩層などの不透水層3に根入れした後、図7に示すようにケーソン45とその外側の不透水層3との境界部に凍結部73を形成してケーソン45と不透水層3の間を遮水する。これにより、ケーソン45の沈設時に刃口55によって不透水層3が削られ、ケーソン45と不透水層3の境界部に形成された隙間から透水層2の地下水がケーソン45の内側に浸入するのを防ぐ。   However, also in this embodiment, after caisson 45 is laid down to a predetermined position as shown in FIG. 5 and its lower end is rooted in impermeable layer 3 such as a soft rock layer, caisson 45 and its A frozen portion 73 is formed at the boundary with the outer impermeable layer 3 to shield water between the caisson 45 and the impermeable layer 3. Thereby, when the caisson 45 is set, the impermeable layer 3 is cut by the blade 55, and the groundwater of the permeable layer 2 enters the inside of the caisson 45 through a gap formed at the boundary between the caisson 45 and the impermeable layer 3. prevent.

本実施形態でもポンプ(不図示)等によって不凍液を凍結管60に循環させ、ケーソン45とその外側の不透水層3との境界部を凍結させて凍結部73を形成し、ケーソン45と不透水層3との間を遮水する。温度センサ69で測定した温度データを用いて熱伝導解析を行い、凍結部73が所望の位置に形成され遮水性が確保されていることを確認するのも前記と同様である。   Also in this embodiment, the antifreeze is circulated through the freezing pipe 60 by a pump (not shown) or the like, and the boundary between the caisson 45 and the impermeable layer 3 outside thereof is frozen to form the frozen part 73. Water is blocked between the layers 3. The heat conduction analysis is performed using the temperature data measured by the temperature sensor 69, and it is the same as described above to confirm that the frozen portion 73 is formed at a desired position and the water shielding is ensured.

こうして凍結部73を形成し遮水を行った後、ケーソン45の内側の排水を行って水位を徐々に下げ、漏水量の少ないこと(凍結遮水が出来ていること)を確認して、ケーソン45の内側の排水を完了する。排水の完了後、ケーソン45の内側に作業員や重機を入れ、床付位置までの地盤の掘削、水中掘削時に崩れ落ちた土などの軟弱な土砂の除去を行う。図8に示すように、床付地盤30の仕上げを行った後その上に砕石81を敷き詰め、砕石81上に底版83を構築する。底版83はコンクリートを打設して構築する。   After forming the frozen portion 73 and blocking the water, draining the water inside the caisson 45 and gradually lowering the water level, confirming that the amount of water leakage is small (freezing and water blocking is made). Complete draining inside 45. After the drainage is completed, workers and heavy machinery are put inside the caisson 45 to excavate the ground to the floored position and remove soft earth and sand such as soil that has collapsed during underwater excavation. As shown in FIG. 8, after finishing the floored ground 30, a crushed stone 81 is spread on the ground, and a bottom plate 83 is constructed on the crushed stone 81. The bottom plate 83 is constructed by placing concrete.

凍結管60中の不凍液の循環運転は、少なくとも底版83の構築完了まで行い、この間温度センサ69による温度測定と測定データに基づく遮水性の確認も行う。底版83の構築完了後、適当な時点で不凍液の循環運転を停止し、凍結部73の凍結を自然に解除する。循環運転の停止後は、前記と同様、凍結管60から不凍液を抜き、グラウト材または窒素ガス等の不活性ガスを封入する。   The operation of circulating the antifreeze liquid in the freezing pipe 60 is performed at least until the construction of the bottom plate 83 is completed, and during this time, the temperature measurement by the temperature sensor 69 and the water shielding based on the measurement data are also confirmed. After the construction of the bottom plate 83 is completed, the antifreezing liquid circulation operation is stopped at an appropriate time, and the freezing of the freezing unit 73 is naturally released. After the circulation operation is stopped, the antifreeze liquid is extracted from the freezing tube 60 and an inert gas such as a grout material or nitrogen gas is sealed in the same manner as described above.

このように、第2の実施形態でも、ケーソン45とその外側の不透水層3との境界部を凍結させて遮水を行うことで、上方の透水層2から地下水がケーソン45の内側に浸入し、地下構造物の施工時の支障となるのを防止できる。   As described above, in the second embodiment as well, the boundary portion between the caisson 45 and the impermeable layer 3 outside thereof is frozen and water shielding is performed, so that groundwater enters the caisson 45 from the upper permeable layer 2. In addition, it is possible to prevent an obstacle during construction of the underground structure.

本実施形態のようなオープンケーソン工法の場合、上記のようにしてケーソン45と不透水層3の境界部を遮水することにより、高コストとなる水中コンクリートの打設が不要となり直接底版83を構築できる。そのため施工が容易となり、掘削深度を浅く、ケーソン45を短くできるので工費を節減できる。また床付位置付近の掘削を大気中で人力や小型掘削機によって行うことが可能となり、深掘を防止しやすく床付地盤30を痛めるのも防止できる。また、水中掘削に伴い発生した緩んだ土を除去して床付地盤30の支持力を確保することができ、平板載荷試験等により床付地盤30の支持力を原位置で測定することもできる。   In the case of the open caisson method as in the present embodiment, by blocking the boundary between the caisson 45 and the impermeable layer 3 as described above, it is not necessary to place underwater concrete which is expensive, and the bottom plate 83 is directly attached. Can be built. Therefore, construction becomes easy, the excavation depth is shallow, and the caisson 45 can be shortened, so that the construction cost can be reduced. In addition, excavation in the vicinity of the floored position can be performed in the atmosphere by human power or a small excavator, and it is easy to prevent deep digging, and it is possible to prevent the floored ground 30 from being damaged. Further, it is possible to remove the loose soil generated by the underwater excavation to secure the supporting force of the floored ground 30 and to measure the supporting force of the floored ground 30 in the original position by a flat plate loading test or the like. .

以上、添付図を参照しながら、本発明の実施形態を説明したが、本発明の技術的範囲は、前述した実施形態に左右されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although embodiment of this invention was described referring an accompanying drawing, the technical scope of this invention is not influenced by embodiment mentioned above. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the technical idea described in the claims, and these are naturally within the technical scope of the present invention. It is understood that it belongs.

3:不透水層
5、103:ニューマチックケーソン
7、83、105、121:底版
9、47、107、119:側壁
11、111:掘削部
13a、109a:マンロック
13b、109b:マテリアルロック
19、55、125、127:刃口
20、60:凍結管
23、63:水平配管
25、27、65、67:鉛直配管
29、69:温度センサ
30、110:床付地盤
33、73:凍結部
45、117:オープンケーソン
53、115:アンカ
54、116:ジャッキ
81:砕石
123:水中コンクリート
3: Impermeable layer 5, 103: Pneumatic caisson 7, 83, 105, 121: Bottom plate 9, 47, 107, 119: Side wall 11, 111: Excavation part 13a, 109a: Manlock 13b, 109b: Material lock 19, 55, 125, 127: Cutting edge 20, 60: Freezing pipe 23, 63: Horizontal piping 25, 27, 65, 67: Vertical piping 29, 69: Temperature sensor 30, 110: Ground with floor 33, 73: Freezing section 45 117: Open caisson 53, 115: Anchor 54, 116: Jack 81: Crushed stone 123: Underwater concrete

Claims (7)

ケーソンの下端部を、地盤の透水層の下方にある不透水層に根入れする工程(a)と、
前記ケーソンと前記ケーソンの外側の前記不透水層との境界部を凍結させ、遮水を行う工程(b)と、
前記ケーソンの内側でコンクリートを打設する工程(c)と、
を具備することを特徴とする地下構造物の施工方法。
A step (a) of rooting the lower end of the caisson into the impermeable layer below the permeable layer of the ground;
Freezing a boundary portion between the caisson and the impermeable layer outside the caisson, and performing water shielding (b);
Placing concrete inside the caisson (c);
The construction method of an underground structure characterized by comprising.
前記ケーソンは底版を有するニューマチックケーソンであり、
前記工程(a)において、前記底版の下方の地盤の掘削を、掘削部の気圧を地下水圧より高圧としながら行って前記ケーソンを沈設し、
前記工程(c)において、前記掘削部を大気圧として前記掘削部に前記コンクリートを打設することを特徴とする請求項1記載の地下構造物の施工方法。
The caisson is a pneumatic caisson with a bottom plate;
In the step (a), excavation of the ground below the bottom slab is performed while the pressure of the excavation part is higher than the groundwater pressure, and the caisson is laid down,
The method for constructing an underground structure according to claim 1, wherein, in the step (c), the concrete is placed in the excavation portion with the excavation portion as an atmospheric pressure.
前記工程(c)において、前記掘削部を大気圧とした後、前記掘削部に作業員を入れ、前記底版の下方の地盤を床付位置まで掘削することを特徴とする請求項2記載の地下構造物の施工方法。   3. The underground according to claim 2, wherein, in the step (c), after setting the excavation part to atmospheric pressure, an operator is put into the excavation part and the ground below the bottom slab is excavated to a floored position. Construction method of the structure. 前記ケーソンはオープンケーソンであり、
前記工程(a)において、前記ケーソンの内側の地盤を水中掘削しつつ前記ケーソンを沈設し、
前記工程(c)において、前記ケーソンの内側の排水を行い前記ケーソンの内側で前記コンクリートを打設して底版を構築することを特徴とする請求項1記載の地下構造物の施工方法。
The caisson is an open caisson,
In the step (a), the caisson is submerged while excavating the ground inside the caisson underwater,
The method for constructing an underground structure according to claim 1, wherein, in the step (c), drainage inside the caisson is performed and the concrete is placed inside the caisson to construct a bottom plate.
前記工程(c)において、前記ケーソンの内側の排水を行った後、前記ケーソンの内側に作業員を入れ、前記ケーソンの内側の地盤を床付位置まで掘削することを特徴とする請求項4記載の地下構造物の施工方法。   5. In the step (c), after draining the inside of the caisson, an operator is put inside the caisson, and the ground inside the caisson is excavated to a floored position. Construction method for underground structures. 前記ケーソンに、凍結用の流体を循環させる凍結管が設けられることを特徴とする請求項1から請求項5のいずれかに記載の地下構造物の施工方法。   The construction method for an underground structure according to any one of claims 1 to 5, wherein the caisson is provided with a freezing pipe for circulating a freezing fluid. 前記ケーソンに、温度センサが設けられることを特徴とする請求項1から請求項6のいずれかに記載の地下構造物の施工方法。   The construction method for an underground structure according to any one of claims 1 to 6, wherein a temperature sensor is provided in the caisson.
JP2016166736A 2016-08-29 2016-08-29 Construction method of underground structure Active JP6674868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016166736A JP6674868B2 (en) 2016-08-29 2016-08-29 Construction method of underground structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016166736A JP6674868B2 (en) 2016-08-29 2016-08-29 Construction method of underground structure

Publications (2)

Publication Number Publication Date
JP2018035506A true JP2018035506A (en) 2018-03-08
JP6674868B2 JP6674868B2 (en) 2020-04-01

Family

ID=61566387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016166736A Active JP6674868B2 (en) 2016-08-29 2016-08-29 Construction method of underground structure

Country Status (1)

Country Link
JP (1) JP6674868B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108824469A (en) * 2018-07-05 2018-11-16 浙江科技学院 A kind of device and its reinforcement means for reinforcing bottom sealing
CN110820783A (en) * 2019-11-13 2020-02-21 中铁第四勘察设计院集团有限公司 Soft soil area bin-type mud-water balance open caisson underground space system
JP2021179113A (en) * 2020-05-13 2021-11-18 鹿島建設株式会社 Foundation reinforcement method, and structure
CN114370056A (en) * 2022-01-07 2022-04-19 中基基础工程有限公司 Construction method, device, terminal and medium for sinking open caisson in severe cold frozen soil area

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4815894A (en) * 1986-03-12 1989-03-28 Consolidated Environmental Technologies Limited Construction and use of subsea bore holes
JPH03217520A (en) * 1990-01-24 1991-09-25 Kajima Corp Settling of large-size caisson
JPH06117178A (en) * 1992-10-06 1994-04-26 Mitsui Fudousan Kensetsu Kk Spraying of water proof layer in frozen zone of shield tunnel
JPH0988473A (en) * 1995-09-26 1997-03-31 Ohbayashi Corp Cut-off construction in shaft arrival opening of shield excavator and arrival penetration method
JP2000087361A (en) * 1998-09-10 2000-03-28 Hazama Gumi Ltd Construction method of underground structure
JP2005282199A (en) * 2004-03-30 2005-10-13 Konoike Constr Ltd Bottom plate water cut-off method in open caisson construction method
JP2009068213A (en) * 2007-09-12 2009-04-02 Daiho Constr Co Ltd Construction method for underground structure using caisson, and caisson with cut-off device
JP2011169057A (en) * 2010-02-19 2011-09-01 Kajima Corp Method of constructing vertical shaft
JP2014196663A (en) * 2014-07-16 2014-10-16 鹿島建設株式会社 Pit construction method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4815894A (en) * 1986-03-12 1989-03-28 Consolidated Environmental Technologies Limited Construction and use of subsea bore holes
JPH03217520A (en) * 1990-01-24 1991-09-25 Kajima Corp Settling of large-size caisson
JPH06117178A (en) * 1992-10-06 1994-04-26 Mitsui Fudousan Kensetsu Kk Spraying of water proof layer in frozen zone of shield tunnel
JPH0988473A (en) * 1995-09-26 1997-03-31 Ohbayashi Corp Cut-off construction in shaft arrival opening of shield excavator and arrival penetration method
JP2000087361A (en) * 1998-09-10 2000-03-28 Hazama Gumi Ltd Construction method of underground structure
JP2005282199A (en) * 2004-03-30 2005-10-13 Konoike Constr Ltd Bottom plate water cut-off method in open caisson construction method
JP2009068213A (en) * 2007-09-12 2009-04-02 Daiho Constr Co Ltd Construction method for underground structure using caisson, and caisson with cut-off device
JP2011169057A (en) * 2010-02-19 2011-09-01 Kajima Corp Method of constructing vertical shaft
JP2014196663A (en) * 2014-07-16 2014-10-16 鹿島建設株式会社 Pit construction method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108824469A (en) * 2018-07-05 2018-11-16 浙江科技学院 A kind of device and its reinforcement means for reinforcing bottom sealing
CN110820783A (en) * 2019-11-13 2020-02-21 中铁第四勘察设计院集团有限公司 Soft soil area bin-type mud-water balance open caisson underground space system
JP2021179113A (en) * 2020-05-13 2021-11-18 鹿島建設株式会社 Foundation reinforcement method, and structure
JP7333287B2 (en) 2020-05-13 2023-08-24 鹿島建設株式会社 Foundation reinforcement method and structure
CN114370056A (en) * 2022-01-07 2022-04-19 中基基础工程有限公司 Construction method, device, terminal and medium for sinking open caisson in severe cold frozen soil area
CN114370056B (en) * 2022-01-07 2024-03-29 中基基础工程有限公司 Construction method, device, terminal and medium for sinking well in severe cold frozen soil area

Also Published As

Publication number Publication date
JP6674868B2 (en) 2020-04-01

Similar Documents

Publication Publication Date Title
KR100964796B1 (en) Method for constructing the steel pipe-concrete composite pile structurized of burying and unifying into the bedrock, and a pile construction
CN105951711A (en) Enclosing construction method of underground continuous wall of seashore power station
JP6674868B2 (en) Construction method of underground structure
US20220098817A1 (en) Method for constructing structure
KR101545307B1 (en) Construction method of complex temporary facility with bottom grouting for weak ground
CN104264688A (en) Manual hole digging non-uniform pile support construction technology
CN110486019B (en) Underground excavation construction method for additionally arranging underground communication channels between new buildings and old buildings
CN109371980B (en) Deep foundation pit enclosure construction method combining spray anchor reverse construction and punched pile
KR20140096731A (en) Underground water drainage system of excavated ground and pipeline construction method using the same
JP3752560B2 (en) Basic structure for constructing a new building in an existing basement and its construction method
JP2017122354A (en) Construction method of freezing pipe
JP2014088714A (en) Temporary supporting method for foundation
CN104074195B (en) A kind of method controlling the outer surface subsidence of foundation ditch by horizontal grouting
CN109518681A (en) Precast concrete square pile connector processing method
JP3967473B2 (en) Construction method of underground structure
CN110512649B (en) Underground excavation construction method for additionally arranging basement and communication channel structure under existing building
CN102071945B (en) Method for driving-in and driving-out construction in built structure closed in three sides for shield
CN106013198B (en) Foundation pit enclosure structure gap pre-processes construction method
JP4915037B2 (en) Method for controlling the amount of deformation of the mountain wall
JP6259271B2 (en) Caisson installation method and underground column body group
CN208533543U (en) Improve the structure and foundation pit SMW supporting construction of foundation pit side-wall waterproof performance
JPH03281826A (en) Excavation method in cohesive soil ground
JP2011084868A (en) Reclaimed land partition revetment using caisson
KR20150108342A (en) Underground water drainage system of excavated ground and pipeline construction method using the same
JP6976192B2 (en) Caisson subsidence method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200309

R150 Certificate of patent or registration of utility model

Ref document number: 6674868

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250