JP2021179113A - Foundation reinforcement method, and structure - Google Patents

Foundation reinforcement method, and structure Download PDF

Info

Publication number
JP2021179113A
JP2021179113A JP2020084637A JP2020084637A JP2021179113A JP 2021179113 A JP2021179113 A JP 2021179113A JP 2020084637 A JP2020084637 A JP 2020084637A JP 2020084637 A JP2020084637 A JP 2020084637A JP 2021179113 A JP2021179113 A JP 2021179113A
Authority
JP
Japan
Prior art keywords
foundation
ground
monopile
freezing
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020084637A
Other languages
Japanese (ja)
Other versions
JP7333287B2 (en
Inventor
良祐 辻
Ryosuke Tsuji
輝 吉田
Teru Yoshida
健一 川野
Kenichi Kawano
詩瑶 中本
Shion Nakamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2020084637A priority Critical patent/JP7333287B2/en
Publication of JP2021179113A publication Critical patent/JP2021179113A/en
Application granted granted Critical
Publication of JP7333287B2 publication Critical patent/JP7333287B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Foundations (AREA)
  • Wind Motors (AREA)

Abstract

To provide a foundation reinforcement method and a structure capable of making am embedment depth of a foundation shallow.SOLUTION: A monopile 1 of an ocean wind power generation facility 5 is installed on a water bottom ground 3. Cooling liquid is circulated in a freezing pipe in a vertical direction and a freezing pipe in a horizontal direction disposed inside the monopile 1, to freeze the ground 3 around the monopile 1. The freezing pipe is disposed so that cooling power near a surface layer 15 of the ground 3 becomes larger than that in other parts. By freezing the ground 3 around the monopile 1 to increase friction force between the monopile 1 and the ground 3, a resistance to a horizontal force can be secured even if an embedment depth of the monopile 1 is shallow, compared with the non-freezing case.SELECTED DRAWING: Figure 1

Description

本発明は、基礎の補強方法および構造物に関するものである。 The present invention relates to a method of reinforcing a foundation and a structure.

従来、洋上風力発電設備などの構造物を構築する際には、基礎を水底に設置している。水底に設置した基礎には地震や波力などの水平力が作用するため、通常は基礎を地盤の必要深さまで根入れすることで水平力に対する支持力を確保する。これに対し、基礎構造物内の圧力を下げてサクション圧を常時作用させることで引き抜きに対する抵抗を増大させる方法がある(例えば、特許文献1参照)。 Conventionally, when constructing structures such as offshore wind power generation facilities, the foundation is installed on the bottom of the water. Since horizontal forces such as earthquakes and wave forces act on the foundation installed on the bottom of the water, the foundation is usually rooted to the required depth of the ground to secure the bearing capacity for the horizontal force. On the other hand, there is a method of increasing the resistance to extraction by lowering the pressure in the foundation structure and constantly applying the suction pressure (see, for example, Patent Document 1).

また、水底の基礎の周囲の地盤で水流や波などによって土砂が洗い流される洗掘現象が発生すると基礎の性能が低下するため、砕石などの洗掘防止部材を水中基礎の周囲に設置している(例えば、特許文献2参照)。洗堀現象が発生すると、構造物に接続された水底ケーブルが水中で変形を繰り返して損傷するおそれもある。 In addition, if a scouring phenomenon occurs in which the earth and sand are washed away by water currents or waves in the ground around the foundation of the bottom of the water, the performance of the foundation will deteriorate, so crushed stones and other scouring prevention members are installed around the underwater foundation. (See, for example, Patent Document 2). When the scouring phenomenon occurs, the submarine cable connected to the structure may be repeatedly deformed and damaged in water.

特許第3614007号公報Japanese Patent No. 3614007 特許第6460894号公報Japanese Patent No. 6460894

しかしながら、サクション圧を作用させることができない地盤の場合には、引き抜き抵抗の確保を行うために、基礎を深くまで根入れする必要があった。また、基礎の周りに洗堀が生じると、設計通りの支持力を得ることができなくなる。このため、砕石などの洗堀防止部材を用いて洗堀を防止する必要があるが、洗堀防止部材を大量に水域まで運搬する必要がある。 However, in the case of the ground where suction pressure cannot be applied, it is necessary to deeply root the foundation in order to secure the pull-out resistance. In addition, if a scouring occurs around the foundation, it will not be possible to obtain the bearing capacity as designed. For this reason, it is necessary to prevent scouring by using a scouring prevention member such as crushed stone, but it is necessary to transport a large amount of scouring prevention member to the water area.

本発明は、前述した問題点に鑑みてなされたものであり、その目的とすることは、基礎の根入れ深さを浅くすることができる基礎の補強方法および構造物を提供することである。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a method and a structure for reinforcing a foundation, which can make the depth of the foundation shallow.

前述した目的を達成するために第1の発明は、水底の地盤に構造物の基礎を設置する工程aと、前記基礎の内側に配置された凍結部材に冷却液を循環させて、前記基礎の周囲の地盤を凍結する工程bと、を具備することを特徴とする基礎の補強方法である。 In order to achieve the above-mentioned object, the first invention is a step a of installing a foundation of a structure on the ground of the bottom of the water, and a cooling liquid is circulated through a freezing member arranged inside the foundation to form the foundation. It is a method of reinforcing a foundation, which comprises a step b of freezing the surrounding ground.

第1の発明によれば、基礎の周囲の地盤の表層を凍結することで洗堀防止工を容易に形成することができる。また、基礎の周囲の地盤を凍結することで、凍結による付着強度が付加されて基礎と地盤との摩擦力が増大するので、凍結しない場合と比較して基礎の根入れ深さが浅くても水平力に対する抵抗力を確保することができる。 According to the first invention, the scouring prevention work can be easily formed by freezing the surface layer of the ground around the foundation. In addition, by freezing the ground around the foundation, the adhesion strength due to freezing is added and the frictional force between the foundation and the ground increases, so even if the foundation is shallower than when it does not freeze. It is possible to secure resistance to horizontal force.

前記構造物が洋上風力発電設備であり、前記工程bで、前記洋上風力発電設備の稼働で生み出される発電エネルギーの一部を用いて前記冷却液の温度を調整してもよい。
これにより、洋上風力発電設備の稼働時には他の電源を用いずに基礎の周囲の地盤を凍結することができる。
The structure is an offshore wind power generation facility, and the temperature of the coolant may be adjusted by using a part of the power generation energy generated by the operation of the offshore wind power generation facility in the step b.
As a result, the ground around the foundation can be frozen without using other power sources when the offshore wind power generation facility is in operation.

前記地盤の表層付近の冷却能力が、他の部分よりも大きいことが望ましい。
これにより、基礎の周囲の地盤の表層を確実に凍結することができる。
It is desirable that the cooling capacity near the surface layer of the ground is larger than that of other parts.
This ensures that the surface layer of the ground around the foundation is frozen.

前記基礎の周囲の地盤上に金属部材が配置されてもよい。前記金属部材は例えば水底ケーブルを被覆する網材である。
熱伝導率の高い金属部材を配置することにより、冷却液から金属部材を介して基礎の周囲の地盤の表層を効率良く冷却して凍結することができるので、洗堀の発生が最小限に抑制される。また、金属部材でケーブルを被覆することで、ケーブル付近の地盤を他所に先行して凍結することができるので、ケーブルの水中での変形による損傷が防止される。
A metal member may be placed on the ground around the foundation. The metal member is, for example, a net material that covers a submarine cable.
By arranging a metal member with high thermal conductivity, the surface layer of the ground around the foundation can be efficiently cooled and frozen from the coolant through the metal member, so the occurrence of scouring is minimized. Will be done. Further, by covering the cable with a metal member, the ground near the cable can be frozen in advance of other places, so that damage due to deformation of the cable in water can be prevented.

前記工程bで、前記基礎の近傍の地盤に設置された計測手段を用いて前記地盤の温度を計測し、計測結果に基づいて前記冷却液の温度を設定してもよい。
これにより、温度を詳細に管理することができる。
In the step b, the temperature of the ground may be measured by using a measuring means installed on the ground near the foundation, and the temperature of the coolant may be set based on the measurement result.
This makes it possible to control the temperature in detail.

前記工程bで、前記基礎に作用する波または流れの大きさに応じて前記冷却液の温度を設定してもよい。
これにより、温度を簡易に管理することができる。
In step b, the temperature of the coolant may be set according to the magnitude of the wave or flow acting on the foundation.
This makes it possible to easily control the temperature.

第2の発明は、水底の地盤に設置された基礎と、前記基礎の内側に配置された凍結部材と、を具備し、前記凍結部材に循環させた冷却液によって前記基礎の周囲の地盤が凍結されたことを特徴とする構造物である。 The second invention includes a foundation installed on the ground at the bottom of the water and a freezing member arranged inside the foundation, and the ground around the foundation is frozen by the cooling liquid circulated in the freezing member. It is a structure characterized by being done.

第2の発明によれば、基礎の周囲の地盤の表層が凍結されることで洗堀防止工が容易に形成される。また、基礎の周囲の地盤が凍結されることで、凍結による付着強度が付加されて基礎と地盤との摩擦力が増大するので、基礎の根入れ深さを浅くすることができる。 According to the second invention, the scouring prevention work is easily formed by freezing the surface layer of the ground around the foundation. Further, when the ground around the foundation is frozen, the adhesion strength due to freezing is added and the frictional force between the foundation and the ground is increased, so that the depth of the foundation can be made shallow.

前記構造物が洋上風力発電設備であり、前記基礎の周囲の地盤上に洗堀防止部材が設置されてもよい。
前記基礎は例えばモノパイルである。
モノパイル等の基礎の周囲の地盤の表層が凍結され、その上に洗堀防止部材が設置されることで、洗堀をより確実に防止することができる。
The structure is an offshore wind power generation facility, and a scouring prevention member may be installed on the ground around the foundation.
The basis is, for example, a monopile.
By freezing the surface layer of the ground around the foundation such as monopile and installing a scouring prevention member on it, scouring can be prevented more reliably.

本発明によれば、基礎の根入れ深さを浅くすることができる基礎の補強方法および構造物を提供できる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a method and a structure for reinforcing a foundation, which can make the depth of the foundation shallow.

洋上風力発電設備5の構築方法を示す図。The figure which shows the construction method of the offshore wind power generation facility 5. モノパイル1の鉛直断面図。Vertical sectional view of monopile 1. モノパイル1の水平断面図。Horizontal sectional view of monopile 1. モノパイル1付近を上方から見た図。A view of the vicinity of Monopile 1 from above. 凍結管11が他の位置に配置された例を示す図。The figure which shows the example which the freezing tube 11 was arranged in another position. 凍土9の形成範囲が異なる例を示す図。The figure which shows the example which the formation range of the frozen soil 9 is different. 洋上風力発電設備5aを示す図。The figure which shows the offshore wind power generation facility 5a. 洋上風力発電設備を示す図。The figure which shows the offshore wind power generation facility.

以下、図面に基づいて本発明の好適な実施形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

図1は洋上風力発電設備5の構築方法を示す図である。図1(a)はモノパイル1を設置する工程を示す図、図1(b)はモノパイル1を補強する工程を示す図、図1(c)は上部構造7を設置する工程を示す図である。 FIG. 1 is a diagram showing a method of constructing an offshore wind power generation facility 5. 1A is a diagram showing a process of installing the monopile 1, FIG. 1B is a diagram showing a process of reinforcing the monopile 1, and FIG. 1C is a diagram showing a process of installing the superstructure 7. ..

洋上風力発電設備5を構築するには、まず図1(a)に示すように水底の地盤3にモノパイル1を設置する。モノパイル1は、例えば鋼管杭である。モノパイル1は例えば中掘り工法によって地盤3に貫入され、内部には水が満たされる。 To construct the offshore wind power generation facility 5, first, as shown in FIG. 1A, a monopile 1 is installed on the ground 3 at the bottom of the water. The monopile 1 is, for example, a steel pipe pile. The monopile 1 is penetrated into the ground 3 by, for example, a middle digging method, and the inside is filled with water.

図2は地盤3に設置されたモノパイル1の鉛直断面図である。図3は地盤3に設置されたモノパイル1の水平断面図である。図3(a)は図2のA−A線断面図、図3(b)は図2のB−B線断面図である。 FIG. 2 is a vertical cross-sectional view of the monopile 1 installed on the ground 3. FIG. 3 is a horizontal cross-sectional view of the monopile 1 installed on the ground 3. 3A is a sectional view taken along line AA of FIG. 2, and FIG. 3B is a sectional view taken along line BB of FIG.

図2、図3に示すように、モノパイル1の内周面にはあらかじめ鉛直方向の凍結管11、水平方向の凍結管13が貼付される。凍結管11はモノパイル1の軸方向に延伸するように、モノパイル1の周方向に一定の間隔をおいて配置される。凍結管13は地盤3の表層15付近においてモノパイル1の周方向に延伸するように配置される。凍結管11、13は例えばアルミ製のマイクロチャネルであり、図示しないセメント系材料で防護してもよい。凍結管11の海底より上に位置する部分は、図示しない断熱材で被覆される。 As shown in FIGS. 2 and 3, a vertical freezing tube 11 and a horizontal freezing tube 13 are attached to the inner peripheral surface of the monopile 1 in advance. The freezing tubes 11 are arranged at regular intervals in the circumferential direction of the monopile 1 so as to extend in the axial direction of the monopile 1. The freezing pipe 13 is arranged so as to extend in the circumferential direction of the monopile 1 in the vicinity of the surface layer 15 of the ground 3. The freezing tubes 11 and 13 are, for example, aluminum microchannels, and may be protected by a cement-based material (not shown). The portion of the freezing tube 11 located above the seabed is covered with a heat insulating material (not shown).

地盤3にモノパイル1を設置したら、図1(b)に示すようにモノパイル1にデッキを固定し、冷却液の送り出しや制御に係わる装置が搭載された冷凍設備29をデッキ上に設置する。そして、モノパイル1の周囲の地盤3を凍結して凍土9を形成する。凍土9を形成するには、図示しない外部電源等を用いて冷凍設備29により温度制御された冷却液を凍結管11、13に循環させる。冷凍設備29は遠隔での運転制御が可能である。上記したようにモノパイル1は熱伝導率の高い鋼製であり凍結管11、13はその内周面に貼付されているので、冷却液の温度を低下させるとモノパイル1は同一深さにおいて全周が略均等に冷却され、モノパイル1の外側の地盤3に水平断面が略円形の凍土9が形成される。 After installing the monopile 1 on the ground 3, the deck is fixed to the monopile 1 as shown in FIG. 1 (b), and the refrigerating equipment 29 equipped with the device related to the delivery and control of the coolant is installed on the deck. Then, the ground 3 around the monopile 1 is frozen to form the frozen soil 9. In order to form the frozen soil 9, a cooling liquid whose temperature is controlled by the freezing equipment 29 is circulated through the freezing pipes 11 and 13 using an external power source (not shown) or the like. The refrigerating equipment 29 can be remotely controlled. As described above, the monopile 1 is made of steel having high thermal conductivity, and the freezing tubes 11 and 13 are attached to the inner peripheral surfaces thereof. Therefore, when the temperature of the coolant is lowered, the monopile 1 has the entire circumference at the same depth. Is cooled substantially evenly, and frozen soil 9 having a substantially circular horizontal cross section is formed on the ground 3 outside the monopile 1.

地盤3の表層15付近には凍結管11に加えて周方向に凍結管13が配置されるので、表層15付近の冷却能力は他の部分よりも大きい。そのため、地盤3の表層15では他の部分よりも広範囲に凍土9が形成される。モノパイル1の周囲の地盤3の表層15の凍土9は、波や流れに対する洗堀防止工9aとして機能する。なお、凍結管11を周方向に向けて屈曲させることで地盤3の表層15近傍の冷却能力を高めてもよい。 Since the freezing pipe 13 is arranged in the circumferential direction in addition to the freezing pipe 11 in the vicinity of the surface layer 15 of the ground 3, the cooling capacity in the vicinity of the surface layer 15 is larger than that of the other parts. Therefore, the frozen soil 9 is formed in a wider area on the surface layer 15 of the ground 3 than in other portions. The frozen soil 9 on the surface layer 15 of the ground 3 around the monopile 1 functions as a moat prevention work 9a against waves and currents. The cooling capacity in the vicinity of the surface layer 15 of the ground 3 may be increased by bending the freezing pipe 11 in the circumferential direction.

図4は、図1(b)に示すモノパイル1付近を上方から見た図である。地盤3の表層15付近での凍土9の径は、モノパイル1の径の3〜5倍程度とすることが望ましい。地盤3の表層15のモノパイル1の近傍には海底温度計等の温度計測手段27が設置されており、温度計測手段27を用いて地盤3の表層15の温度を計測すること表層15の凍土9が所望の範囲まで形成されているかどうかを判定することができる。 FIG. 4 is a view of the vicinity of the monopile 1 shown in FIG. 1 (b) as viewed from above. It is desirable that the diameter of the frozen soil 9 near the surface layer 15 of the ground 3 is about 3 to 5 times the diameter of the monopile 1. A temperature measuring means 27 such as a seabed thermometer is installed in the vicinity of the monopile 1 of the surface layer 15 of the ground 3, and the temperature of the surface layer 15 of the ground 3 is measured by using the temperature measuring means 27. Can be determined whether or not is formed to a desired range.

地盤3の表層15より下方の部分では凍結管11のみが配置されるので、冷却能力は地盤3の表層15付近よりも小さい。そのため、地盤3の表層15より下方の部分では表層15よりも狭い範囲に凍土9が形成される。モノパイル1の周囲に形成された凍土9は、モノパイル1と地盤3との間に凍結による付着強度を付加してモノパイル1と地盤3との摩擦力を増大させ、モノパイル1の水平力に対する抵抗力の向上に寄与する。 Since only the freezing pipe 11 is arranged in the portion below the surface layer 15 of the ground 3, the cooling capacity is smaller than that in the vicinity of the surface layer 15 of the ground 3. Therefore, in the portion of the ground 3 below the surface layer 15, the frozen soil 9 is formed in a range narrower than the surface layer 15. The frozen soil 9 formed around the monopile 1 adds adhesion strength due to freezing between the monopile 1 and the ground 3 to increase the frictional force between the monopile 1 and the ground 3, and resists the horizontal force of the monopile 1. Contributes to the improvement of.

凍土9を形成する際には、温度計測手段27や、モノパイル1に貼付した図示しない光ファイバ等を用いて地盤3の温度を計測し、凍結管11、13に循環させる冷却液の温度を地盤3の温度の計測結果に基づいて設定してもよい。これにより温度を詳細に管理することができる。また、モノパイル1に波または流れが作用する時期を把握しておき、凍結管11、13に循環させる冷却液の温度を予想される波や流れの大きさに応じて設定してもよい。これにより、例えば大きな波や流れが作用すると予想される時期には低い温度に設定するなど、温度を簡易に管理することができる。このようにして冷却液の温度を管理すれば、凍土9の形成不足や過度な形成を防止することができる。温度計測手段27や光ファイバ等による温度計測や、冷却液の設定温度の制御は、遠隔操作によって行ってもよい。 When forming the frozen soil 9, the temperature of the ground 3 is measured using a temperature measuring means 27, an optical fiber (not shown) attached to the monopile 1, and the temperature of the coolant circulating in the freezing pipes 11 and 13 is set to the ground. It may be set based on the measurement result of the temperature of 3. This makes it possible to control the temperature in detail. Further, the time when the wave or the flow acts on the monopile 1 may be grasped, and the temperature of the coolant circulating in the freezing tubes 11 and 13 may be set according to the expected wave or the magnitude of the flow. This makes it possible to easily control the temperature, for example, by setting the temperature to a low temperature when a large wave or flow is expected to act. By controlling the temperature of the coolant in this way, it is possible to prevent insufficient formation or excessive formation of the frozen soil 9. The temperature may be measured by the temperature measuring means 27, an optical fiber, or the like, and the set temperature of the coolant may be controlled by remote control.

モノパイル1の周囲の地盤3の所望の範囲に凍土9を形成したら、図1(c)に示すようにモノパイル1上に上部構造7を設置して洋上風力発電設備5を完成し、使用する。洋上風力発電設備5の供用期間中は、洋上風力発電設備5の稼働で生み出される発電エネルギーの一部を用いて冷却液を設定温度に調整する。設定温度は、上記したように温度計測手段27による地盤3の温度計測結果や予想される波や流れの大きさに応じて決めることが望ましい。 After forming the frozen soil 9 in the desired range of the ground 3 around the monopile 1, the superstructure 7 is installed on the monopile 1 as shown in FIG. 1 (c) to complete the offshore wind power generation facility 5 for use. During the service period of the offshore wind power generation facility 5, the coolant is adjusted to a set temperature by using a part of the power generation energy generated by the operation of the offshore wind power generation facility 5. As described above, it is desirable that the set temperature is determined according to the temperature measurement result of the ground 3 by the temperature measuring means 27 and the expected magnitude of the wave or flow.

第1の実施形態によれば、モノパイル1の周囲の地盤3の表層15を凍結することで洗堀防止工9aを容易に形成することができる。また、地盤3の表層15付近にモノパイル1の周方向の凍結管13を配置することで、表層15付近の冷却能力を他の部分よりも大きくして洗堀防止工9aを広範囲に確実に形成することができる。凍土9によって洗堀防止工9aを形成すれば、地震や高波による水底地盤の液状化で水底表面が沈下する現象を緩和することができる。 According to the first embodiment, the scouring prevention work 9a can be easily formed by freezing the surface layer 15 of the ground 3 around the monopile 1. Further, by arranging the freezing pipe 13 in the circumferential direction of the monopile 1 near the surface layer 15 of the ground 3, the cooling capacity near the surface layer 15 is made larger than other parts, and the scouring prevention work 9a is surely formed in a wide range. can do. If the scouring prevention work 9a is formed by the frozen soil 9, the phenomenon that the surface of the bottom of the water sinks due to the liquefaction of the bottom of the water due to an earthquake or high waves can be alleviated.

第1の実施形態によれば、モノパイル1の周囲の地盤3を凍結してモノパイル1と地盤3との摩擦力を増大させることで、凍結しない場合と比較してモノパイル1の根入れ深さが浅くても水平力に対する抵抗力を確保することができる。従来のサクション基礎では排水ポンプ設備が故障すると基礎の地耐力が一気に失われるが、第1の実施形態では凍結装置が故障しても凍土9が解凍するまでは地盤3とモノパイル1との摩擦力によって水平力に対する抵抗力を維持できる。 According to the first embodiment, the ground 3 around the monopile 1 is frozen to increase the frictional force between the monopile 1 and the ground 3, so that the depth of penetration of the monopile 1 is increased as compared with the case where the monopile 1 is not frozen. Even if it is shallow, resistance to horizontal force can be secured. In the conventional suction foundation, if the drainage pump equipment fails, the bearing capacity of the foundation is lost at once, but in the first embodiment, even if the freezing device fails, the frictional force between the ground 3 and the monopile 1 until the frozen soil 9 is thawed. Can maintain resistance to horizontal force.

第1の実施形態では、モノパイル1の根入れ深さを浅くし、洗堀防止工9aを容易に形成することにより、工費が削減され工期が短縮できる。洋上風力発電設備5の供用期間後には、表層15の凍土9を解凍すれば洗堀防止工9aを撤去できる。また、モノパイル1は、地下部分の外径が略一定であるため、表層15を含む地盤3の凍土9を解凍すればモノパイル1の引き抜き抵抗力を低下させて撤去できる。 In the first embodiment, the depth of penetration of the monopile 1 is made shallow, and the washing prevention work 9a is easily formed, so that the work cost can be reduced and the work period can be shortened. After the offshore wind power generation facility 5 is in service, the scouring prevention work 9a can be removed by thawing the frozen soil 9 on the surface layer 15. Further, since the outer diameter of the underground portion of the monopile 1 is substantially constant, if the frozen soil 9 of the ground 3 including the surface layer 15 is thawed, the pull-out resistance of the monopile 1 can be reduced and removed.

第1の実施形態では、洋上風力発電設備5の供用期間中は、洋上風力発電設備5の稼働で生み出される発電エネルギーの一部を冷却液の温度調整に用いるので、他の電源を用いずに地盤3を凍結することができる。 In the first embodiment, during the service period of the offshore wind power generation facility 5, a part of the power generation energy generated by the operation of the offshore wind power generation facility 5 is used for adjusting the temperature of the coolant, so that no other power source is used. The ground 3 can be frozen.

なお、第1の実施形態ではモノパイル1を中掘り工法によって地盤3に設置したが、設置方法はこれに限らず打撃工法によって設置してもよい。 In the first embodiment, the monopile 1 is installed on the ground 3 by the middle digging method, but the installation method is not limited to this and may be installed by the striking method.

モノパイル1に配置される凍結管の位置は図2、図3に示すものに限らない。図5は、凍結管11がモノパイル1の中央付近に配置された例を示す図である。図5(a)は図2のA−A線に対応する位置、図5(b)は図2のB−B線に対応する位置での水平断面図である。図5に示す例では、地盤3の表層15付近を除く部分では凍結管11がモノパイル1の内側の中央付近に鉛直方向に延伸するように配置され、表層15付近では凍結管13が凍結管11から分岐してモノパイル1の内周面に沿って周回するように配置される。この例ではモノパイル1を地盤3に設置した後に凍結管11、13を挿入することが望ましい。 The positions of the freezing tubes arranged in the monopile 1 are not limited to those shown in FIGS. 2 and 3. FIG. 5 is a diagram showing an example in which the freezing tube 11 is arranged near the center of the monopile 1. 5 (a) is a horizontal cross-sectional view at a position corresponding to the line AA of FIG. 2, and FIG. 5 (b) is a horizontal sectional view at a position corresponding to the line BB of FIG. In the example shown in FIG. 5, the freezing tube 11 is arranged so as to extend in the vertical direction near the center inside the monopile 1 except for the vicinity of the surface layer 15 of the ground 3, and the freezing tube 13 is arranged in the vicinity of the surface layer 15 in the freezing tube 11. It is arranged so as to branch from and orbit along the inner peripheral surface of the monopile 1. In this example, it is desirable to insert the freezing tubes 11 and 13 after installing the monopile 1 on the ground 3.

また、水平方向の凍結管13は必須ではない。モノパイル1に鉛直方向の凍結管11のみを配置し、凍結管11の表層15付近を除く部分に断熱材を設けてもよい。このような配置とした場合にも、表層15付近の冷却能力が他の部分より大きくなるので、表層15より下方の部分に対して表層15付近の地盤3を広範囲に凍結して洗堀防止工9aを形成することができる。 Further, the freezing tube 13 in the horizontal direction is not essential. Only the freezing tube 11 in the vertical direction may be arranged in the monopile 1, and a heat insulating material may be provided in a portion of the freezing tube 11 other than the vicinity of the surface layer 15. Even with such an arrangement, the cooling capacity near the surface layer 15 is larger than that of other parts, so the ground 3 near the surface layer 15 is frozen extensively with respect to the part below the surface layer 15 to prevent scouring. 9a can be formed.

凍土9の形成範囲は図1に示すものに限らない。図6は、凍土9の形成範囲が異なる例を示す図である。図6(a)に示す例では、凍土9がモノパイル1の下端付近を除く範囲に形成される。図6(b)に示す例では、凍土9がモノパイル1の下端付近に球根状に形成される。洗堀防止の効果を得るためには、少なくとも地盤3の表層15に凍土9が形成される必要がある。表層15より下方の部分については、引き抜き抵抗力を確保できる程度の範囲に凍土9が形成されればよい。 The formation range of the frozen soil 9 is not limited to that shown in FIG. FIG. 6 is a diagram showing an example in which the formation range of the frozen soil 9 is different. In the example shown in FIG. 6A, the frozen soil 9 is formed in a range excluding the vicinity of the lower end of the monopile 1. In the example shown in FIG. 6B, the frozen soil 9 is formed in a bulb shape near the lower end of the monopile 1. In order to obtain the effect of preventing scouring, it is necessary to form frozen soil 9 at least on the surface layer 15 of the ground 3. For the portion below the surface layer 15, the frozen soil 9 may be formed within a range in which the pull-out resistance can be secured.

以下、本発明の別の例について、第2〜第3の実施形態として説明する。各実施形態はそれまでに説明した実施形態と異なる点について説明し、同様の構成については図等で同じ符号を付すなどして説明を省略する。また、第1の実施形態も含め、各実施形態で説明する構成は必要に応じて組み合わせることができる。 Hereinafter, another example of the present invention will be described as the second to third embodiments. The differences between the embodiments and the embodiments described so far will be described, and the same configurations will be omitted with reference to the same reference numerals in the drawings and the like. Further, the configurations described in each embodiment including the first embodiment can be combined as necessary.

図7は、本発明の第2の実施形態に係る洋上風力発電設備5aを示す図である。第2の実施形態は、地盤3上に金属部材が配置される点で第1の実施形態と主に異なる。 FIG. 7 is a diagram showing an offshore wind power generation facility 5a according to a second embodiment of the present invention. The second embodiment is mainly different from the first embodiment in that the metal member is arranged on the ground 3.

図7に示すように、洋上風力発電設備5aでは、モノパイル1から地盤3に延びる水底ケーブル25が、地盤3上に配置された金属部材である鋼製の網材23で被覆される。網材23は平面視で水底ケーブル25に沿うように放射状に配置される。なお、網材23及び水底ケーブル25は、図示したように周方向に等間隔に4カ所に配置されなくてもよく、例えば、少なくとも2カ所に配置されればよく、この場合、互いに180度の角度位置でなくてよい。 As shown in FIG. 7, in the offshore wind power generation facility 5a, the underwater cable 25 extending from the monopile 1 to the ground 3 is covered with a steel net material 23 which is a metal member arranged on the ground 3. The net material 23 is arranged radially along the submarine cable 25 in a plan view. The net material 23 and the submarine cable 25 do not have to be arranged at four places at equal intervals in the circumferential direction as shown in the figure, for example, they may be arranged at at least two places, and in this case, they are 180 degrees to each other. It does not have to be an angular position.

第2の実施形態では、熱伝導率の高い鋼製の網材23を配置することにより、冷却液から網材23を介してモノパイル1の周囲の地盤3の表層15を効率良く冷却して凍土9を形成することができるので、洗堀の発生が最小限に抑制される。網材23で水底ケーブル25を被覆することにより、水底ケーブル25付近の地盤3を他所に先行して凍結することができるので、水底ケーブル25の直下の地盤3が洗堀されず水底ケーブル25の変形による損傷が防止される。 In the second embodiment, by arranging the steel net material 23 having high thermal conductivity, the surface layer 15 of the ground 3 around the monopile 1 is efficiently cooled from the coolant via the net material 23, and the frozen soil is frozen soil. Since 9 can be formed, the occurrence of scouring is minimized. By covering the submarine cable 25 with the net material 23, the ground 3 near the submarine cable 25 can be frozen in advance of other places, so that the ground 3 directly under the submarine cable 25 is not scoured and the submarine cable 25 is used. Damage due to deformation is prevented.

なお、第2の実施形態では網材23を平面視で放射状に配置したが、網材23を平面視でモノパイル1の全周に連続するように環状に配置してもよい。また、金属部材によって、水底ケーブル25を被覆する形態に限られず、例えば、地盤3上の砕石等によるフィルター層(図示省略)の表層に金属部材が配置されてもよく、地盤3とフィルター層との間に金属部材が配置されてもよい。また、網材23以外の鋼材を地盤3上(フィルター層上を含む)に沿って配置してもよい。また、金属部材としては、鋼材以外にも、例えば銅材(例えば銅製の網材)を用いてもよい。 In the second embodiment, the net material 23 is arranged radially in a plan view, but the net material 23 may be arranged in a ring shape so as to be continuous with the entire circumference of the monopile 1 in a plan view. Further, the metal member is not limited to the form of covering the submarine cable 25, and for example, the metal member may be arranged on the surface layer of the filter layer (not shown) made of crushed stone or the like on the ground 3, and the ground 3 and the filter layer may be arranged. A metal member may be arranged between the two. Further, a steel material other than the net material 23 may be arranged along the ground 3 (including on the filter layer). Further, as the metal member, for example, a copper material (for example, a copper net material) may be used in addition to the steel material.

図8は、本発明の第3の実施形態に係る洋上風力発電設備を示す図である。第3の実施形態は、地盤3上に洗堀防止部材が配置される点で第1の実施形態と主に異なる。 FIG. 8 is a diagram showing an offshore wind power generation facility according to a third embodiment of the present invention. The third embodiment is mainly different from the first embodiment in that the scouring prevention member is arranged on the ground 3.

図8(a)に示すように、洋上風力発電設備5bでは、モノパイル1の周囲の地盤3上(フィルター層上を含む)に洗堀防止部材である被覆材19が配置される。被覆材19は、例えば網袋に石材を充填したものである。 As shown in FIG. 8A, in the offshore wind power generation facility 5b, the covering material 19 which is a scouring prevention member is arranged on the ground 3 (including the filter layer) around the monopile 1. The covering material 19 is, for example, a net bag filled with a stone material.

図8(b)に示すように、洋上風力発電設備5cでは、モノパイル1の周囲の地盤3上(フィルター層上を含む)に洗堀防止部材であるアスファルトマット21が配置される。アスファルトマット21は、モノパイル1の外周面との間に隙間が生じないように配置される。 As shown in FIG. 8B, in the offshore wind power generation facility 5c, the asphalt mat 21 which is a scouring prevention member is arranged on the ground 3 (including the filter layer) around the monopile 1. The asphalt mat 21 is arranged so that no gap is formed between the asphalt mat 21 and the outer peripheral surface of the monopile 1.

第3の実施形態では、モノパイル1の周囲の地盤3の表層15が凍結され、その上に被覆材19やアスファルトマット21などの洗堀防止部材が設置されることで、洗堀をより確実に防止することができる。また、地盤3の表層15が凍結する前には波や流れによってモノパイル1の周囲の地盤3から細粒分が流出するが、洋上風力発電設備5cではアスファルトマット21によって細粒分の流出が防止されることにより表層15に凍土9を形成しやすくなる。さらに凍土9を形成することにより、洗堀防止部材の高波や強潮流による掃流、転動を抑制できる。 In the third embodiment, the surface layer 15 of the ground 3 around the monopile 1 is frozen, and a scouring prevention member such as a covering material 19 or an asphalt mat 21 is installed on the surface layer 15, so that the scouring can be performed more reliably. Can be prevented. Further, before the surface layer 15 of the ground 3 freezes, fine particles flow out from the ground 3 around the monopile 1 due to waves and currents, but in the offshore wind power generation facility 5c, the asphalt mat 21 prevents the fine particles from flowing out. This facilitates the formation of frozen soil 9 on the surface layer 15. Further, by forming the frozen soil 9, it is possible to suppress the sweeping and rolling of the scouring prevention member due to high waves and strong tidal currents.

第1から第3の実施形態では、モノパイル1を基礎とする洋上風力発電設備について説明したが、本発明の構造物はこれに限らない。本発明の基礎の補強方法は洋上風力発電設備のモノパイル1以外の基礎等にも適用可能である。 In the first to third embodiments, the offshore wind power generation facility based on the monopile 1 has been described, but the structure of the present invention is not limited to this. The method of reinforcing the foundation of the present invention can be applied to foundations other than monopile 1 of offshore wind power generation equipment.

以上、添付図面を参照しながら、本発明に係る好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 Although the preferred embodiment of the present invention has been described above with reference to the accompanying drawings, the present invention is not limited to such an example. It is clear that a person skilled in the art can come up with various modified examples or modified examples within the scope of the technical idea disclosed in the present application, and these also naturally belong to the technical scope of the present invention. Understood.

1………モノパイル
3………地盤
5、5a、5b、5c………洋上風力発電設備
7………上部構造
9………凍土
9a………凍結防止工
11、13………凍結管
15………表層
17………径
19………被覆材
21………アスファルトマット
23………網材
25………水底ケーブル
27………温度計測手段
29………冷凍設備
1 ………… Monopile 3 ………… Ground 5, 5a, 5b, 5c ………… Offshore wind power generation equipment 7 ………… Superstructure 9 ………… Frozen soil 9a ………… Freezing prevention work 11, 13 ………… Freezing pipe 15 ………… Surface layer 17 ………… Diameter 19 ………… Covering material 21 ………… Asphalt mat 23 ………… Net material 25 ………… Underwater cable 27 ………… Temperature measuring means 29 ………… Refrigeration equipment

Claims (10)

水底の地盤に構造物の基礎を設置する工程aと、
前記基礎の内側に配置された凍結部材に冷却液を循環させて、前記基礎の周囲の地盤を凍結する工程bと、
を具備することを特徴とする基礎の補強方法。
Step a of installing the foundation of the structure on the ground of the bottom of the water,
A step b in which a cooling liquid is circulated through a freezing member arranged inside the foundation to freeze the ground around the foundation.
A method of reinforcing a foundation, characterized in that it is provided with.
前記構造物が洋上風力発電設備であり、
前記工程bで、前記洋上風力発電設備の稼働で生み出される発電エネルギーの一部を用いて前記冷却液の温度を調整することを特徴とする請求項1記載の基礎の補強方法。
The structure is an offshore wind power generation facility.
The method for reinforcing a foundation according to claim 1, wherein in the step b, the temperature of the coolant is adjusted by using a part of the power generation energy generated by the operation of the offshore wind power generation facility.
前記地盤の表層付近の冷却能力が、他の部分よりも大きいことを特徴とする請求項1または請求項2に記載の基礎の補強方法。 The method for reinforcing a foundation according to claim 1 or 2, wherein the cooling capacity in the vicinity of the surface layer of the ground is larger than that of other portions. 前記基礎の周囲の地盤上に金属部材が配置されることを特徴とする請求項1から請求項3のいずれかに記載の基礎の補強方法。 The method for reinforcing a foundation according to any one of claims 1 to 3, wherein a metal member is arranged on the ground around the foundation. 前記金属部材が水底ケーブルを被覆する網材であることを特徴とする請求項4記載の基礎の補強方法。 The method for reinforcing a foundation according to claim 4, wherein the metal member is a net material for covering a submarine cable. 前記工程bで、前記基礎の近傍の地盤に設置された計測手段を用いて前記地盤の温度を計測し、計測結果に基づいて前記冷却液の温度を設定することを特徴とする請求項1から請求項5のいずれかに記載の基礎の補強方法。 The first aspect of the present invention is characterized in that, in the step b, the temperature of the ground is measured by using a measuring means installed in the ground near the foundation, and the temperature of the coolant is set based on the measurement result. The method for reinforcing a foundation according to any one of claims 5. 前記工程bで、前記基礎に作用する波または流れの大きさに応じて前記冷却液の温度を設定することを特徴とする請求項1から請求項6のいずれかに記載の基礎の補強方法。 The method for reinforcing a foundation according to any one of claims 1 to 6, wherein in the step b, the temperature of the coolant is set according to the magnitude of the wave or flow acting on the foundation. 水底の地盤に設置された基礎と、
前記基礎の内側に配置された凍結部材と、
を具備し、
前記凍結部材に循環させた冷却液によって前記基礎の周囲の地盤が凍結されたことを特徴とする構造物。
The foundation installed on the ground of the bottom of the water and
With the freezing member placed inside the foundation,
Equipped with
A structure characterized in that the ground around the foundation is frozen by the cooling liquid circulated in the freezing member.
前記構造物が洋上風力発電設備であり、
前記基礎の周囲の地盤上に洗堀防止部材が設置されたことを特徴とする請求項8記載の構造物。
The structure is an offshore wind power generation facility.
The structure according to claim 8, wherein a scouring prevention member is installed on the ground around the foundation.
前記基礎がモノパイルであることを特徴とする請求項8または請求項9記載の構造物。 The structure according to claim 8 or 9, wherein the foundation is a monopile.
JP2020084637A 2020-05-13 2020-05-13 Foundation reinforcement method and structure Active JP7333287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020084637A JP7333287B2 (en) 2020-05-13 2020-05-13 Foundation reinforcement method and structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020084637A JP7333287B2 (en) 2020-05-13 2020-05-13 Foundation reinforcement method and structure

Publications (2)

Publication Number Publication Date
JP2021179113A true JP2021179113A (en) 2021-11-18
JP7333287B2 JP7333287B2 (en) 2023-08-24

Family

ID=78511056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020084637A Active JP7333287B2 (en) 2020-05-13 2020-05-13 Foundation reinforcement method and structure

Country Status (1)

Country Link
JP (1) JP7333287B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023107198A (en) * 2022-01-21 2023-08-02 中国長江三峡集団有限公司 Single-pile foundation anti-scouring construction method based on mosaic underwater cement rockfill

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49110106A (en) * 1973-02-21 1974-10-19
JP2010265631A (en) * 2009-05-13 2010-11-25 Nihon Suido Consultants Co Ltd Freezing pipe unit, freezing device and freezing method using freezing pipe unit
JP2011169057A (en) * 2010-02-19 2011-09-01 Kajima Corp Method of constructing vertical shaft
JP2013509522A (en) * 2009-10-29 2013-03-14 リ−テック・バッテリー・ゲーエムベーハー Wind generator with battery unit
JP2014169625A (en) * 2009-12-29 2014-09-18 Kyowa Co Ltd Method for constructing foundation structure for wind power generation facility
JP2015224521A (en) * 2014-05-30 2015-12-14 ケミカルグラウト株式会社 Freezing method and freezing method execution system
JP2016204863A (en) * 2015-04-16 2016-12-08 鹿島建設株式会社 Method for laying scouring prevention material, and template
JP2016205163A (en) * 2015-04-16 2016-12-08 鹿島建設株式会社 Cable lead-in structure, cable lead-in method and sheath pip unit
JP2018035506A (en) * 2016-08-29 2018-03-08 鹿島建設株式会社 Construction method for underground structure
JP2019060076A (en) * 2017-09-25 2019-04-18 鹿島建設株式会社 Soil improving method and covering material
JP2020041315A (en) * 2018-09-10 2020-03-19 鹿島建設株式会社 Scour preventing construction around pile-shaped body, and construction method of scour preventing construction around pile-shaped body

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49110106A (en) * 1973-02-21 1974-10-19
JP2010265631A (en) * 2009-05-13 2010-11-25 Nihon Suido Consultants Co Ltd Freezing pipe unit, freezing device and freezing method using freezing pipe unit
JP2013509522A (en) * 2009-10-29 2013-03-14 リ−テック・バッテリー・ゲーエムベーハー Wind generator with battery unit
JP2014169625A (en) * 2009-12-29 2014-09-18 Kyowa Co Ltd Method for constructing foundation structure for wind power generation facility
JP2011169057A (en) * 2010-02-19 2011-09-01 Kajima Corp Method of constructing vertical shaft
JP2015224521A (en) * 2014-05-30 2015-12-14 ケミカルグラウト株式会社 Freezing method and freezing method execution system
JP2016204863A (en) * 2015-04-16 2016-12-08 鹿島建設株式会社 Method for laying scouring prevention material, and template
JP2016205163A (en) * 2015-04-16 2016-12-08 鹿島建設株式会社 Cable lead-in structure, cable lead-in method and sheath pip unit
JP2018035506A (en) * 2016-08-29 2018-03-08 鹿島建設株式会社 Construction method for underground structure
JP2019060076A (en) * 2017-09-25 2019-04-18 鹿島建設株式会社 Soil improving method and covering material
JP2020041315A (en) * 2018-09-10 2020-03-19 鹿島建設株式会社 Scour preventing construction around pile-shaped body, and construction method of scour preventing construction around pile-shaped body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023107198A (en) * 2022-01-21 2023-08-02 中国長江三峡集団有限公司 Single-pile foundation anti-scouring construction method based on mosaic underwater cement rockfill
JP7345038B2 (en) 2022-01-21 2023-09-14 中国長江三峡集団有限公司 Scour prevention construction method for monopile foundations based on mosaic underwater cement rock fill

Also Published As

Publication number Publication date
JP7333287B2 (en) 2023-08-24

Similar Documents

Publication Publication Date Title
KR101623741B1 (en) Support structure of offshore wind turbines and construction method thereof
US10443207B2 (en) Pile foundations for supporting power transmission towers
US10968894B2 (en) Wind turbine foundation and method of constructing a wind turbine foundation
JP6460894B2 (en) Cable drawing structure, cable drawing method, sheath tube unit
US20170167101A1 (en) Pile for an offshore monopile type foundation structure
JP2021179113A (en) Foundation reinforcement method, and structure
JP2014005597A (en) Floatation prevention pile for underground structure and floatation prevention method for underground structure
WO2016095021A1 (en) Extendable sleeve for piles
JP5232336B1 (en) Metal pile for solar panel and its construction method
Malhotra Design and construction considerations for offshore wind turbine foundations
JP2019100070A (en) Foundation structure of offshore wind power generation facility, and construction method of the same
US6309142B1 (en) Structure for preventing frost heave damage to an underground structure and a method of installing the same
CA1174063A (en) Ice island construction
Iwicki et al. Short review and 3-D FEM analysis of basic types of foundation for offshore wind turbines
KR101384168B1 (en) installation method of slab foundation for offshore wind power generator using position senser
KR101304934B1 (en) Multi complex hybrid foundation type offshore wind tower
RU2532941C1 (en) Method of engineering protection of fpu platform from ice events in conditions of arctic shelf
JP7311460B2 (en) How to remove the foundation
RU2604888C1 (en) Method of engineering protection of floating production platform from ice effects under conditions of arctic shelf
CN214169052U (en) Be suitable for reinforced prestressed anchorage structure of frozen soil district freeze thawing foundation ditch
JP6976192B2 (en) Caisson subsidence method
CN212001133U (en) Foundation pit excavation supporting structure
JPH0132336B2 (en)
JP4619105B2 (en) Construction method of geothermal facilities
JPS6033936A (en) Frost damage preventive pile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230814

R150 Certificate of patent or registration of utility model

Ref document number: 7333287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150