JP3967473B2 - Construction method of underground structure - Google Patents

Construction method of underground structure Download PDF

Info

Publication number
JP3967473B2
JP3967473B2 JP25631498A JP25631498A JP3967473B2 JP 3967473 B2 JP3967473 B2 JP 3967473B2 JP 25631498 A JP25631498 A JP 25631498A JP 25631498 A JP25631498 A JP 25631498A JP 3967473 B2 JP3967473 B2 JP 3967473B2
Authority
JP
Japan
Prior art keywords
caisson
wall
ground
underground structure
blade edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25631498A
Other languages
Japanese (ja)
Other versions
JP2000087361A (en
Inventor
茂生 松本
Original Assignee
株式会社間組
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社間組 filed Critical 株式会社間組
Priority to JP25631498A priority Critical patent/JP3967473B2/en
Publication of JP2000087361A publication Critical patent/JP2000087361A/en
Application granted granted Critical
Publication of JP3967473B2 publication Critical patent/JP3967473B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
  • Foundations (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ケーソンを用いる地下構造物の構築方法に関する。
【0002】
【従来の技術】
地下構造物を構築する工法としてはケーソン工法があり、この工法は、地上に予め躯体を構築し、躯体の下方の地盤を掘削して躯体を沈下させるものである。そして、このケーソン工法のうちで、躯体下方に作業室を設け、この作業室に地下水が浸入しないように高圧力の空気を送り、この作業室に作業員が入って土砂を掘削し、ケーソンを沈下させる工法がニューマチックケーソン工法である。
【0003】
このニューマチックケーソン工法では、高気圧のもとで作業員が掘削作業を行うので掘削効率が低下し、作業員が潜函病になる危険性がある。したがって、地下水位を低下させて、作業室の空気圧を低減するニューマチックケーソン工法も提案されている。この工法では、図4(a)(b)に示したように、地下構造物を構築する範囲の外周の地盤20に、地下構造物の築造深度よりも深い遮水壁31を形成し、遮水壁31で囲まれている地盤に深井戸32を設け、さらに、深井戸32の内周側にケーソン刃口11を設置する。そして、深井戸32を通してポンプ等で地下水を排出し、遮水壁31の内側の地下水位を低下させながら、ケーソン刃口11の下方の作業室15に加圧空気を送り、この作業室15に作業員を入れてここを掘削し、ケーソン10を沈設して地下構造物を構築する。なお、遮水壁を設けずに深井戸のみで地下水位を低下させる工法もある。
【0004】
【発明が解決しようとする課題】
上述した地下水位低下ケーソン工法において、作業室の気圧低減は可能であるが、圧気設備を全廃することはできず、その設備コストは殆ど変わらない。また図4(a)に示したように、基礎岩盤22が傾斜している場合、ここに到達したケーソン刃口11が傾きやすいという欠点が有る。
【0005】
本発明は上記従来技術の問題点に着目し、これを解決せんとしたものであり、その課題は、掘削作業室内を地上と同じ気圧に保ちながら、ここでの地下水の湧出を抑制することができる地下構造物の構築方法を提供することにある。
【0006】
また本発明の別の課題は、基礎岩盤が傾斜している場合であっても、ここに到達するケーソン刃口の傾きを抑制することができる地下構造物の構築方法を提供することにある。
【0007】
【課題を解決するための手段】
上記本発明の課題を解決するために、本発明では、ケーソンを用いる地下構造物の構築方法であって、地下構造物を構築する地盤においてケーソンの通過予定部分を先行掘削して、平面外周が該ケーソンの平面外周よりも大きく、且つ平面内周が該ケーソンの平面外周よりも小さい遮水壁を設け、該遮水壁の内側に地下水が浸入しないよう遮水壁の下端部で囲まれた範囲を地盤改良し、該遮水壁の上にケーソン刃口を設置し、該ケーソン刃口の下方に位置する該遮水壁の内周部と地盤を切削すると共に、ここから地下水を排出しながら、該ケーソンの外周面が該遮水壁で被覆された状態を維持して該ケーソンを沈設することを特徴とする地下構造物の構築方法を提供する。
本発明では、平面外周がケーソンの平面外周よりも大きく且つ平面内周がケーソンの平面外周よりも小さい遮水壁を形成し、該遮水壁の内側に地下水が浸入しないよう遮水壁の下端部で囲まれた範囲を地盤改良し、この遮水壁を外周地盤まで突き破ることのないように、遮水壁の内周部分のみと地盤とを切削しながらケーソンを沈設する。したがって、ケーソンは沈設時に遮水壁で被覆された状態に維持されて、遮水壁の外周地盤の地下水はケーソンの掘削作業室に浸入しないので、掘削部分の地下水を釜場を設けてポンプ等により地上に排出するか、あるいはケーソン下方地盤に深井戸、ウェルポイント又はバキュームディープウェル等を設けてここから排水すれば、掘削作業室内に加圧空気を送ることなく掘削作業を行うことができる。
【0009】
本発明において、前記遮水壁は、地下水が遮水壁外周から内側に浸透しないような地下連続地中壁であれば良い。また、遮水壁の圧縮強度はケーソン刃口を下方から支持できる程度で且つケーソン沈設時の切削が可能な程度であれば良く、例えば、5〜20kg/cm2程度が好ましい。さらに、遮水壁はケーソン沈設時の切削を容易にするために、無筋の地中壁とすることが好ましく、例えば、ソイルモルタルによる柱列連続壁、無筋連続地中壁又はセメントベントナイト等による置換杭を用いることができる。
【0010】
【実施例】
以下、添付図面に基づいて実施例を説明するが、本発明はこれに限定されるものではない。図1は、所定の深度に不透水層を有する地盤において、本発明の地下構造物の構築方法を適用した際の縦断面図であって、ケーソンの沈設過程を示す。また図2(a)は図1を上方から見下ろした平面図であり、図2(b)は図1におけるIIb−IIbの矢視図である。
【0011】
橋脚の基礎などの地下構造物を構築する場合、地下構造物の構築予定地盤20におけるケーソン10の通過予定部分を先行掘削して、遮水壁13を構築する。この遮水壁13はソイルモルタルによる無筋の柱列壁であって、内側に地下水が浸透しないように連続壁として、例えば、アースオーガー(図示せず)を不透水層21のある深さまで掘進させ、ソイルモルタルを注入しながら抜き取る工程を繰り返して形成する。また遮水壁13の平面形状は、その平面外周寸法をケーソン刃口11及びケーソン10の平面外周よりも大きく、且つ平面内周の寸法をケーソン刃口11及びケーソン10の平面外周よりも小さくして、図1及び図2(a)に示したように、沈設されるケーソン刃口11及びケーソン10を取り囲んで閉じるような平面形状に形成する。このように遮水壁13を形成すれば、不透水層21と共に作用して、遮水壁13の内側への地下水の浸入を遮断することができる。
【0012】
そして、遮水壁13を構築した後、遮水壁13で囲まれた地盤20aに深井戸14を設け、ケーソン刃口11をその平面外周が遮水壁13の平面外周よりも外側にはみ出さないように、遮水壁13の上端に配置し、排水パイプ12をケーソン刃口11に貫通させて深井戸14に連通させる。ここで、ケーソン刃口11の平面形状は矩形や円形のものなど、地下構造物に応じて適宜定め、またケーソン10はケーソン刃口11と同様な平面形状のものを用いる。
【0013】
次いで、深井戸14から排水パイプ12を介して地下水を排水しながら、遮水壁13を外周地盤20まで突き破ることのないように、ケーソン刃口11の下方に位置する遮水壁13の内周部分13aを切削するとともに、ケーソン刃口11内側の地盤20aを掘削して、ケーソン刃口11及びケーソン10を遮水壁13で囲んだ状態を維持しながら沈下させる。ここで、遮水壁13の内周部分13aは徐々に切削されるものの、ケーソン刃口11は遮水壁13の切削部分の上に沈下し、遮水壁13により下方から支持された状態が維持される。したがって、ケーソン刃口11は地盤による下方からの支持力を必要とせず、不透水層21に至る途中に傾斜岩盤があったり、また不透水層21が傾斜している場合にも、これら傾斜面によりケーソン刃口11が傾くことは無く、ケーソン刃口11及びケーソン10の水平状態は常に維持される。そして、図3に示したように、ケーソン刃口11が不透水層21に到達したら掘削作業を停止する。
【0014】
掘削作業の停止後、ケーソン刃口11の下方にコンクリートを打設して底版(図示せず)を形成し、不透水層21が支持層になる場合には、底版とケーソン刃口11及びケーソン10とが地下構造物を構成する。一方、不透水層21が軟弱で支持層がさらに深い場合には、ケーソン刃口11の下方に支持杭(図示せず)を打ち、その後に、支持杭とケーソン刃口11とを連結するようにコンクリートを打設して底版を形成し、支持杭とケーソン刃口11とを連結するようにコンクリートを打設して底版を形成し、支持杭と底版とケーソン刃口11及びケーソン10とで地下構造物を構成する。
【0015】
次に、図示はしないが、所定の深さに不透水層が存在しない地盤で地下構造物を構築する方法について説明する。最初に、上記遮水壁13と同様に略鉛直方向に筒状に延びる遮水壁を所定深さまで形成する。そして、この遮水壁の下端部で囲まれた範囲を地盤改良し、遮水壁下端から内側へ浸入する地下水を遮断する。
【0016】
地盤改良後には、上記と同様に、ケーソン刃口を遮水壁の上端に配置し、深井戸と排水パイプとを設け、遮水壁で囲まれた内部の地下水を排水しながら、遮水壁の内周部分のみを切削するとともに、ケーソン刃口内側の地盤を掘削し、ケーソン刃口及びケーソンを沈下させる。ケーソン刃口が地盤改良部分に到達したら掘削作業を停止する。そして、地盤改良を行った地盤に充分な支持力がある場合には、ケーソン刃口の下方にコンクリートを打設して底版を形成し、逆に、改良地盤に充分な支持力が期待できない場合には、ケーソン刃口下方に支持杭を打ち、この支持杭とケーソン刃口とを連結するようにコンクリートを打設して底版を形成する。
【0017】
【発明の効果】
本発明では、平面外周がケーソンの平面外周よりも大きく且つ平面内周がケーソンの平面外周よりも小さい遮水壁を形成し、この遮水壁の上にケーソン刃口を設置し、ケーソンが遮水壁で被覆された状態を維持しながら、ケーソン下方の遮水壁内周部分のみと地盤とを掘削してケーソンを沈設するので、ケーソン作業室内に加圧空気を送らなくても、遮水壁外周からケーソン作業室への地下水の浸入を防止することができる。したがって、ケーソン作業室内に加圧空気を送るための圧気設備を省略することができる。また、ケーソンは、切削した遮水壁の内周部分に当接し、ここで下方から支持された状態で沈設されるので、ケーソン刃口が傾斜岩盤に達した場合にも、ケーソン刃口及びケーソンは水平状態を維持することができる。
【0018】
また本発明では、遮水壁の下端で囲まれた地盤を地盤改良するので、所定深度に不透水層が存在しないような地盤であっても、ケーソンの作業室へ加圧空気を供給せずに地下水の浸入を防止しながら、ケーソンの沈設作業を行うことができる。
【図面の簡単な説明】
【図1】本発明の地下構造物の構築方法において、ケーソンの沈設過程を示す縦断面図である。
【図2】(a)は図1におけるケーソンの平面図であり、(b)は図1におけるIIb−IIb矢視図である。
【図3】本発明の地下構造物の構築方法において、ケーソンを基礎地盤である不透水層に沈設した状態を示す縦断面図である。
【図4】(a),(b)はそれぞれ従来のケーソン工法を示す縦断面図及び平面図である。
【符号の説明】
10 ケーソン
11 ケーソン刃口
13 遮水壁
14 深井戸
21 不透水層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for constructing an underground structure using a caisson.
[0002]
[Prior art]
As a construction method for constructing an underground structure, there is a caisson construction method. This construction method constructs a skeleton in advance on the ground and excavates the ground below the skeleton to sink the skeleton. In this caisson method, a work room is provided below the housing, high-pressure air is sent so that groundwater does not enter the work room, workers enter the work room, excavate the earth and sand, The method of subsidence is the pneumatic caisson method.
[0003]
In this pneumatic caisson method, the worker performs excavation work under high pressure, so that the excavation efficiency is reduced, and there is a risk of the worker becoming a latent disease. Therefore, a pneumatic caisson method for reducing the air pressure in the working room by lowering the groundwater level has also been proposed. In this construction method, as shown in FIGS. 4 (a) and 4 (b), a water-impervious wall 31 deeper than the depth of construction of the underground structure is formed on the ground 20 on the outer periphery of the area where the underground structure is constructed. A deep well 32 is provided in the ground surrounded by the water wall 31, and the caisson blade 11 is installed on the inner peripheral side of the deep well 32. Then, the groundwater is discharged with a pump or the like through the deep well 32, and while reducing the groundwater level inside the impermeable wall 31, pressurized air is sent to the working chamber 15 below the caisson blade 11, Workers are put in and excavated here, and caisson 10 is set up to construct an underground structure. In addition, there is also a construction method that lowers the groundwater level only by a deep well without providing a water shielding wall.
[0004]
[Problems to be solved by the invention]
In the above-mentioned caisson method for lowering the groundwater level, the atmospheric pressure in the working room can be reduced, but the pneumatic equipment cannot be completely abolished, and the equipment cost is hardly changed. Moreover, as shown to Fig.4 (a), when the base rock 22 inclines, there exists a fault that the caisson blade edge 11 which reached | attained here tends to incline.
[0005]
The present invention pays attention to the above-mentioned problems of the prior art and is intended to solve this problem. The problem is to suppress the discharge of groundwater here while keeping the excavation work chamber at the same atmospheric pressure as the ground. The object is to provide a method for constructing an underground structure.
[0006]
Another object of the present invention is to provide a method for constructing an underground structure that can suppress the inclination of the caisson blade reaching here even when the foundation rock is inclined.
[0007]
[Means for Solving the Problems]
In order to solve the above-described problems of the present invention, the present invention provides a method for constructing an underground structure using a caisson. larger than the planar outer periphery of the caisson, and plane periphery provided have low water shield wall than the planar outer periphery of the caisson, surrounded by the lower end of the water shield wall so that ground water will not get into the inside of the shielding waterwall The caisson blade is installed on the impermeable wall, the inner periphery of the impermeable wall and the ground located below the caisson blade are cut, and groundwater is discharged from here. However, the construction method of the underground structure is characterized in that the caisson is set while maintaining the state where the outer peripheral surface of the caisson is covered with the water-impervious wall.
In the present invention, a water-impervious wall having a planar outer periphery larger than the caisson planar outer periphery and a planar inner periphery smaller than the caisson planar outer periphery is formed, and the lower end of the impermeable wall is prevented from entering groundwater inside the impermeable wall. The area surrounded by the part is improved and the caisson is laid down while cutting only the inner peripheral part of the impermeable wall and the ground so that the impermeable wall does not break through to the outer peripheral ground. Therefore, the caisson is kept covered with the impervious wall when set up, and the groundwater on the outer periphery of the impervious wall does not enter the caisson excavation work room. If a deep well, a well point, a vacuum deep well or the like is provided in the ground below the caisson and drained from here, excavation work can be performed without sending pressurized air into the excavation work chamber.
[0009]
In the present invention, the impermeable wall may be a continuous underground underground wall that does not allow groundwater to permeate inward from the outer periphery of the impermeable wall. Further, the compressive strength of the water-impervious wall only needs to be such that the caisson blade edge can be supported from below and can be cut when the caisson is set, and is preferably about 5 to 20 kg / cm 2 , for example. Furthermore, in order to facilitate the cutting when the caisson is set, the impermeable wall is preferably an unreinforced underground wall, for example, a columnar continuous wall made of soil mortar, an unreinforced continuous underground wall, or cement bentonite. A replacement pile can be used.
[0010]
【Example】
Hereinafter, although an example is described based on an accompanying drawing, the present invention is not limited to this. FIG. 1 is a longitudinal cross-sectional view when a method for constructing an underground structure of the present invention is applied to a ground having an impermeable layer at a predetermined depth, and shows a caisson setting process. 2A is a plan view of FIG. 1 as viewed from above, and FIG. 2B is a view taken along the line IIb-IIb in FIG.
[0011]
When constructing an underground structure such as the foundation of a pier, the impermeable wall 13 is constructed by pre-excavating the planned passage portion of the caisson 10 in the ground 20 to be constructed of the underground structure. This impermeable wall 13 is a straight column wall made of soil mortar. As a continuous wall, for example, an earth auger (not shown) is dug to a certain depth of the impermeable layer 21 so that groundwater does not penetrate inside. And repeating the step of extracting while pouring the soil mortar. The planar shape of the impermeable wall 13 is such that the outer peripheral dimension of the plane is larger than that of the caisson blade edge 11 and caisson 10, and the inner dimension of the plane is smaller than that of the caisson blade edge 11 and caisson 10. As shown in FIGS. 1 and 2A, the caisson blade edge 11 and the caisson 10 to be set are formed so as to surround and close. If the impermeable wall 13 is formed in this manner, it can act together with the impermeable layer 21 to block the ingress of groundwater into the inner side of the impermeable wall 13.
[0012]
And after constructing the impermeable wall 13, the deep well 14 is provided in the ground 20 a surrounded by the impermeable wall 13, and the caisson blade edge 11 protrudes outside the planar outer periphery of the impermeable wall 13. It arrange | positions at the upper end of the water-impervious wall 13 so that there may not be, and the drain pipe 12 is penetrated to the caisson blade edge 11, and is connected with the deep well 14. Here, the planar shape of the caisson blade edge 11 is appropriately determined according to the underground structure such as a rectangular or circular shape, and the caisson 10 has a planar shape similar to the caisson blade edge 11.
[0013]
Next, the inner periphery of the impermeable wall 13 located below the caisson edge 11 so that the groundwater is drained from the deep well 14 through the drain pipe 12 and the impermeable wall 13 does not break through to the outer peripheral ground 20. While cutting the part 13a, the ground 20a inside the caisson blade edge 11 is excavated, and the caisson blade edge 11 and the caisson 10 are sunk while maintaining the state surrounded by the water shielding wall 13. Here, although the inner peripheral portion 13a of the impermeable wall 13 is gradually cut, the caisson blade edge 11 sinks on the cut portion of the impermeable wall 13 and is supported by the impermeable wall 13 from below. Maintained. Accordingly, the caisson blade edge 11 does not require a supporting force from below by the ground, and there are inclined rocks in the middle of reaching the impermeable layer 21, and these inclined surfaces even when the impermeable layer 21 is inclined. As a result, the caisson blade edge 11 is not inclined, and the horizontal state of the caisson blade edge 11 and the caisson 10 is always maintained. Then, as shown in FIG. 3, when the caisson blade edge 11 reaches the impermeable layer 21, the excavation work is stopped.
[0014]
After the excavation operation is stopped, concrete is cast below the caisson blade edge 11 to form a bottom plate (not shown), and when the impermeable layer 21 becomes a support layer, the bottom plate, the caisson blade edge 11 and the caisson. 10 constitutes an underground structure. On the other hand, when the impermeable layer 21 is soft and the support layer is deeper, a support pile (not shown) is hit below the caisson blade edge 11, and then the support pile and the caisson blade edge 11 are connected. Concrete is cast into the bottom plate to form the bottom plate, and concrete is cast so as to connect the support pile and the caisson blade edge 11 to form the bottom plate, and the support pile, the bottom plate, the caisson blade edge 11 and the caisson 10 are Constructs an underground structure.
[0015]
Next, although not shown, a method for constructing an underground structure on the ground where no impermeable layer exists at a predetermined depth will be described. First, a water shielding wall extending in a substantially vertical direction like the water shielding wall 13 is formed to a predetermined depth. And the range enclosed by the lower end part of this impermeable wall is improved in the ground, and the groundwater which infiltrates inward from the lower end of the impermeable wall is blocked.
[0016]
After the ground improvement, in the same way as above, the caisson blade edge is placed at the top of the impermeable wall, a deep well and a drain pipe are provided, and the internal water surrounded by the impermeable wall is drained while the impermeable wall In addition to cutting only the inner peripheral portion of the core, the ground inside the caisson blade edge is excavated to sink the caisson blade edge and the caisson. When the caisson blade reaches the ground improvement part, the excavation work is stopped. And, if there is sufficient support for the ground that has been improved, the bottom plate is formed by placing concrete under the caisson edge, and conversely, sufficient support for the improved ground cannot be expected. First, a support pile is struck below the caisson blade edge, and concrete is cast so as to connect the support pile and the caisson blade edge to form a bottom plate.
[0017]
【The invention's effect】
In the present invention, a water-impervious wall having a planar outer periphery larger than the caisson planar outer periphery and a planar inner periphery smaller than the caisson planar outer periphery is formed, and a caisson blade is installed on the water-impervious wall. The caisson is sunk by excavating only the inner periphery of the impermeable wall below the caisson and the ground while maintaining the state covered with the water wall, so that even if pressurized air is not sent into the caisson work chamber, Infiltration of groundwater from the outer wall to the caisson working room can be prevented. Therefore, the pressure-air installation for sending pressurized air into the caisson working chamber can be omitted. Further, the caisson abuts against the inner peripheral portion of the cut water-impervious wall and is set while being supported from below. Therefore, even when the caisson blade reaches the inclined bedrock, the caisson blade and caisson Can maintain a horizontal state.
[0018]
Further, in the present invention, since the ground surrounded by the lower end of the impermeable wall is improved, pressurized air is not supplied to the work room of the caisson even in a ground where there is no impermeable layer at a predetermined depth. The caisson can be installed while preventing the ingress of groundwater.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a caisson setting process in an underground structure building method according to the present invention.
2A is a plan view of the caisson in FIG. 1, and FIG. 2B is a view taken along the arrow IIb-IIb in FIG.
FIG. 3 is a longitudinal sectional view showing a state in which a caisson is sunk in an impermeable layer that is a foundation ground in the method for constructing an underground structure according to the present invention.
FIGS. 4A and 4B are a longitudinal sectional view and a plan view showing a conventional caisson method, respectively.
[Explanation of symbols]
10 Caisson 11 Caisson blade 13 Impermeable wall 14 Deep well 21 Impermeable layer

Claims (1)

ケーソンを用いる地下構造物の構築方法であって、地下構造物を構築する地盤においてケーソンの通過予定部分を先行掘削して、平面外周が該ケーソンの平面外周よりも大きく、且つ平面内周が該ケーソンの平面外周よりも小さい遮水壁を設け、該遮水壁の内側に地下水が浸入しないよう遮水壁の下端部で囲まれた範囲を地盤改良し、該遮水壁の上にケーソン刃口を設置し、該ケーソン刃口の下方に位置する該遮水壁の内周部と地盤を切削すると共に、ここから地下水を排出しながら、該ケーソンの外周面が該遮水壁で被覆された状態を維持して該ケーソンを沈設することを特徴とする地下構造物の構築方法。A method for constructing an underground structure using a caisson, wherein a portion where a caisson is scheduled to pass is excavated in advance in a ground for constructing the underground structure, and a planar outer periphery is larger than a planar outer periphery of the caisson, and a planar inner periphery is the water shield wall provided not smaller than the planar periphery of the caisson, the extent to which ground water is surrounded by the lower end of the water shield wall so as not to intruding soil improvement inside the shielding waterwall, caisson on the shielding waterwall A blade edge is installed, the inner periphery of the impermeable wall and the ground located below the caisson blade edge are cut, and the outer peripheral surface of the caisson is covered with the impermeable wall while discharging groundwater from here. A method for constructing an underground structure, characterized in that the caisson is sunk while maintaining a state that is maintained.
JP25631498A 1998-09-10 1998-09-10 Construction method of underground structure Expired - Fee Related JP3967473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25631498A JP3967473B2 (en) 1998-09-10 1998-09-10 Construction method of underground structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25631498A JP3967473B2 (en) 1998-09-10 1998-09-10 Construction method of underground structure

Publications (2)

Publication Number Publication Date
JP2000087361A JP2000087361A (en) 2000-03-28
JP3967473B2 true JP3967473B2 (en) 2007-08-29

Family

ID=17290953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25631498A Expired - Fee Related JP3967473B2 (en) 1998-09-10 1998-09-10 Construction method of underground structure

Country Status (1)

Country Link
JP (1) JP3967473B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103046565A (en) * 2011-10-17 2013-04-17 五冶集团上海有限公司 Draining method for ultra-deep batholith deep foundation pit
CN111042171A (en) * 2019-12-26 2020-04-21 天津市赛英工程技术咨询有限公司 Open caisson construction method suitable for silt soft soil foundation and high underground water level

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100408132B1 (en) * 2001-08-06 2003-12-01 김건수 Method of construction for the lower part reinforcement of well open cassion in hard ground.
JP4960920B2 (en) * 2008-04-24 2012-06-27 大成建設株式会社 Construction method of temporary structure and underground structure
CN105113529B (en) * 2015-08-03 2017-04-12 云南劲宏建设有限公司 Aid-sedimentation construction method for open caisson engineering in dense round gravel layer or gravel layer
JP6674868B2 (en) * 2016-08-29 2020-04-01 鹿島建設株式会社 Construction method of underground structure
CN107700511A (en) * 2017-09-06 2018-02-16 中国水利水电第十工程局有限公司 Open caisson and its construction method under the conditions of a kind of phreatic high
CN113062344A (en) * 2021-04-29 2021-07-02 北京中岩智泊科技有限公司 Air-compressing dry open caisson structure
CN114088054A (en) * 2021-11-17 2022-02-25 广州市市政工程试验检测有限公司 Automatic monitoring method for longitudinal differential settlement of underground structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103046565A (en) * 2011-10-17 2013-04-17 五冶集团上海有限公司 Draining method for ultra-deep batholith deep foundation pit
CN103046565B (en) * 2011-10-17 2015-05-06 五冶集团上海有限公司 Draining method for ultra-deep batholith deep foundation pit
CN111042171A (en) * 2019-12-26 2020-04-21 天津市赛英工程技术咨询有限公司 Open caisson construction method suitable for silt soft soil foundation and high underground water level

Also Published As

Publication number Publication date
JP2000087361A (en) 2000-03-28

Similar Documents

Publication Publication Date Title
EP0810327A1 (en) Method and device for laying underground continuous walls
CN105714833A (en) Construction method of steel plate pile open caisson support
JP3967473B2 (en) Construction method of underground structure
JP3752560B2 (en) Basic structure for constructing a new building in an existing basement and its construction method
JP2001032673A (en) Tunnel work execution method
JP2018035506A (en) Construction method for underground structure
CN101748735A (en) Foundation ditch excavation method for reducing pile deflection in soft soil area
JP4485006B2 (en) Construction method for underground structures
JP2007046343A (en) Liquefaction preventive construction method of ground just under existing building
JPH08184058A (en) Landslide protection construction
JPH03281826A (en) Excavation method in cohesive soil ground
CN112031021A (en) Construction method of cylindrical self-sinking underground space structure
JP2607966B2 (en) Expanded connecting wall construction method
JP2874906B2 (en) Shaft construction method
JP2809105B2 (en) How to build an underground tank
JP3728659B2 (en) Basement extension method
JP2000178966A (en) Structure of diaphragm wall
JP2001011849A (en) Liquefaction prevention structure of ground, its construction method, and ground improving method
JP3877816B2 (en) Pneumatic caisson settlement method
JP2933546B2 (en) Basement construction method and lower frame material used in the construction method
JP2005307688A (en) Construction method for earth retaining wall for newly built underground skeleton and construction method for newly built skeleton by use of its method
JP2846248B2 (en) Earth retaining wall and construction method
JP3027685B2 (en) Earth retaining wall and construction method
JP3794097B2 (en) Construction method for underground structures
JPH10114957A (en) Method of sand boiling-preventive construction in excavation work of shaft, etc.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees